1
|
Mieles M, Walter AD, Wu S, Zheng Y, Schwenk GR, Barsoum MW, Ji HF. Hydronium-Crosslinked Inorganic Hydrogel Comprised of 1D Lepidocrocite Titanate Nanofilaments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409897. [PMID: 39494971 DOI: 10.1002/adma.202409897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Indexed: 11/05/2024]
Abstract
When a few drops of acid (hydrochloric, acrylic, propionic, acetic, or formic) are added to a colloid comprised of 1D lepidocrocite titanate nanofilaments (1DLs)-2 × 2 TiO6 octahedra in cross-section-a hydrogel forms, in many cases, within seconds. The 1DL synthesis process requires the reaction between titanium diboride with tetramethylammonium (TMA+), hydroxide. Using quantitative nuclear magnetic resonance (qNMR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), the mass percent of TMA+ after synthesis is determined to be ≈ 13.1 ± 0.1%. The TMA+ is completely removed from the gels after 2 water soak cycles, resulting in the first completely inorganic, TiO2-based hydrogels. Ion exchanging the TMA+ with hydronium results in gels with relatively strong hydrogen bonds. The hydrogels' compression strengths increased linearly with 1DL colloid concentration. At a 1DL concentration of 45 g L-1, the compressive strength, at 80% deformation when acrylic acid is used, is ≈325 kPa. The strengths are ≈ 50% greater after the TMA+ is removed. The removal of all residual organic components in the hydrogels, including TMA+, is confirmed by qNMR, Fourier-transformed infrared spectroscopy (FTIR), and TGA/DSC. The 1DL phase is retained after gelation, TMA+ removal, and 80% compression.
Collapse
Affiliation(s)
- Matthew Mieles
- Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA
| | - Adam D Walter
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Simeng Wu
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Yue Zheng
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Gregory R Schwenk
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Michel W Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Chen J, Huang J, Hu Y. Photo-programmable hydrogel iontronics for electrically and chromatically rewritable circuits. Biosens Bioelectron 2024; 263:116596. [PMID: 39116632 DOI: 10.1016/j.bios.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Hydrogel-based iontronics is emerging as a promising frontier in healthcare and human-machine interfacing (HMI), offering excellent compatibility with biological systems in terms of electrical, chemical, and mechanical properties. However, conventional hydrogel systems have limitations in dynamically regulating their electrical and optical properties, which restricts their use in adaptive electronics and responsive interfaces. In this study, we present a new hydrogel system with UV photochemistry-induced reversible conductivity, enabling reversible changes in conductivity. Unlike typical photo-responsive hydrogels that revert to their original states upon removal of the light source, the new hydrogel can maintain its activated states without continuous light exposure, facilitating practical applications. By leveraging the photobase triphenylmethane leucohydroxide and photoacid n-nitrobenzaldehyde, we achieve a significant increase in photo-induced conductivity compared to existing photo-ionic hydrogels. Combining the effective photo-induced conductivity and the accompanied photochromatic effect, we demonstrate a full hydrogel-based stylus pad capable of tracking motion and strokes, and a soft calculator keypad with programmable conductivity and imprinted patterns. These advancements underscore the importance of actively controlling localized conductivity and processing light inputs in hydrogels, exhibiting their potential for diverse applications in bioelectronics and HMI.
Collapse
Affiliation(s)
- Jiehao Chen
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiahe Huang
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yuhang Hu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Chen J, Huang J, Hu Y. An optoionic hydrogel with UV-regulated ion conductivity for reprogrammable iontronics: Logic processing and image sensing. SCIENCE ADVANCES 2024; 10:eadn0439. [PMID: 38865467 PMCID: PMC11168472 DOI: 10.1126/sciadv.adn0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
The development of smart hydrogels capable of actively controlling ion conductivity is of paramount importance for iontronics. Most current work in this field focuses on enhancing the hydrogels' ion conductivity. Few successes have been seen in achieving spatial regulation of ion flow through external control. Among various controls, light gives the best spatial and temporal resolution for practical iontronic applications. However, developing hydrogels that can generate drastic ion concentration change upon photoirradiation for tunable conductivity is challenging. Very few molecules can enable photoion generation, and most of them are hydrophobic and low quantum yield. Here, we present an optoionic hydrogel that uses triphenylmethane leuconitrile (TPMLN) for ultraviolet-regulated ion conductivity. Through postpolymerization TPMLN synthesizing, we can incorporate high concentration of the hydrophobic TPMLN in hydrogels without compromising the hydrogel's mechanical integrity. Upon light irradiation, the hydrogel's local conductivity can change an unprecedented 10-fold. We also demonstrated soft optoionic devices that are capable of logic processing and photo imaging.
Collapse
Affiliation(s)
- Jiehao Chen
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jiahe Huang
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhang Hu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Patel H, Chen J, Hu Y, Erturk A. Photo-responsive hydrogel-based re-programmable metamaterials. Sci Rep 2022; 12:13033. [PMID: 35906233 PMCID: PMC9338311 DOI: 10.1038/s41598-022-15453-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
This paper explores a novel programmable metamaterial using stimuli-responsive hydrogels with a demonstration of bandgap formation and tuning. Specifically, a photo-responsive hydrogel beam that can achieve re-programmable periodicity in geometric and material properties through patterned light irradiation is designed. Hydrogels consist of polymeric networks and water molecules. Many unique properties of hydrogels, including bio-compatibility, stimuli-responsiveness, and low dissipation make them ideal for enabling re-programmable metamaterials for manipulating structural dynamic response and wave propagation characteristics. Bandgap generation and tunability in photo-responsive hydrogel-based metamaterial (in the form of a diatomic phononic chain) as well as the effects of system parameters such as light exposure pattern and photo-sensitive group concentration on the bandgap width and center frequency are systematically studied. In agreement with finite-element model simulations, it is observed that an increase in light exposure region size reduces both the bandgap width and center frequency, while an increase in the concentration of photo-sensitive group increases bandgap width, attenuation and reduces its center frequency. This work unveils the potential of stimuli-response hydrogels as a new class of low-loss soft metamaterials, unlike most other soft materials that are too lossy to sustain and exploit wave phenomena.
Collapse
Affiliation(s)
- Herit Patel
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiehao Chen
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yuhang Hu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Alper Erturk
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Aksoy B, Shea H. Multistable shape programming of variable-stiffness electromagnetic devices. SCIENCE ADVANCES 2022; 8:eabk0543. [PMID: 35622912 PMCID: PMC9140967 DOI: 10.1126/sciadv.abk0543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Programmable shape morphing enables soft machines to safely and effectively interact with the environment. Stimuli-responsive materials can transform 2D sheets into 3D geometries. However, most solutions cannot hold their shape at zero power, are limited to predetermined configurations, or lack sufficient mechanical stiffness to manipulate common objects. We demonstrate here segmented soft electromagnetic actuators integrated with shape memory polymer (SMP) films, capable of deforming and latching into a broad range of configurations. The device consists of liquid metal (LM) coils in an elastomer shell, laminated between two SMP films. The coils are linked by narrow joints, on which stretchable heaters are patterned. Heating the SMP greatly reduces its stiffness. Driving current through an LM coil in the presence of a magnetic field then leads to large bending or twisting. Cooling the SMP locks in the shape, leading to load-bearing capacity. Complex shapes are obtained from an initially flat device.
Collapse
|
7
|
Li W, Wang D, Liang X, Jin Z, Zhou S, Chen G, Pan Y. Lewis-Acid-Catalyzed Selective Friedel-Crafts Reaction or Annulation between Anilines and Glyoxylates. Org Lett 2022; 24:3086-3091. [PMID: 35435692 DOI: 10.1021/acs.orglett.2c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Lewis-acid-catalyzed selective reaction between anilines and glyoxylates was developed for synthesis of diarylmethanes or oxoimidazolidines. Under the catalysis of AgOTf, a series of anilines-based diarylmethanes, including primary, secondary, and tertiary anilines, were obtained in moderate to good yields. Moreover, stereoselective oxoimidazolidines were performed with the catalysis of Cu(OAc)2·H2O.
Collapse
Affiliation(s)
- Wangyu Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Dungai Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiao Liang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhixiong Jin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shiwen Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Guanru Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Wu Y, Guo G, Wei Z, Qian J. Programming Soft Shape-Morphing Systems by Harnessing Strain Mismatch and Snap-Through Bistability: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2397. [PMID: 35407728 PMCID: PMC8999758 DOI: 10.3390/ma15072397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Multi-modal and controllable shape-morphing constitutes the cornerstone of the functionalization of soft actuators/robots. Involving heterogeneity through material layout is a widely used strategy to generate internal mismatches in active morphing structures. Once triggered by external stimuli, the entire structure undergoes cooperative deformation by minimizing the potential energy. However, the intrinsic limitation of soft materials emerges when it comes to applications such as soft actuators or load-bearing structures that require fast response and large output force. Many researchers have explored the use of the structural principle of snap-through bistability as the morphing mechanisms. Bistable or multi-stable mechanical systems possess more than one local energy minimum and are capable of resting in any of these equilibrium states without external forces. The snap-through motion could overcome energy barriers to switch among these stable or metastable states with dramatically distinct geometries. Attributed to the energy storage and release mechanism, such snap-through transition is quite highly efficient, accompanied by fast response speed, large displacement magnitude, high manipulation strength, and moderate driving force. For example, the shape-morphing timescale of conventional hydrogel systems is usually tens of minutes, while the activation time of hydrogel actuators using the elastic snapping instability strategy can be reduced to below 1 s. By rationally embedding stimuli-responsive inclusions to offer the required trigger energy, various controllable snap-through actuations could be achieved. This review summarizes the current shape-morphing programming strategies based on mismatch strain induced by material heterogeneity, with emphasis on how to leverage snap-through bistability to broaden the applications of the shape-morphing structures in soft robotics and mechanical metamaterials.
Collapse
Affiliation(s)
| | | | | | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.G.); (Z.W.)
| |
Collapse
|
9
|
Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022; 137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes. Among the external stimuli that can trigger responsive hydrogels, light is considered as a clean stimulus with high spatiotemporal resolution, complete bioorthogonality, and fine tunability regarding its wavelength and intensity. Therefore, photoresponsiveness has been broadly encoded in hydrogels for biological applications. Moreover, light can be used to initiate gelation during the fabrication of biocompatible hydrogels. Here, we present a critical review of light manipulation tools for the fabrication of hydrogels and for the regulation of physicochemical properties and functions of photoresponsive hydrogels. The materials, photo-initiated chemical reactions, and new prospects for light-induced gelation are introduced in the former part, while mechanisms to render hydrogels photoresponsive and their biological applications are discussed in the latter part. Subsequently, the challenges and potential research directions in this area are discussed, followed by a brief conclusion. STATEMENT OF SIGNIFICANCE: Hydrogels play a vital role in the field of biomaterials owing to their water retention ability and biocompatibility. However, static hydrogels cannot meet the dynamic requirements of the biomedical field. As a stimulus with high spatiotemporal resolution, light is an ideal tool for both the fabrication and operation of hydrogels. In this review, light-induced hydrogelation and photoresponsive hydrogels are discussed in detail, and new prospects and emerging biological applications are described. To inspire more research studies in this promising area, the challenges and possible solutions are also presented.
Collapse
|
10
|
Biswakarma D, Dey N, Bhattacharya S. A biocompatible hydrogel as a template for oxidative decomposition reactions: a chemodosimetric analysis and in vitro imaging of hypochlorite. Chem Sci 2022; 13:2286-2295. [PMID: 35310481 PMCID: PMC8864679 DOI: 10.1039/d1sc05424d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/06/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembly properties of new biocompatible, thermoreversible fluorescent hydrogels, composed of amino acid residues have been reported. A unique gel-to-sol transition is triggered by chemodosimetric interaction in the presence of hypochlorite.
Collapse
Affiliation(s)
- Dipen Biswakarma
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Nilanjan Dey
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad-500078, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
11
|
Xu N, Tao Y, Wang X, Luo Z. Construction of a Novel Substrate of Unfigured Islands-in-Sea Microfiber Synthetic Leather Based on Waste Collagen. ACS OMEGA 2021; 6:26086-26097. [PMID: 34660969 PMCID: PMC8515376 DOI: 10.1021/acsomega.1c03061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
This study is to introduce waste collagen into an unfigured islands-in-sea microfiber nonwoven material, replacing the polyurethane impregnation section of the traditional manufacturing process with the collagen impregnation process. The modified collagen was first impregnated in polyamide/low-density polyethylene (PA/LDPE) fiber nonwoven to form a film. Then the low-density polyethylene component was extracted and dissolved in toluene, resulting in a collagen-based microfiber nonwoven substrate. Waste collagen was first modified to introduce C=C into the molecular chain to obtain vinyl collagen (CMA), and then the following film formation conditions for CMA were studied: 73% degree of substitution (DS), 3 h cross-linking time, and 0.005-0.01 wt % initiator concentration. Then, the preparation of CMA-PA/LDPE and toluene extraction processes were investigated. The optimum toluene extraction conditions were obtained as an extraction temperature of 85 °C and an extraction time of 110 min. The properties of the nonwoven materials were compared before (CMA-PA/LDPE) and after (PA-CMA) extraction. It was found that the homogeneity, tensile strength, and static moisture permeability of the PA-CMA materials prepared by CMA with 50 and 73% DS were all superior to those of PA/LDPE. In particular, the static moisture permeability of PA-CMA (691.6 mg/10 cm2·24 h) increased by 36.2% compared to the microfiber synthetic leather substrate currently in the market. Using scanning electron microscopy (SEM), the continuity of a film of PA-CMA with 73% DS was observed to be better and the fibers were differentiated and relatively tighter fiber-to-fiber gap. The studied novel green process can eliminate the large amount of dimethylformamide (DMF) pollution caused by the current solvent-based polyurethane impregnation process.
Collapse
Affiliation(s)
- Na Xu
- College of Bioresources Engineering
Chemical and Materials Engineering, Shaanxi
University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Yanan Tao
- College of Bioresources Engineering
Chemical and Materials Engineering, Shaanxi
University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Xuechuan Wang
- College of Bioresources Engineering
Chemical and Materials Engineering, Shaanxi
University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Zijin Luo
- College of Bioresources Engineering
Chemical and Materials Engineering, Shaanxi
University of Science and Technology, Xi’an, Shaanxi 710021, China
| |
Collapse
|
12
|
Zhu CN, Li CY, Wang H, Hong W, Huang F, Zheng Q, Wu ZL. Reconstructable Gradient Structures and Reprogrammable 3D Deformations of Hydrogels with Coumarin Units as the Photolabile Crosslinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008057. [PMID: 33788313 DOI: 10.1002/adma.202008057] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Morphing hydrogels have versatile applications in soft robotics, flexible electronics, and biomedical devices. Controlling component distribution and internal stress within a hydrogel is crucial for shape-changing. However, existing gradient structures of hydrogels are usually non-reconstructable, once encoded by chemical reactions and covalent bonds. Fabricating hydrogels with distinct gradient structures is inevitable for every new configuration, resulting in poor reusability, adaptability, and sustainability that are disadvantageous for diverse applications. Herein, a hydrogel containing reversible photo-crosslinks that enable reprogramming of the gradient structures and 3D deformations into various configurations is reported. The hydrogel is prepared by micellar polymerization of hydrophobic coumarin monomer and hydrophilic acrylic acid. The presence of hexadecyltrimethylammonium chloride micelles increases the local concentration of coumarin units and also improves the mechanical properties of the hydrogel by forming robust polyelectrolyte/surfactant complexes that serve as the physical crosslinks. High-efficiency photodimerization and photocleavage reactions of coumarins are realized under 365 and 254 nm light irradiation, respectively, affording reversible tuning of the network structure of the hydrogel. Through photolithography, different gradient structures are sequentially patterned in one hydrogel that direct the deformations into distinct configurations. Such a strategy should be applicable for other photolabile hydrogels toward reprogrammable control of network structures and versatile functions.
Collapse
Affiliation(s)
- Chao Nan Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chen Yu Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hu Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
13
|
Liu K, Hacker F, Daraio C. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Sci Robot 2021; 6:6/53/eabf5116. [PMID: 34043570 DOI: 10.1126/scirobotics.abf5116] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Continuous and controlled shape morphing is essential for soft machines to conform, grasp, and move while interacting safely with their surroundings. Shape morphing can be achieved with two-dimensional (2D) sheets that reconfigure into target 3D geometries, for example, using stimuli-responsive materials. However, most existing solutions lack the ability to reprogram their shape, face limitations on attainable geometries, or have insufficient mechanical stiffness to manipulate objects. Here, we develop a soft, robotic surface that allows for large, reprogrammable, and pliable shape morphing into smooth 3D geometries. The robotic surface consists of a layered design composed of two active networks serving as artificial muscles, one passive network serving as a skeleton, and cover scales serving as an artificial skin. The active network consists of a grid of strips made of heat-responsive liquid crystal elastomers (LCEs) containing stretchable heating coils. The magnitude and speed of contraction of the LCEs can be controlled by varying the input electric currents. The 1D contraction of the LCE strips activates in-plane and out-of-plane deformations; these deformations are both necessary to transform a flat surface into arbitrary 3D geometries. We characterize the fundamental deformation response of the layers and derive a control scheme for actuation. We demonstrate that the robotic surface provides sufficient mechanical stiffness and stability to manipulate other objects. This approach has potential to address the needs of a range of applications beyond shape changes, such as human-robot interactions and reconfigurable electronics.
Collapse
Affiliation(s)
- Ke Liu
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91105, USA
| | - Felix Hacker
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91105, USA.,Department of Mechanical and Process Engineering, ETH-Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91105, USA.
| |
Collapse
|
14
|
Wang L, Ma X, Wu L, Sha Y, Yu B, Lan X, Luo Y, Shi Y, Wang Y, Luo Z. Coumarin derivative trigger controlled photo-healing of ion gels and photo-controlled reversible adhesiveness. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|