1
|
Xue Q, He N, Gao Y, Zhang X, Li S, Chen F, Ning C, Wu X, Yao J, Zhang Z, Li S, Zhao C. Optimizing Triple-Negative Breast Cancer Therapy via Ultrasound-Enhanced Piezocatalysis for Targeted Chemodrug Release. Int J Nanomedicine 2025; 20:2779-2796. [PMID: 40066325 PMCID: PMC11892375 DOI: 10.2147/ijn.s505526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/23/2025] [Indexed: 05/13/2025] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is known for its high malignancy, limited clinical treatment options, and poor chemotherapy outcomes. Although some advancements have been made using nanotechnology-based chemotherapy for TNBC treatment, the controlled and on-demand release of chemotherapeutic drugs at the tumor site remains a challenge. Methods We manufactured DOX/BaTiO3@cRGD-Lip (DBRL) nanoparticles as an ultrasound (US)-controlled release platform targeting the delivery of Doxorubicin (DOX) for TNBC treatment. The nanoparticles incorporate DSPE-Se-Se-PEG-NH2 as the liposomal membrane for ROS responsiveness, cRGD peptide for TNBC cell selectivity, and polyethylene glycol for minimized phagocytic cell absorption. Results The DBRL+US group achieved significant tumor inhibition (70.27% compared to control group, p < 0.001), while maintaining excellent biocompatibility with over 90% cell viability in normal cells. The selective cytotoxicity was evidenced by a 55.70% cell death rate in 4T1 cancer cells under US activation. DBRL showed enhanced tumor accumulation with peak fluorescence intensity of (1.01 ± 0.33)×109 at 12 hours post-injection. Conclusion This targeted nanocomposite material paves a new prospect for future precise piezoelectric catalytic therapy for the treatment of TNBC.
Collapse
Affiliation(s)
- Qingwen Xue
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Yuxiu Gao
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Xuehui Zhang
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Shuao Li
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Fang Chen
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Chunping Ning
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Xiaoyu Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Shangyong Li
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Cheng Zhao
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| |
Collapse
|
2
|
Navarrete-León C, Doherty A, Strimaite M, Bear JC, Olivo A, Endrizzi M, Patrick PS. Nanoparticle Contrast Agents for Dark-Field X-ray Imaging. NANO LETTERS 2025; 25:1036-1042. [PMID: 39601295 PMCID: PMC11760164 DOI: 10.1021/acs.nanolett.4c04878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
The poor soft tissue contrast of X-ray CT necessitates contrast agent use to improve diagnosis across disease applications, yet their poor detection sensitivity requires high injected doses, which restrict use in at-risk populations. Dark-field X-ray imaging is emerging as a more sensitive alternative to traditional attenuation-based imaging, leveraging scattered radiation to produce contrast. Yet aside from large, short-lived microbubbles, the alternate physics of dark-field detection has yet to be exploited for contrast agent development. Here we demonstrate that high-Z nanoparticles can provide a new means to producing dark-field image contrast, promoting scatter via a higher rather than lower electron density compared to microbubbles, increasing detection sensitivity compared to attenuation-based detection of a clinical iodine-based agent at an equivalent X-ray dose. As the use of dark-field X-ray imaging expands into more common clinical usage, this will support the development of a new class of nanoparticulate contrast agents.
Collapse
Affiliation(s)
- Carlos Navarrete-León
- Department
of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray
microscopy and tomography lab, The Francis
Crick Institute, London, NW1 1AT, United Kingdom
| | - Adam Doherty
- Department
of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray
microscopy and tomography lab, The Francis
Crick Institute, London, NW1 1AT, United Kingdom
| | - Margarita Strimaite
- Centre
for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, United Kingdom
| | - Joseph C. Bear
- School
of Life Sciences, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, United Kingdom
| | - Alessandro Olivo
- Department
of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
| | - Marco Endrizzi
- Department
of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray
microscopy and tomography lab, The Francis
Crick Institute, London, NW1 1AT, United Kingdom
| | - P. Stephen Patrick
- Centre
for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
| |
Collapse
|
3
|
Li S, He N, Wu X, Chen F, Xue Q, Li S, Zhao C. Characteristics of Ultrasound-Driven Barium Titanate Nanoparticles and the Mechanism of Action on Solid Tumors. Int J Nanomedicine 2024; 19:12769-12791. [PMID: 39624116 PMCID: PMC11610387 DOI: 10.2147/ijn.s491816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 01/03/2025] Open
Abstract
Sonodynamic therapy (SDT) utilizes specific sound waves to activate sonosensitizers, generating localized biological effects to eliminate tumor cells. With advancements in nanomedicine, the application of nano-acoustic sensitizers has significantly advanced the development of SDT. BaTiO3 (BTO), an inorganic nano-acoustic sensitizer, possesses light refraction characteristics and a high dielectric constant, and can generate an electric field under ultrasound (US) stimulation. With continuous progress in multidisciplinary fields of US research, scientists have developed various types of barium titanate nanoparticles (BTNPs) to further advance SDT research and applications in tumor therapy. In this review, we present recently proposed and representative BTNPs, including their pathways of action, such as the induction of tumor cell senescence, ferroptosis, and glutathione depletion to reshape the tumor microenvironment, as well as their surface modifications. Research indicates that the mechanisms of action of ultrasound-driven BTNPs in tumor therapy are multifaceted. These mechanisms, whether utilized individually or synergistically, offer a potent and targeted strategy for cancer treatment. Furthermore, we discuss the application of BTNPs in various tumor types. Finally, we summarize the current challenges and future prospects for the clinical translation of BTNPs.
Collapse
Affiliation(s)
- Shuao Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoyu Wu
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fang Chen
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qingwen Xue
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shangyong Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Cheng Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
James EC, Tomaskovic‐Crook E, Crook JM. Engineering 3D Scaffold-Free Nanoparticle-Laden Stem Cell Constructs for Piezoelectric Enhancement of Human Neural Tissue Formation and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310010. [PMID: 39049737 PMCID: PMC11516115 DOI: 10.1002/advs.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
| | - Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
- Institute of Innovative MaterialsAIIM FacilityInnovation CampusFaculty of Engineering and Information SystemsUniversity of WollongongFairy MeadowNSW2519Australia
| |
Collapse
|
5
|
Fuentes S, Arancibia D, Rojas M, Carmona F, Ortega A, Valenzuela J, Hernández-Álvarez C, Martín IR. Simultaneous Second Harmonic Generation and Multiphoton Excited Photoluminescence in Samarium-Doped BaTiO 3 Nanoparticles Functionalized with Poly(ethylene glycol). ACS OMEGA 2024; 9:28061-28071. [PMID: 38973864 PMCID: PMC11223262 DOI: 10.1021/acsomega.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
In this work, samarium-doped BaTiO3 (BT:Sm) nanoparticles (NPs) were prepared and coated with poly(ethylene glycol) (PEG) to investigate their optical characteristics and compatibility with biological systems. The structure, particle morphology, optical properties, and biological compatibility of the NPs were assessed. The results demonstrated the formation of BT:Sm and [(BT:Sm)-PEG]. The relative intensities and positions of peaks in the X-ray diffraction (XRD) are consistent with an average crystallite size of ∼75 nm. The Raman spectra showed that Sm doping produced the typical tetragonal peaks at around 306 and 715 cm-1, and Fourier transform infrared (FTIR) spectroscopy showed that the PEGylation process was effective. Also, our investigation demonstrates the potential of these NPs as very temperature-sensitive nanosensors with a resolution exceeding 0.5 °C, which is achievable through optical excitation. We also analyze their emission properties. Finally, we present a study related with the mitochondrial activity of naked and PEG-coated NPs. The results indicate that neither naked nor PEG-coated NPs exhibit changes in mitochondrial metabolism, as indicated by quantitative cell viability and morphological visualization. The PEG-coated NPs prevented the formation of aggregates in cell culture compared to naked NPs, demonstrating the significance of PEG as a stabilizing agent.
Collapse
Affiliation(s)
- Sandra Fuentes
- Departamento
de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla, 1280 Antofagasta, Chile
- Center
for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9160000, Chile
| | - Duxan Arancibia
- Departamento
de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla, 1280 Antofagasta, Chile
| | - Marcelo Rojas
- Departamento
de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla, 1280 Antofagasta, Chile
| | - Francisca Carmona
- Departamento
de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla, 1280 Antofagasta, Chile
| | - Andrea Ortega
- Departamento
de Procesos Diagnósticos y Evaluación, Facultad de Ciencias
de la Salud, Universidad Católica
de Temuco, Temuco 4813302, La Araucanía, Chile
| | - Julio Valenzuela
- Departamento
de Minas y Metalurgia, Universidad Católica
del Norte, Antofagasta 1280, Chile
| | - Christian Hernández-Álvarez
- Departamento
de Física, MALTA-Consolider Team, IMN, Universidad de La Laguna, Apdo. Correos 456, E-38206 San Cristóbal de La Laguna, Santa
Cruz de Tenerife, Spain
| | - Inocencio R. Martín
- Departamento
de Física, MALTA-Consolider Team, IMN, Universidad de La Laguna, Apdo. Correos 456, E-38206 San Cristóbal de La Laguna, Santa
Cruz de Tenerife, Spain
| |
Collapse
|
6
|
Xiang Z, Xu L, Shan Y, Cui X, Shi B, Xi Y, Ren P, Zheng X, Zhao C, Luo D, Li Z. Tumor microenviroment-responsive self-assembly of barium titanate nanoparticles with enhanced piezoelectric catalysis capabilities for efficient tumor therapy. Bioact Mater 2024; 33:251-261. [PMID: 38059123 PMCID: PMC10696196 DOI: 10.1016/j.bioactmat.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
Catalytic therapy based on piezoelectric nanoparticles has become one of the effective strategies to eliminate tumors. However, it is still a challenge to improve the tumor delivery efficiency of piezoelectric nanoparticles, so that they can penetrate normal tissues while specifically aggregating at tumor sites and subsequently generating large amounts of reactive oxygen species (ROS) to achieve precise and efficient tumor clearance. In the present study, we successfully fabricated tumor microenvironment-responsive assembled barium titanate nanoparticles (tma-BTO NPs): in the neutral pH environment of normal tissues, tma-BTO NPs were monodisperse and possessed the ability to cross the intercellular space; whereas, the acidic environment of the tumor triggered the self-assembly of tma-BTO NPs to form submicron-scale aggregates, and deposited in the tumor microenvironment. The self-assembled tma-BTO NPs not only caused mechanical damage to tumor cells; more interestingly, they also exhibited enhanced piezoelectric catalytic efficiency and produced more ROS than monodisperse nanoparticles under ultrasonic excitation, attributed to the mutual extrusion of neighboring particles within the confined space of the assembly. tma-BTO NPs exhibited differential cytotoxicity against tumor cells and normal cells, and the stronger piezoelectric catalysis and mechanical damage induced by the assemblies resulted in significant apoptosis of mouse breast cancer cells (4T1); while there was little damage to mouse embryo osteoblast precursor cells (MC3T3-E1) under the same treatment conditions. Animal experiments confirmed that peritumoral injection of tma-BTO NPs combined with ultrasound therapy can effectively inhibit tumor progression non-invasively. The tumor microenvironment-responsive self-assembly strategy opens up new perspectives for future precise piezoelectric-catalyzed tumor therapy.
Collapse
Affiliation(s)
- Zhuo Xiang
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Lingling Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bojing Shi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yuan Xi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Panxing Ren
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuemei Zheng
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning, 530004, China
| | - Chaochao Zhao
- Department of Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528225, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Li
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Zhang Y, Guo Z. Transition metal compounds: From properties, applications to wettability regulation. Adv Colloid Interface Sci 2023; 321:103027. [PMID: 37883847 DOI: 10.1016/j.cis.2023.103027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Transition metal compounds (TMCs) have the advantages of abundant reserves, low cost, non-toxic and pollution-free, and have attracted wide attention in recent years. With the development of two-dimensional layered materials, a new two-dimensional transition metal carbonitride (MXene) has attracted extensive attention due to its excellent physicochemical properties such as gas selectivity, photocatalytic properties, electromagnetic interference shielding and photothermal properties. They are widely used in gas sensors, oil/water separation, wastewater and waste-oil treatment, cancer treatment, seawater desalination, strain sensors, medical materials and some energy storage materials. In this view, we aim to emphatically summarize MXene with their properties, applications and their wettability regulation in different applications. In addition, the properties of transition metal oxides (TMOs) and other TMCs and their wettability regulation applications are also discussed.
Collapse
Affiliation(s)
- Yidan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
8
|
Wang Y, Zang P, Yang D, Zhang R, Gai S, Yang P. The fundamentals and applications of piezoelectric materials for tumor therapy: recent advances and outlook. MATERIALS HORIZONS 2023; 10:1140-1184. [PMID: 36729448 DOI: 10.1039/d2mh01221a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Malignant tumors are one of the main diseases leading to death, and the vigorous development of nanotechnology has opened up new frontiers for antitumor therapy. Currently, researchers are focused on solving the biomedical challenges associated with traditional anti-tumor medical methods, promoting the research and development of nano-drug carriers and new nano-drugs, which brings great hope for improving the curative effect and reducing toxic and side effects. Among the new systems being investigated, piezoelectric nano biomaterials, including ferroelectrics, piezoelectric and pyroelectric materials, have recently received extensive attention for antitumor applications. By coupling force, light, magnetism or heat and electricity, polarized charges are generated in these materials microscopically, forming a piezo-potential and establishing a built-in electric field. Polarized charges can directly act on the materials in the tumor micro-environment and also assist in the separation of carriers and inhibit recombination based on piezoelectric theory and piezoelectric optoelectronic theory. Based on this, piezoelectric materials convert various forms of primary energy (such as light energy, mechanical energy, thermal energy and magnetic energy) from the surrounding environment into secondary energy (such as electrical energy and chemical energy). Herein, we review the basic theory and principles of piezoelectric materials, pyroelectric materials and ferroelectric materials as nanomedicine. Then, we summarize the types of piezoelectric materials reported to date and their wide applications in treatment, imaging, device construction and probe detection in various tumor treatment fields. Based on this, we discuss the relevant characteristics and post-processing strategies of nano piezoelectric biomaterials to obtain the maximum piezoelectric response. Finally, we present the key challenges and future prospects for the development of ferroelectric, piezoelectric and pyroelectric nanomaterial-based nanoagents for efficient energy harvesting and conversion for desirable therapeutic outcomes.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
- Yantai Research Institute, Harbin Engineering University, Yantai 264000, P. R. China
| |
Collapse
|
9
|
Sood A, Desseigne M, Dev A, Maurizi L, Kumar A, Millot N, Han SS. A Comprehensive Review on Barium Titanate Nanoparticles as a Persuasive Piezoelectric Material for Biomedical Applications: Prospects and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206401. [PMID: 36585372 DOI: 10.1002/smll.202206401] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Stimulation of cells with electrical cues is an imperative approach to interact with biological systems and has been exploited in clinical practices over a wide range of pathological ailments. This bioelectric interface has been extensively explored with the help of piezoelectric materials, leading to remarkable advancement in the past two decades. Among other members of this fraternity, colloidal perovskite barium titanate (BaTiO3 ) has gained substantial interest due to its noteworthy properties which includes high dielectric constant and excellent ferroelectric properties along with acceptable biocompatibility. Significant progression is witnessed for BaTiO3 nanoparticles (BaTiO3 NPs) as potent candidates for biomedical applications and in wearable bioelectronics, making them a promising personal healthcare platform. The current review highlights the nanostructured piezoelectric bio interface of BaTiO3 NPs in applications comprising drug delivery, tissue engineering, bioimaging, bioelectronics, and wearable devices. Particular attention has been dedicated toward the fabrication routes of BaTiO3 NPs along with different approaches for its surface modifications. This review offers a comprehensive discussion on the utility of BaTiO3 NPs as active devices rather than passive structural unit behaving as carriers for biomolecules. The employment of BaTiO3 NPs presents new scenarios and opportunity in the vast field of nanomedicines for biomedical applications.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Margaux Desseigne
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Atul Dev
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| |
Collapse
|
10
|
Improving the colloidal stability of PEGylated BaTiO3 nanoparticles with surfactants. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Jain U, Soni S, Chauhan N. Application of perovskites in bioimaging: the state-of-the-art and future developments. Expert Rev Mol Diagn 2022; 22:867-880. [PMID: 36254607 DOI: 10.1080/14737159.2022.2135990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recently, the development of perovskite-based nanocrystals for sustainable applications in bioimaging and clinical diagnostics have become a very active area of research. From 2D hybrid to zero-dimensional quantum dots (QDs), perovskites along with a variety of characteristic features, specifically non-linear optoelectronics properties, have attracted enormous research attention. These characteristics can be tuned by the type of cations or anions and their ratio used in host perovskites. Carrier doping and chemical modifications are additional alternatives to control optical and magnetism in radiodiagnostics. AREA COVERED This review begins by explaining the physical phenomena associated with luminescence or optical features of novel perovskites in diagnostic applications. Moreover, reported oxide, halide, doped, and QDs-based nanoprobes were elaborated. At last, the need for novel perovskite development, for example, persistent luminescent and low cytotoxicity is discussed, and the futuristic perspective of perovskites in clinical diagnostics with real-time demonstration is explained. EXPERT OPINION Our article concludes that hybrid perovskites, including metal-free, core-shell nanocomposites-based, and alloy-based perovskites, exhibit tunable bandgap and high photoluminescence quantum yields which ultimately result in high optical features. However, given limited understanding of ion transport mechanisms and dependency on environmental conditions of the perovskites, more research is needed.
Collapse
Affiliation(s)
- Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, India
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, India
| |
Collapse
|
12
|
He X, Cao Z, Li N, Chu L, Wang J, Zhang C, He X, Lu X, Sun K, Meng Q. Preparation and evaluation of SN-38-loaded MMP-2-responsive polymer micelles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Farahmand N, McGinn CK, Zhang Q, Gai Z, Kymissis I, O'Brien S. Magnetic and dielectric property control in the multivalent nanoscale perovskite Eu 0.5Ba 0.5TiO 3. NANOSCALE 2021; 13:10365-10384. [PMID: 33988208 DOI: 10.1039/d1nr00588j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report nanoscale Eu0.5Ba0.5TiO3, a multiferroic in the bulk and candidate in the search to quantify the electric dipole moment of the electron. Eu0.5Ba0.5TiO3, in the form of nanoparticles and other nanostructures is interesting for nanocomposite integration, biomedical imaging and fundamental research, based upon the prospect of polarizability, f-orbital magnetism and tunable optical/radio luminescence. We developed a [non-hydrolytic]sol-[H2O-activated]gel route, derived from in-house metallic Ba(s)/Eu(s) alkoxide precursors and Ti{(OCH(CH3)2}4. Two distinct nanoscale compounds of Ba:Ti:Eu with the parent perovskite crystal structure were produced, with variable dielectric, magnetic and optical properties, based on altering the oxidizing/reducing conditions. Eu0.5Ba0.5TiO3 prepared under air/O2 atmospheres produced a spherical core-shell nanostructure (30-35 nm), with perovskite Eu0.5Ba0.5TiO3 nanocrystal core-insulating oxide shell layer (∼3 nm), presumed a pre-pyrochlore layer abundant with Eu3+. Fluorescence spectroscopy shows a high intensity 5D0→7F2 transition at 622 nm and strong red fluorescence. The core/shell structure demonstrated excellent capacitive properties: assembly into dielectric thin films gave low conductivity (2133 GΩ mm-1) and an extremely stable, low loss permittivity of εeff∼25 over a wide frequency range (tan δ < 0.01, 100 kHz-2 MHz). Eu0.5Ba0.5TiO3 prepared under H2/argon produced more irregular shaped nanocrystals (20-25) nm, with a thin film permittivity around 4 times greater (εeff 101, tan δ < 0.05, 10 kHz-2 MHz, σ∼59.54 kΩ mm-1). Field-cooled magnetization values of 0.025 emu g-1 for EBTO-Air and 0.84 emu g-1 for EBTO-Argon were observed. X-ray photoelectron spectroscopy analysis reveals a complex interplay of EuII/III/TiIII/IV configurations which contribute to the observed ferroic and fluorescence behavior.
Collapse
Affiliation(s)
- Nasim Farahmand
- The CUNY Energy Institute, City University of New York, Steinman Hall, 160 Convent Avenue, The City College of New York, New York, NY 10031, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Pasuk I, Neațu F, Neațu Ș, Florea M, Istrate CM, Pintilie I, Pintilie L. Structural Details of BaTiO 3 Nano-Powders Deduced from the Anisotropic XRD Peak Broadening. NANOMATERIALS 2021; 11:nano11051121. [PMID: 33925991 PMCID: PMC8147028 DOI: 10.3390/nano11051121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
In this study, nano-BaTiO3 (BTO) powders were obtained via the solvothermal method at different reaction times and were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results were compared with those obtained for a larger crystallite size BTO powder (BTO-m). The sizes of the cuboid crystallites (as determined by XRD and TEM) ranged from about 18 to 24 nm, depending on the reaction time. The evolution with temperature of the structure parameters of nano-BTO was monitored by means of X-ray diffraction and Raman spectroscopy and no signs of phase transition were found up to 170 °C. Careful monitoring of the dependence of the XRD peak widths on the hkl indices showed that the effect of the cubic crystallite shape upon the XRD peak widths was buried by the effect of hidden tetragonal line splits and by anisotropic microstrain. The good correlation of the line widths with the tetragonal split amplitudes, observed especially for BTO-m above the transition temperature, indicates tetragonal deformations, as also revealed by Raman spectroscopy. The large anisotropic microstrain shown by the nano-powders, which had a maximum value in the <100> directions, was considered evidence of the phenomenon of surface relaxation of cubic crystallites edged by {100} faces. The observed behavior of the nano-BTO structures with increasing temperature may suggest a correlation between the surface relaxation and tetragonal deformation in the nano-cubes. The experimental results for both nano-BTO and mezoscale-BTO are in agreement with the core-shell model.
Collapse
|