1
|
El-Wekil MM, Bin Jardan YA, Mostafa AM, Barker J, Ali ABH. A novel fluorescent sensing platform for glutathione based on Förster resonance energy transfer and aggregation-induced emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126131. [PMID: 40163928 DOI: 10.1016/j.saa.2025.126131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Glutathione (GSH) plays essential roles in anti-oxidation and detoxification within the human body. An imbalance in its concentration can lead to serious health conditions. Therefore, accurate monitoring of GSH is critical for maintaining human health. In this study, we present a novel GSH detection method that enhances the fluorescence of α-lipoic acid-functionalized gold nanoclusters (LA@Au NCs) through aggregation induced by zinc and nitrogen co-doped carbon dots (Zn@N-CDs). Additionally, the fluorescence of Zn@N-CDs (donor) decreases upon adding LA@Au NCs (acceptor), indicating Förster resonance energy transfer (FRET) between them. In the presence of GSH, complexation with Zn2+ on the N-CD surface disrupts both the aggregation induced emission (AIE) and FRET mechanisms. This disruption leads to the restoration of N-CD fluorescence while simultaneously quenching the fluorescence of LA@Au NCs. Under optimized conditions, the fluorescence response ratio (F465/F670) is directly proportional to the concentration of GSH within a linear dynamic range of 0.1-90 µM, with a detection limit (S/N = 3) of 0.03 µM. This novel combination paves the way for the development of fluorescent probes for detecting various molecules and biomolecules.
Collapse
Affiliation(s)
- Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526 Egypt.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451 Saudi Arabia
| | - Aya M Mostafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526 Egypt
| | - James Barker
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-upon-Thames, London KT1 2EE UK
| | - Almontaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526 Egypt
| |
Collapse
|
2
|
Huang KY, Chen YY, Yang ZQ, Pan YP, Xie J, Chen W, Deng HH. Dual-Function Strategy for Enhanced Quercetin Detection Using Terbium(III) Ion-Bound Gold Nanoclusters. Anal Chem 2025; 97:5191-5199. [PMID: 39998817 DOI: 10.1021/acs.analchem.4c06529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The engineering of metal nanoclusters (NCs) that exhibit bright emissions and high sensing performance under physiological conditions is still a formidable challenge. In this study, we report a novel design strategy for realizing excellent performance metal NC-based probes by leveraging both concerted proton-coupled electron transfer (PCET) and photoinduced electron transfer (PET) mechanisms, with terbium(III) (Tb3+) ions serving as a key modulator. Our findings indicate that the binding of Tb3+ ions to the 6-aza-2-thiothymidine (ATT) ligand effectively inhibits the proton-transfer step in the concerted PCET pathway of Au10(ATT)6 NCs, giving rise to over a 10-fold enhancement in fluorescence and a quantum yield of 7.2%. Moreover, the capped Tb3+ ions on the surface of Au10(ATT)6 NCs can act as a bridge to facilitate an efficient donor-linker-acceptor type PET reaction from quercetin (Que) to the excited Au10 core by specifically interacting with the bare 3-OH group. These advancements enable the Tb3+/Au10(ATT)6 NC-based probe to achieve a significantly lower limit of detection for Que, reduced by nearly 3 orders of magnitude to 2.6 nM, while also addressing the critical difficulty of selectively detecting Que in the presence of its glycosylated analogues. This work opens new opportunities for the precise control of photoluminescence in metal NC probes at the molecular level, potentially promoting the development of next-generation metal NC-based sensing technologies.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Yan-Yan Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhi-Qiang Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Yan-Ping Pan
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Jun Xie
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
3
|
Ali R, Alattar A, Albalawi AS, Alkhamali A, Hakami OA, Alharthi HH, Alahmari MS, Alharbi AH, Aljohani OM, Yahya Alzahrani YA, Albaqami TM, El-Wekil MM. Developing a switch "OFF-ON" fluorescent probe for detection of melamine based on doubly-protected red emissive copper nanoclusters mediated by Hg 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125286. [PMID: 39427387 DOI: 10.1016/j.saa.2024.125286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Melamine, often used as an adulterant in infants' formula due to its high protein content, can be harmful when ingested in large amounts, leading to the formation of cyanurate-melamine co-crystals in infants and potentially causing kidney damage. In this study, we introduce a fluorescent method for the selective and reliable detection of melamine in milk and infants' formula. The fluorescent probe comprises copper nanoclusters (Cu NCs) functionalized with thiosalicylic acid (TSA) and polyvinylpyrrolidone (PVP) as double-protecting ligands. Upon the addition of Hg2+, the fluorescence emission of TSA-PVP@Cu NCs is diminished due to static quenching. Subsequently, the fluorescence emission of the TSA-PVP@Cu NCs + Hg2+ probe is restored upon the introduction of melamine, facilitated by the coordination interaction between melamine and Hg2+ and the formation of a stable chelate between them. Under optimized conditions, the fluorescence emission was recorded initially for the TSA-PVP@Cu NCs + Hg2+ probe (F°) and after melamine addition (F). The (F/F°) ratio increased with rising melamine concentrations within the range of 0.025-65 µM. The detection limit, calculated using a signal-to-noise ratio of 3, was determined to be 8.0 nM. The TSA-PVP@Cu NCs + Hg2+ probe was successfully employed to detect melamine in milk and infants' formula, yielding acceptable recovery percentages and relative standard deviations. These results underscore the reliability and efficacy of the proposed probe for the fluorometric detection of melamine in real-world samples.
Collapse
Affiliation(s)
- Ramadan Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah S Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Osama A Hakami
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Mohammed S Alahmari
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah H Alharbi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | | | - Turki M Albaqami
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
4
|
Norouzi S, Esmaeili A, Dashtian K, Zare-Dorabei R, Mahdavi M, Noroozifar M, Kerman K. Carbon dot-ZIF-67-infused tragacanth hydrogel films: leveraging tunable luminescence through displacement mechanisms for anthrax detection. Mikrochim Acta 2025; 192:121. [PMID: 39890654 DOI: 10.1007/s00604-025-06984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
A novel method for 2,6-Pyridine dicarboxylic acid (DPA) detection is introduced using red emissive carbon dots (r-CDs) derived from amaranth leaves and Eosin Yellow (EY), encapsulated within a Co-based MOF (ZIF-67). The approach utilizes ratiometric turn-on fluorescence and visual identification of DPA through a displacement assay, where the release of EY enhances its fluorescence intensity, while the fluorescence of r-CDs remains constant. The sensing platform demonstrates a wide detection range (10.0-280.0 μM) with limits of detection of 1.7 μM and 3.3 μM. The probe offers notable advantages, including simple preparation, high yield, stability, selectivity, and rapid detection. Additionally, a composite functional hydrogel, made from Tragacanth (TG), was developed for DPA detection in real samples (tap water and urine), showcasing excellent performance. Integration with smartphone-based on-site signal recording enables clear fluorescence visual changes, highlighting the potential for practical applications. This study presents an innovative r-CDs/EY-ZIF-67-based hydrogel film for fluorescence sensing of DPA, expanding the scope of high-performance fluorescent materials for anthrax monitoring and real-world applications.
Collapse
Affiliation(s)
- Solmaz Norouzi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Arezoo Esmaeili
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
5
|
Li J, Liang Y, Tian C, Zou H, Zhan L, Wang L, Huang C, Li C. Determination of Dipicolinic Acid through the Antenna Effect of Eu(III) Coordination Polymer. Molecules 2024; 29:4259. [PMID: 39275107 PMCID: PMC11397212 DOI: 10.3390/molecules29174259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Bacillus anthracis is a Gram-positive bacterium that can cause acute infection and anthracnose, which is a serious concern for human health. Determining Bacillus anthracis through its spore biomarker dipicolinic acid (DPA) is crucial, and there is a strong need for a method that is rapid, sensitive, and selective. Here, we created Eu(III)-coordination polymers (Eu-CPs) with surfaces that have abundant carboxyl and hydroxyl groups. This was achieved by using citric acid and europium nitrate hexahydrate as precursors in a straightforward one-pot hydrothermal process. These Eu-CPs were then successfully utilized for highly sensitive DPA determination. The fluorescence (FL) emission of Eu-CPs, which is typically weak due to the coordination of Eu(III) with water molecules, was significantly enhanced in the presence of DPA. This enhancement is attributed to the competitive binding between DPA's carboxyl or hydroxyl groups and water molecules. As a result, the absorbed energy of DPA, when excited by 280 nm ultraviolet light, is transferred to Eu-CPs through an antenna effect. This leads to the emission of the characteristic red fluorescence of Eu3+ at 618 nm. A strong linear relationship was observed between the enhanced FL intensity and DPA concentration in the range of 0.5-80 μM. This relationship allowed for a limit of detection (LOD) of 15.23 nM. Furthermore, the Eu-CPs we constructed can effectively monitor the release of DPA from Bacillus subtilis spores, thereby further demonstrating the potential significance of this strategy in the monitoring and management of anthrax risk. This highlights the novelty of this approach in practical applications, provides a valuable determination technique for Bacillus anthracis, and offers insights into the development cycle of microorganisms.
Collapse
Affiliation(s)
- Jing Li
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yu Liang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Environment and Quality Test Department, Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Chun Tian
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hongyan Zou
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lei Zhan
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lijuan Wang
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China
| | - Chengzhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chunmei Li
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Pérez-Herráez I, Ferrera-González J, Zaballos-García E, González-Béjar M, Pérez-Prieto J. Raspberry-like Nanoheterostructures Comprising Glutathione-Capped Gold Nanoclusters Grown on the Lanthanide Nanoparticle Surface. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:4426-4436. [PMID: 38764750 PMCID: PMC11099914 DOI: 10.1021/acs.chemmater.3c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 05/21/2024]
Abstract
Bare lanthanide-doped nanoparticles (LnNPs), in particular, NaYF4:Yb3+,Tm3+ NPs (UCTm), have been seeded in situ with gold cations to be used in the subsequent growth of gold nanoclusters (AuNCs) in the presence of glutathione (GSH) to obtain a novel UCTm@AuNC nanoheterostructure (NHS) with a raspberry-like morphology. UCTm@AuNC displays unique optical properties (multiple absorption and emission wavelengths). Specifically, upon 350 nm excitation, it exhibits AuNC photoluminescence (PL) (500-1200 nm, λmax 650 nm) and Yb emission (λmax 980 nm); this is the first example of Yb sensitization in a UCTm@AuNC NHS. Moreover, under 980 nm excitation, it displays (i) upconverting PL of the UCTm (at the blue, red and NIR-I, ca. 800 nm, regions); (ii) two-photon PL of AuNC; and (iii) down-shifting PL of thulium (around 1470 nm). The occurrence of energy transfer from UCTm to AuNCs in the UCTm@AuNC NHS was evidenced by the drastic lengthening of the AuNC PL lifetime (τPL) (from few hundred nanoseconds to more than one hundred microseconds). Initial biological assessment of UCTm@AuNC NHSs in vitro revealed high biocompatibility and bioimaging capabilities upon near-infrared excitation.
Collapse
Affiliation(s)
- Irene Pérez-Herráez
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Juan Ferrera-González
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Elena Zaballos-García
- Department
of Organic Chemistry, Universitat de València, Av. Vicent Andrés Estellés
s/n, 46100 Burjassot, Valencia ,Spain
| | - María González-Béjar
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Julia Pérez-Prieto
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| |
Collapse
|
7
|
Dang J, Li M, Fang W, Wu Y, Xin S, Cao Y, Zhao H. Amorphous amEu-NH 2BDC and amTb-NH 2BDC as ratio fluorescence probes for smartphone-integrated naked eye detection of bacillus anthracis biomarker. Talanta 2024; 267:125164. [PMID: 37734290 DOI: 10.1016/j.talanta.2023.125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
The abnormal concentration of anthrax spore biomarker 2,6-pyridinedicarboxylic acid (2,6-DPA) will seriously affect public health. Therefore, a sensitive and rapid assay for 2,6-DPA monitoring is of vital importance. In this work, novel nano-sized amorphous Eu-NH2BDC (amEu-NH2BDC) and amorphous Tb-NH2BDC (amTb-NH2BDC) metal organic frameworks are prepared by adjusting the ratio of metal and ligand, respectively. Both of them exhibit highly sensitive and selective ratiometric fluorescence detection for 2,6-DPA with wider linear range and lower detection limit in aqueous solutions and human serum. Attributed to the coordination effect of 2,6-DPA in triggering the characteristic fluorescence emissions of Eu3+or Tb3+ by replacing coordinated solvent molecules, as evidenced by ultraviolet-visible spectroscopy, the fluorescence lifetimes analysis, thermal gravimetric analysis, Fourier-transform infrared spectroscopy, density functional theory (DFT) simulations and X-ray photoelectron spectroscopy. In addition, the amEu-NH2BDC or amTb-NH2BDC loaded paper-based microsensors are constructed for real-time and sensitive detection of 2,6-DPA and coupled with a smartphone-assisted visual portable device.
Collapse
Affiliation(s)
- Jiaqi Dang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Min Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Wenhui Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Ying Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Shixian Xin
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Yutao Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Hong Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, Shandong Province, PR China.
| |
Collapse
|
8
|
Wang X, Yu H, Li Q, Tian Y, Gao X, Zhang W, Sun Z, Mou Y, Sun X, Guo Y, Li F. Development of a fluorescent sensor based on TPE-Fc and GSH-AuNCs for the detection of organophosphorus pesticide residues in vegetables. Food Chem 2024; 431:137067. [PMID: 37579609 DOI: 10.1016/j.foodchem.2023.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
A novel dual-signal fluorescent sensor was developed for detecting organophosphorus pesticides (OPs). It relies on the catalytic activities of acetylcholinesterase (AChE) and choline oxidase (ChOx) to generate hydrogen peroxide (H2O2) through the conversion of acetylcholine (ACh) to choline·H2O2 then oxidizes ferrocene-modified tetraphenylethylene (TPE-Fc) to its oxidized state (TPE-Fc+), resulting in enhanced cyan fluorescence due to aggregation. Simultaneously, ferrocene oxidation generates hydroxyl radicals (•OH), causing a decrease in orange fluorescence of glutathione-synthesized gold nanoclusters (GSH-AuNCs). The presence of OPs restricts AChE activity, reducing H2O2 production. Increasing OPs concentration leads to decreased cyan fluorescence and increased orange fluorescence, enabling visual OPs detection. The sensor has a linear dynamic range of 10-2000 ng/mL with a detection limit of 2.05 ng/mL. Smartphone-based color identification and a WeChat mini program were utilized for rapid OPs analysis with successful outcomes.
Collapse
Affiliation(s)
- Xiaoyang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Huajie Yu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qiuhong Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuhang Tian
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xiaolin Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Wanqi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Zhicong Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yaoting Mou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China.
| |
Collapse
|
9
|
Shen J, Fan Z. Ce 4+/Ce 3+ as the switch of AIE-copper nanoclusters for highly selective detection of ascorbic acid in soft drinks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123070. [PMID: 37390716 DOI: 10.1016/j.saa.2023.123070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
An ultrasimple "turn-on" sensor for indirectly detecting ascorbic acid (AA) was prepared using N-acetyl-L-cysteine stabilized copper nanoclusters (NAC-CuNCs) via the AIE (aggregation-induced emission) effect controlled by Ce4+/Ce3+ redox reaction. This sensor fully utilizes the different properties of Ce4+ and Ce3+. Non-emissive NAC-CuNCs were synthesized by a facile reduction method. NAC-CuNCs easily aggregate in the presence of Ce3+ due to AIE, resulting in fluorescence enhancement. However, this phenomenon cannot be observed in the presence of Ce4+. Ce4+ possesses strong oxidizing ability and produces Ce3+ by reacting with AA via a redox reaction, followed by switching on the luminescence of NAC-CuNCs. Moreover, the fluorescence intensity (FI) of NAC-CuNCs increases with the concentration of AA in the range of 4-60 µM, with the limit of detection (LOD) as low as 0.26 µM. This probe with excellent sensitivity and selectivity was successfully used in the determination of AA in soft drinks.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China; Department of Chemistry, Changzhi University, Changzhi 046011, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China.
| |
Collapse
|
10
|
Wang L, Zhu YL, Zheng TF, Zhu ZH, Peng Y, Wu YQ, Chen JL, Liu SJ, Wen HR. A highly stable chain-based Eu III metal-organic framework as a turn-on and blue-shift luminescent sensor for dipicolinic acid. Dalton Trans 2023; 52:10567-10573. [PMID: 37458678 DOI: 10.1039/d3dt01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The development of a rapid and selective method for the identification of dipicolinic acid (DPA), a specific biomarker in Bacillus anthracis spores, is of great importance for the avoidance of anthrax infection. Herein, a chain-based EuIII metal-organic framework with the formula {[Eu3(BTDB)3(μ3-OH)3(H2O)]·solvents}n (JXUST-38, H2BTDB = (benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid) was obtained using 2-fluorobenzoic acid as the pH regulator. JXUST-38 exhibits good chemical and thermal stability and can specifically recognize DPA in N,N-dimethylformamide solution through luminescence enhancement and blue-shift effects with a detection limit of 0.05 μM. Furthermore, the significant luminescence enhancement and blue shift under UV lamps are obviously observable by the naked eye. The luminescence sensing mechanism is attributed to absorbance-induced enhancement between JXUST-38 and DPA. Test paper and mixed-matrix membrane based on JXUST-38 are designed for DPA detection. In addition, the feasibility of using JXUST-38 in biosensing is discussed in detail.
Collapse
Affiliation(s)
- Li Wang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yu-Lian Zhu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yong-Quan Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
11
|
Halawa MI, Saqib M, Lei W, Su L, Zhang X. Zirconium-Directed Supramolecular Self-Assembly of Coenzyme A@GNCs with Enhanced Phosphorescence for Developing Ultrasensitive Tracer Probe of Dipicolinic Acid, a Biomarker of Bacterial Spores. Anal Chem 2023; 95:11164-11171. [PMID: 37437237 DOI: 10.1021/acs.analchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Luminescent gold nanoclusters (GNCs) are a class of attractive quantum-sized nanomaterials bridging the gap between organogold complexes and gold nanocrystals. They typically have a core-shell structure consisting of a Au(I)-organoligand shell-encapsulated few-atom Au(0) core. Their luminescent properties are greatly affected by their Au(I)-organoligand shell, which also supports the aggregation-induced emission (AIE) effect. However, so far, the luminescent Au nanoclusters encapsulated with the organoligands containing phosphoryl moiety have rarely been reported, not to mention their AIE. In this study, coenzyme A (CoA), an adenosine diphosphate (ADP) analogue that is composed of a bulky 5-phosphoribonucleotide adenosine moiety connected to a long branch of vitamin B5 (pantetheine) via a diphosphate ester linkage and ubiquitous in all living organisms, has been used to synthesize phosphorescent GNCs for the first time. Interestingly, the synthesized phosphorescent CoA@GNCs could be further induced to generate AIE via the PO32- and Zr4+ interactions, and the observed AIE was found to be highly specific to Zr4+ ions. In addition, the enhanced phosphorescent emission could be quickly turned down by dipicolinic acid (DPA), a universal and specific component and also a biomarker of bacterial spores. Therefore, a Zr4+-CoA@GNCs-based DPA biosensor for quick, facile, and highly sensitive detection of possible spore contamination has been developed, showing a linear concentration range from 0.5 to 20 μM with a limit of detection of 10 nM. This study has demonstrated a promising future for various organic molecules containing phosphoryl moiety for the preparation of AIE-active metal nanoclusters.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Muhammad Saqib
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Weihao Lei
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Che G, Yang W, Wang C, Li M, Li X, Fu Y, Pan Q. Light-driven uranyl-organic frameworks used as signal-enhanced photoelectrochemical sensors for monitoring anthrax. Anal Chim Acta 2023; 1265:341327. [PMID: 37230572 DOI: 10.1016/j.aca.2023.341327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
The semiconductor-like characteristics and light absorption ability of metal-organic frameworks (MOFs) make it have the potential for photoelectrochemical sensing. Compared with composite and modified materials, the specific recognition of harmful substances directly using MOFs with suitable structures can undoubtedly simplify the fabrication of sensors. Herein, two photosensitive uranyl-organic frameworks (UOFs) named HNU-70 and HNU-71 were synthesized and explored as the novel "turn-on" photoelectrochemical sensors, which can be directly applied to monitor the biomarker of anthrax (dipicolinic acid). Both sensors have good selectivity and stability towards dipicolinic acid with the low detection limits of 1.062 and 1.035 nM, respectively, which are far lower than the human infection concentration. Moreover, they exhibit good applicability in the real physiological environment of human serum, demonstrating a good application prospect. Spectroscopic and electrochemical studies show that the mechanism of photocurrent enhancement results from the interaction between dipicolinic acid and UOFs, which facilitates the photogenerated electron transport.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China.
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Yamin Fu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
13
|
Ma F, Deng L, Wang T, Zhang A, Yang M, Li X, Chen X. Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission. Mikrochim Acta 2023; 190:291. [PMID: 37458835 DOI: 10.1007/s00604-023-05910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
The weak fluorescence efficiency of copper nanoclusters (Cu NCs) limits their wide applications in biosensing and bioimaging areas, while the aggregation-induced emission (AIE) effect is anticipated to increase their luminescence intensity. Herein, the weak red emission of Cu NCs is increased considerably by the addition of lanthanide Tb3+, ascribed to the AIE effect. Monitoring of spores contamination can be carried out by determining the level of 2, 6-dipicolinic acid (DPA), which is a marker of spores. Due to the stronger synergy between DPA and Tb3+ for its clamped configuration of adjacent pyridine nitrogen group with the carboxylic acid group, the addition of DPA leads Tb3+ to be taken away from Cu NCs through a stronger coordination effect, causing Cu NCs to return to the dispersed state and weakened fluorescence. Based on this, an "off-on-off" fluorescent probe for DPA sensing was built, in which Tb3+ was used as a bridge to achieve AIE enhanced fluorescence effect on Cu NCs as well as a specific recognizer of DPA. The detection range for DPA was 0.1-60 μM and the detection limit was 0.06 μM, which was much lower than the infectious dose of anthrax spores. Since DPA is a unique biomarker for bacterial spores, the method was applied to the detection of actual bacterial spores and satisfactory results were obtained with a detection limit of 4.9*103 CFU mL-1.
Collapse
Affiliation(s)
- Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tingting Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aomei Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
| | - Xiaoqing Li
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Xiang Chen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Furong Labratory, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
14
|
Lin X, Wu H, Zeng S, Peng T, Zhang P, Wan X, Lang Y, Zhang B, Jia Y, Shen R, Yin B. A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosens Bioelectron 2023; 230:115283. [PMID: 37019031 DOI: 10.1016/j.bios.2023.115283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
A desirable lanthanide-based ratiometric fluorescent probe was designed and integrated into a self-designed Fermat spiral microfluidic chip (FS-MC) for the automated determination of a unique bacterial endospore biomarker, dipicolinic acid (DPA), with high selectivity and sensitivity. Here, a blue emission wavelength at 425 nm was generated in the Fermat spiral structure by mixing the europium (Eu3+) and luminol to form the Eu3+/Luminol sensing probe. DPA in the reservoir can be used to specifically bind to Eu3+ under the negative pressure and transfer energy from DPA to Eu3+ sequentially via an antenna effect, thus resulting in a significant increase in the red fluorescence emission peak at 615 nm. According to the fluorescence intensity ratio (F615/F425), a good linearity can be obtained with increasing the concentration of DPA from 0 to 200 μM with a limit of detection as low as 10.11 nM. Interestingly, the designed FS-MC can achieve rapid detection of DPA in only 1 min, reducing detection time and improving sensitivity. Furthermore, a self-designed device integrated with the FS-MC and a smartphone color picker APP was employed for the rapid automatic point-of-care testing (POCT) of DPA in the field, simplifying complex processes and reducing testing times, thus confirming the great promise of this ready-to-use measurement platform for in situ inspection.
Collapse
|
15
|
Cao Y, Wang Z, Fu B, Li H, Zhang X, Guo DY, Li L, Pan Q. Bifunctional ratiometric fluorescent probe for sensing anthrax spore biomarker and tetracycline at different excitation channels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121915. [PMID: 36179571 DOI: 10.1016/j.saa.2022.121915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Multifunctional fluorescent probes have received increasing attention for the sake of atom economy and high-density integration. Herein, CdTe quantum dots (QDs) modified with Eu3+ were synthesized as the bifunctional ratiometric fluorescent probe for sensing two hazardous substances tetracycline (TC) and anthrax spore biomarker 2,6-dipicolinic acid (DPA) at different excitation channels, based on the discrepant excitation wavelengths of Eu3+ and the fluorescence quenching of CdTe QDs after interaction with them. Both DPA and TC enhanced the red emission of Eu3+ via antenna effect but caused the green emission of CdTe QDs to quench. Interestingly, the excitation wavelengths of Eu3+ after coordinating with DPA and TC were 275 and 386 nm, respectively. On this basis, CdTe QDs-Eu3+ achieved the bifunctional ratiometric detection of DPA (λex = 275 nm) and TC (λex = 386 nm) with different excitation channels. Both DPA and TC were selectively detected by CdTe QDs-Eu3+ with rapid response (DPA-1 min, TC-1 min) and high sensitivity (DPA-LOD 0.3 μM, TC-LOD 2.2 nM). CdTe QDs-Eu3+ were applied to analyzing DPA and TC in food, biological and environmental samples. Satisfactory spiked recoveries (80.0-119.0 %) and relative standard deviations (0.5-8.4 %) were obtained for measuring DPA and TC in these samples.
Collapse
Affiliation(s)
- Yatian Cao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Ziqi Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, China
| | - Bo Fu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, China.
| | - Xuanming Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen 361000, China.
| | - Le Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Shen J, Fan Z. Ce 3+-induced Fluorescence Amplification of Copper Nanoclusters Based on Aggregation-induced Emission for Specific Sensing 2,6-pyridine Dicarboxylic Acid. J Fluoresc 2023; 33:135-144. [PMID: 36301441 DOI: 10.1007/s10895-022-03044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023]
Abstract
A straightforward, cost-effective and biocompatible reduction approach was applied to fabricate soluble but non-luminous glutathione-stabilized copper nanocluster (GSH-CuNCs). Surprisingly, as high as 1 × 103 times fluorescence enhancement was acquired when Ce3+ was injected at an extremely low concentration of only 18 µM. Ce3+ outperformed other rare-earth metal ions in terms of inducing fluorescence amplification of the non-luminous GSH-CuNCs. Furthermore, Ce3+ was employed as inducer for aggregation-induce emission (AIE) effect as well as reactant to coordinate with target of 2,6-pyridine dicarboxylic acid (DPA) due to the stronger coordination ability between Ce3+ and DPA than that of Ce3+ and GSH. As a result, the Ce3+/GSH-CuNCs ensemble was developed as a novel sensor to detect DPA in the "on-off" mode. When DPA was introduced into the sensor, Ce3+ failed to interact with GSH and detached from the surface of GSH-CuNCs, leading to fluorescence quenching. In addition, static quenching process and internal filtration effect (IFE) between Ce3+/GSH-CuNCs and DPA were also responsible for fluorescence quenching effect. A good linear relationship was obtained from 0.3 µM to 18 µM, with a limit of detection (LOD) of 0.19 µM. The as-proposed probe displayed high specificity to DPA and provided a simple, fast rapid and cheap method for construction this type of ensemble sensors to detect other targets.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030006, People's Republic of China
- Department of Chemistry, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
17
|
Europium-modified carbon nitride nanosheets for smartphone-based fluorescence sensitive recognition of anthrax biomarker dipicolinic acid. Food Chem 2023; 398:133884. [DOI: 10.1016/j.foodchem.2022.133884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/10/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
|
18
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
19
|
Punia M, Chhillar P, Bedi M, Dua N, Khatkar S, Taxak V, Boora Doon P. Photoluminescent performance of bright orange light emanating Sm(III) complexes with β-ketoester functionalized ligand for competent photophysical appliances. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zhang W, Jiang X, Wu Y, Jiang J, Liu X, Liu Y, Wang W, Lai J, Wang X. Emission enhancement of fluorescent glutathione-capped gold nanoclusters by cerium (III) ion-induced aggregation for sensitive detecting α-glucosidase in human serum using ratiometric fluorometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Fluorescence “turn-off–on” approach for the detection of niflumic acid and ammonium persulfate using 2,3-dialdehyde starch-cysteine-molybdenum nanoclusters as a nanosensor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Shen Y, Zheng C, Wu Q, Wu Q, Jin M, Jiang Y, Huang F, Lou Y, Zheng L. One-step synthesized antimicrobial peptide-functionalized gold nanoclusters for selective imaging and killing of pathogenic bacteria. Front Microbiol 2022; 13:1003359. [PMID: 36299723 PMCID: PMC9589054 DOI: 10.3389/fmicb.2022.1003359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
The development of multifunctional nanomaterials with bacterial imaging and killing activities is of great importance for the rapid diagnosis and timely treatment of bacterial infections. Herein, peptide-functionalized gold nanoclusters (CWR11-AuNCs) with high-intensity red fluorescence were successfully synthesized via a one-step method using CWR11 as a template and by optimizing the ratio of CWR11 to HAuCl4, reaction time, pH, and temperature. The CWR11-AuNCs bound to bacteria and exhibited selective fluorescence microscopy imaging properties, which is expected to provide a feasible method for locating and imaging bacteria in complex in vivo environments. In addition, CWR11-AuNCs not only retained the antibacterial and bactericidal activities of CWR11 but also exhibited certain inhibitory or killing effects on gram-negative and gram-positive bacteria and biofilms. The MICs of CWR11-AuNCs against Escherichia coli and Staphylococcus aureus were 178 and 89 μg/ml, respectively. Surprisingly, cell viability in the CWR11-AuNC-treated group was greater than that in the CWR11-treated group, and the low cytotoxicity exhibited by the CWR11-AuNCs make them more promising for clinical applications.
Collapse
|
23
|
Lin X, Li W, Wen Y, Su L, Zhang X. Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials 2022; 287:121603. [PMID: 35688028 DOI: 10.1016/j.biomaterials.2022.121603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
As a non-invasive visualization technique, photoluminescence imaging (PLI) has found its huge value in many biological applications associated with intracellular process monitoring and early and accurate diagnosis of diseases. PLI can also be combined with therapeutics to build imaging-guided theragnostic platforms for achieving early and precise treatment of diseases. Photodynamic therapy (PDT) as a quintessential phototheranostics technology has gained great benefits from the combination with PLI. Recently, aggregation-induced emission (AIE)-active materials have emerged as one of the most promising bioimaging and phototheranostic agents. Most of AIEgens, however, need to be chemically engineered to form versatile nanocomposites with improved their photophysical property, photochemical activity, biocompatibility, etc. In this review, we focus on three categories of AIE-active nanocomposites and highlight their application progresses in the intracellular biological process monitoring and PLI-guided PDT. We hope this review can guide further development of AIE-active nanocomposites and promote their practical applications for monitoring intracellular biological processes and imaging-guided PDT.
Collapse
Affiliation(s)
- Xiangfang Lin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wei Li
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| |
Collapse
|
24
|
Wang Q, Liu JY, Wang TT, Liu YY, Zhang LX, Huo JZ, Ding B. Solvo-thermal synthesis of a unique cluster-based nano-porous zinc(II) luminescent metal-organic framework for highly sensitive detection of anthrax biomarker and dichromate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121132. [PMID: 35286888 DOI: 10.1016/j.saa.2022.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this work a flexible multi-dentate 4,4'-(1H-1,2,4-triazole-1-yl) methylene-bis(benzonic acid) (H2L) ligand has been employed, a unique cluster-based nano-porous luminescent zinc(II) metal-organic framework {[Zn(μ6-L)]·(DMAC)2}n (1) (DMAC = Dimethylacetamide) has been isolated under solvo-thermal conditions. The H2L ligand adopts hexa-dentate coordination modes via one triazole nitrogen atom and four aromatic carboxylate oxygen atoms, which bridge the neighboring six-coordinated ZnII centers, leading to a three-dimensional (3D) nano-porous metal organic framework. A PLATON program analysis suggests the total potential solvent area volume is 2028.9 Å3, which occupy 62.5% percent of the unit cell volume (3248.4 Å3). PXRD Patterns of the as-synthesized samples 1 have been determined confirming the purity of the bulky samples. Photo-luminescent properties indicate strong fluorescent emissions of 1 at the room temperature. Further photo-luminescent measurements show that 1 can exhibit highly sensitive real-time luminescence sensing of anthrax biomarker dipicolinic acid (DPA) with high quenching efficiency (KSV = 1.48 × 105 M-1) and low detection limit (0.298 μM (S/N = 3)). Meanwhile 1 also exhibits highly selective and sensitive luminescence sensing for Cr2O72- ions in aqueous solutions with high quenching efficiency KSV = 1.22 × 104 L·mol-1 and low detection limit (0.023 μM (S/N = 3)). Therefore 1 can be used a unique multi-functional 3D cluster-based metal organic material in sensitive detection and effective detection of environment pollutants and biomarker molecules.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jing-Yi Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Le-Xi Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
25
|
Leng X, Hao W, Yang X, Zhang Z, Li H, Ma Y, Cheng Y, Schipper D. Rapid and Reliable Excitation Wavelength-Dependent Detection of 2,6-Dipicolinic Acid Based on a Luminescent Cd(II)-Tb(III) Nanocluster. Inorg Chem 2022; 61:8484-8489. [PMID: 35610558 DOI: 10.1021/acs.inorgchem.2c00393] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Cd(II)-Tb(III) nanocluster {[Cd10Tb9L8(OH)16(OAc)23(H2O)3][Cd10Tb9L8(OH)16(OAc)23(H2O)4]}·3H2O (1), which contains two crystallographically independent components, was constructed from a tridentate ligand (HL, 3-ethoxysalicylaldehyde). It exhibits rapid and reliable excitation wavelength-dependent luminescence response to 2,6-dipicolinic acid (DPA) [limit of detection = 0.23 nM], which is not influenced by aromatic carboxylates, amino acids, and ions. The test papers of 1 can be used to check DPA in solution. The equation IEx272nm/IEx329nm = 0.0109 × [DPA]2 + 0.106 × [DPA] + 2.39 of 1 for the luminescence response could be used to quantitatively measure the concentration of DPA in tap water. 1 displays rapid and stable luminescence response to DPA, with the sensing times shorter than 5 s and no changes for the lanthanide luminescence over 24 h.
Collapse
Affiliation(s)
- Xilong Leng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenxin Hao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaoping Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhen Zhang
- Tangshan Key Laboratory of Optoelectronic Materials, School of Physics and Technology, Tang Shan Normal University, Tangshan 063000, China
| | - Hao Li
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanan Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuebo Cheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Desmond Schipper
- The University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station A5300, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Xie M, Wang Y, Liu L, Wang X, Jiang H. Luminescent gold-peptide spheric aggregates: selective and effective cellular targeting. J Colloid Interface Sci 2022; 614:502-510. [PMID: 35121508 DOI: 10.1016/j.jcis.2022.01.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/17/2023]
Abstract
Although the restriction of intramolecular motion has been well recognized as the fundamental of aggregation induced emission enhancement (AIEE), the regulation mechanism of gold nanoclusters (AuNCs) based AIEE system are still unclear. In this paper, we have investigated the Zn2+-induced AIEE process of thiolate ligands (i.e., cysteine, glutathione and an 8-mer peptide) protected AuNCs, which shows a pH-dependent evolution from single AuNCs to spheric aggregates to irregular network. Using photoluminescent enhancement ratio as an index, the concept of "mid-pH" is proposed to indicate the optimal pH for the formation of spheric AuNCs aggregates. Importantly, the surface ligands allow the formation of spheric AuNCs aggregates at tunable mid-pH between 5.7 and 7.5. Owing to the appropriate size and surface peptide targetability, the spheric AuNCs aggregates can be successfully screened for targeted tumor cell uptake and imaging at physiological pH. The cell uptake mechanism study showed that AuNCs aggregates was specifically recognized by arginine-glycine-aspartic acid (RGD) sequence on the ligand and integrin αvβ3 on the cell surface, thus mainly through clathrin-mediated endocytosis. This work provides new sight to artificially regulate the construction of efficient cellular imaging probes.
Collapse
Affiliation(s)
- Mengyang Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
27
|
Khan IM, Niazi S, Yue L, Zhang Y, Pasha I, Iqbal Khan MK, Akhtar W, Mohsin A, Chughati MFJ, Wang Z. Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta 2022; 241:123228. [DOI: 10.1016/j.talanta.2022.123228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
|
28
|
Fang B, Peng J, Zhang G, Xing K, Chen W, Liu D, Shan S, Xiong Y, Lai W. I 2/I --mediated fluorescence quenching of an Ag +-doped gold nanocluster-based immunoassay for sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2022; 105:2922-2930. [PMID: 35086713 DOI: 10.3168/jds.2021-21281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli O157:H7 is a type of hazardous bacteria in the field of food safety. A sensitive and effective method is urgently needed to detect it, avoiding enormous harm for the human health. In this study, we synthesized stable Ag+-doped gold nanoclusters (Ag-AuNC) with a fluorescence intensity 4.8 times stronger than that of AuNC. It was further demonstrated that Ag0 existing in the AuNC core and a fraction of Ag+ anchored on the AuNC shell eliminated the surface defects and improved the luminescent properties of AuNC. A combination of I2 and I- was used to quench fluorescence-enhanced Ag-AuNC, which was first applied in ELISA for detecting E. coli O157:H7 to improve the sensitivity. In the presence of E. coli O157:H7, the biotinylated anti-E. coli O157:H7 mAb and streptavidin-alkaline phosphatase would be immobilized and catalyze l-ascorbic acid 2-phosphate sesquimagnesium salt hydrate to produce ascorbic acid. After addition of KIO3, I2/I- were generated. The I2 could trigger oxidative etching of Ag-AuNC and I- could combine with Ag+ to decrease the Ag+ concentration of Ag-AuNC, which resulted in fluorescence quenching of Ag-AuNC. Under optimal conditions, the linear range of I2/I--mediated fluorescence quenching of Ag-AuNC-based immunoassay for detecting E. coli O157:H7 was 3.3 × 103 to 106 cfu/mL, with a detection limit of 9.2 × 102 cfu/mL, 10.7-fold lower than that of the traditional ELISA. The proposed immunoassay exhibits excellent sensitivity, specificity, recovery, and accuracy, which is useful for quantitative detection of E. coli O157:H7 in food safety.
Collapse
Affiliation(s)
- Bolong Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Keyu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenyao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang 330047, China
| | - Shan Shan
- College of Lifetime Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yonghua Xiong
- Jiangxi-Ostasien Institut (OAI) Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
29
|
Halawa MI, Wu G, Salem AEA, Su L, Li BS, Zhang X. In situ synthesis of chiral AuNCs with aggregation-induced emission using glutathione and ceria precursor nanosheets for glutathione biosensing. Analyst 2022; 147:4525-4535. [DOI: 10.1039/d2an00939k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au(i)–SG/Ce(CO3)2 NS conjugated nanoprobe was developed for selective GSH detection. The redox reaction between GSH and the NS could release Ce3+ ions to initiate the intense AIE of Au(i)–SG oligomers.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
- College of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Guoxing Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Alaa Eldin A. Salem
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lei Su
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Bing Shi Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
- College of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
30
|
Niu X, Wang M, Zhang M, Cao R, Liu Z, Hao F, Sheng L, Xu H. Smart intercalation and coordination strategy to construct stable ratiometric fluorescence nanoprobes for the detection of anthrax biomarker. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L@Mg-Al-Ln-LDHs (Ln = Tb, Eu) constructed by the intercalation coordination strategy exhibited a strong and stable fluorescence reference signal and achieved reliable ratiometric detection of DPA in complex environments and actual spores.
Collapse
Affiliation(s)
- Xiaoxiao Niu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Meixiang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Rui Cao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liangquan Sheng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
31
|
Cong Z, Zhu M, Zhang Y, Yao W, Kosinova M, Fedin VP, Wu S, Gao E. Three novel metal-organic frameworks with different coordination modes for trace detection of anthrax biomarkers. Dalton Trans 2021; 51:250-256. [PMID: 34881770 DOI: 10.1039/d1dt03760a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dipicolinic acid (DPA) is an anthrax biomarker. Its serious consequences make its detection a great need. In this paper, three novel metal-organic frameworks (MOFs) with different coordination modes were synthesized by a simple solvothermal method, which can be used as highly efficient fluorescence sensors for the highly selective and sensitive trace detection of DPA. MOFs 1-3 showed rapid responses to DPA (<30 s), and the limits of detection (LODs) were calculated to be 1.01 × 10-6 M-1 (MOF 1), 1.17 × 10-6 M-1 (MOF 2) and 2.07 × 10-6 M-1 (MOF 3). DPA detection based on MOFs 1-3 in fetal bovine serum is highly reliable based on the high recovery rates (90% to 115%). Hence, the three MOF-based sensors can be used in the real-time detection of DPA.
Collapse
Affiliation(s)
- Zhenzhong Cong
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Wei Yao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, PR China.
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk 630090, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk 630090, Russia
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Enjun Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, PR China. .,The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| |
Collapse
|
32
|
Qiu Y, Wen Z, Mei S, Wei J, Chen Y, Hu Z, Cui Z, Zhang W, Xie F, Guo R. Cation Crosslinking-Induced Stable Copper Nanoclusters Powder as Latent Fingerprints Marker. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3371. [PMID: 34947720 PMCID: PMC8708820 DOI: 10.3390/nano11123371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Luminescent copper nanoclusters (Cu NCs) have shown great potential in light-emitting devices (LEDs), chemical sensing, catalysis and biological fields. However, their practical use has been restricted by poor stability, and study on the stability of Cu NCs solid powder along with the mechanism is absent. In this study, stablized Cu NCs powder was first obtained by cation crosslinking method. Compared with the powder synthesized by solvent precipitation method, the stability of Cu NCs powder crosslinked by ionic inducer Ce3+ was enhanced around 100-fold. The storage time when the fluorescence intensity decreased to 85% (T85) was improved from 2 h to 216 h, which is the longest so far. The results of characterizations indicated that the aggregation structure was formed by the binding of Ce3+ with the capping ligands of Cu NCs, which helped in obtaining Ce-Cu NCs powder from aggregate precipitation in solution. Furthermore, this compact structure could avoid the destruction of ambient moisture resulting in long-lasting fluorescence and almost unchanged physical form. This demonstrated that phosphor, with excellent characteristics of unsophisticated synthesis, easy preservation and stable fluorescence, showed great potential in light sources, display technology and especially in latent fingerprints visualization on different substrates for forensic science.
Collapse
Affiliation(s)
- Yi Qiu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhuoqi Wen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Jinxin Wei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Yuanyuan Chen
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhe Hu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhongjie Cui
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
- Zhongshan-Fudan Joint Innovation Center, Zhongshan 528437, China
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| |
Collapse
|
33
|
Preparation of blue luminescence gold quantum dots using laser ablation in aromatic solvents. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Sun G, Xie Y, Sun L, Zhang H. Lanthanide upconversion and downshifting luminescence for biomolecules detection. NANOSCALE HORIZONS 2021; 6:766-780. [PMID: 34569585 DOI: 10.1039/d1nh00299f] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecules play critical roles in biological activities and are closely related to various disease conditions. The reliable, selective and sensitive detection of biomolecules holds much promise for specific and rapid biosensing. In recent years, luminescent lanthanide probes have been widely used for monitoring the activity of biomolecules owing to their long luminescence lifetimes and line-like emission which allow time-resolved and ratiometric analyses. In this review article, we concentrate on recent advances in the detection of biomolecule activities based on lanthanide luminescent systems, including upconversion luminescent nanoparticles, lanthanide-metal organic frameworks, and lanthanide organic complexes. We also introduce the latest remarkable accomplishments of lanthanide probes in the design principles and sensing mechanisms, as well as the forthcoming challenges and perspectives for practical achievements.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yao Xie
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
35
|
Desai ML, Basu H, Saha S, Singhal RK, Kailasa SK. Fluorescence enhancement of bovine serum albumin gold nanoclusters from La3+ ion: Detection of four divalent metal ions (Hg2+, Cu2+, Pb2+ and Cd2+). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Han B, Yan Q, Xin Z, Yan Q, Jiang J. Ionic
Liquids‐Assisted
Highly Luminescent Copper Nanoclusters with Triangle Supramolecular Nanostructures. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bingyan Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Qin Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Ze Xin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Qifang Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Jingmei Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| |
Collapse
|
37
|
Multifunctional nano-biosensor based on metal-organic framework for enhanced fluorescence imaging of intracellular miRNA-122 and synergistic chemo-photothermal therapy of tumor cells. Anal Chim Acta 2021; 1176:338779. [PMID: 34399895 DOI: 10.1016/j.aca.2021.338779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
A rationally designed multifunctional polydopamine (PDA)-coated metal-organic frameworks (MOFs) biosensors for detection of miRNA-122 with Zn2+-triggered aggregation-induced enhancement (AIE) and synergistic chem-photothermal therapy in vitro was developed for the first time. Further, it was successfully used for enhanced fluorescence imaging of miRNA-122 in living cells. The pH-responsive MOFs structure was decomposed under the influence of acidic environment, and a large amount of free Zn2+ was released as the trigger agent for AIE signal amplification, realizing the ultra-sensitive detection of miRNA-122 and the accurate discrimination of the cells with different expression levels of miRNA-122, with the detection limit as low as 12.5 pM. Meanwhile, ZIF-8 nanoparticles with high loading rate can effectively deliver therapeutic drugs to achieve responsive release. In addition, the modification of versatile PDA-coating provides the biosensor with a faster drug release capability and photothermal conversion performance, demonstrating its superior synergistic chem-photothermal therapy performance. It is expected to play an important role in the integration of cancer diagnosis and synergistic therapy.
Collapse
|
38
|
Zhou Y, Wang Z, Peng Y, Wang F, Deng L. Gold Nanomaterials as a Promising Integrated Tool for Diagnosis and Treatment of Pathogenic Infections-A Review. J Biomed Nanotechnol 2021; 17:744-770. [PMID: 34082865 DOI: 10.1166/jbn.2021.3075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes research on functionalized gold nanomaterials as pathogen detection sensors and pathogen elimination integrated tools. After presenting the challenge of current severe threat from pathogenic bacteria and the increasingly serious growth rate of drug resistance, the first section mainly introduces the conspectus of gold nanostructures from synthesis, characterization, physicochemical properties and applications of gold nanomaterials. The next section deals with gold nanomaterials-based pathogen detection sensors such as colorimetric sensors, fluorescence sensors and Surface-Enhanced Raman Scattering sensors. We then discuss strategies based on gold nanomaterials for eliminating pathogenic infections, such as the dual sterilization strategy for grafting gold nanomaterials with antibacterial substances, photothermal antibacterial and photodynamic antibacterial methods. The fourth part briefly introduces the comprehensive strategy for diagnosis and sterilization of pathogen infection based on gold nanomaterials, such as the diagnosis and treatment strategy for pathogen infection using Roman signals real-time monitoring and photothermal sterilization. A concluding section that summarizes the current status and challenges of the novel diagnosis and treatment integrated strategy for pathogenic infections, gives an outlook on potential future perspectives.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zefeng Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yanling Peng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Feiying Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Le Deng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
39
|
|
40
|
Yi M, Ma L, Zhao W, Zhao J, Fan Q, Hao J. Amphiphilic Au Nanoclusters Modulated by Magnetic Gemini Surfactants as a Cysteine Chemosensor and an MRI Contrast Agent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3130-3138. [PMID: 33657799 DOI: 10.1021/acs.langmuir.0c03618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cationic magnetic Gemini surfactants (mag-G-surfs), [C14H29(CH3)2N(CH2)2N(CH3)2C14H29]2+·2[XCl3Br]- (14-2-14·2X, X = Ce, Gd, or Ho), efficiently induce the aggregation of glutathione-protected Au nanoclusters (NCs) (GSH-Au NCs). These magnetic luminescent aggregates not only possess aggregation-induced emission (AIE) behavior but also display aggregation-induced magnetic enhancement. In particular, 14-2-14·2Ce and 14-2-14·2Gd have a better effect on boosting the luminescence intensity, quantum yield (QY), and luminescence lifetime (τ). The luminescent aggregates of GSH-Au NCs triggered by 14-2-14·2Gd or 14-2-14·2Ho exhibit more favorable paramagnetic behavior. Other Au NCs containing a Au(I)-thiolate complex shell also exhibit the obvious AIE phenomenon after introducing 14-2-14·2Gd, demonstrating the luminescence enhancement effect of mag-G-surfs. The luminescent aggregate 14-2-14·2Ce@GSH-Au NCs can serve as a "light up" fluorometric probe to detect cysteine selectively with the detection limit (DL) of 36 μM, and the magnetic luminescent aggregate 14-2-14·2Gd@GSH-Au NCs has the potential to be a novel contrast agent in T1-weighted magnetic resonance (MR) imaging due to its satisfactory contrasting ability.
Collapse
Affiliation(s)
- Mengjiao Yi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education & State Key Laboratory of Crystal Materials & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Lin Ma
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education & State Key Laboratory of Crystal Materials & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Wenrong Zhao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education & State Key Laboratory of Crystal Materials & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Jie Zhao
- Qilu Hospital, Shandong University, Jinan 250012, P. R. China
| | - Qi Fan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education & State Key Laboratory of Crystal Materials & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education & State Key Laboratory of Crystal Materials & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
41
|
Romeo MV, López-Martínez E, Berganza-Granda J, Goñi-de-Cerio F, Cortajarena AL. Biomarker sensing platforms based on fluorescent metal nanoclusters. NANOSCALE ADVANCES 2021; 3:1331-1341. [PMID: 36132872 PMCID: PMC9419537 DOI: 10.1039/d0na00796j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/10/2021] [Indexed: 05/07/2023]
Abstract
Metal nanoclusters (NCs) and their unique properties are increasing in importance and their applications are covering a wide range of areas. Their remarkable fluorescence properties and easy synthesis procedure and the possibility of functionalizing them for the detection of specific targets, such as biomarkers, make them a very interesting biosensing tool. Nowadays the detection of biomarkers related to different diseases is critical. In this context, NCs scaffolded within an appropriate molecule can be used to detect and quantify biomarkers through specific interactions and fluorescence properties of the NCs. These methods include analytical detection and biolocalization using imaging techniques. This review covers a selection of recent strategies to detect biomarkers related to diverse diseases (from infectious, inflammatory, or tumour origin) using fluorescent nanoclusters.
Collapse
Affiliation(s)
- María V Romeo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Elena López-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Jesús Berganza-Granda
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
42
|
Xiu LF, Huang KY, Zhu CT, Zhang Q, Peng HP, Xia XH, Chen W, Deng HH. Rare-Earth Eu 3+/Gold Nanocluster Ensemble-Based Fluorescent Photoinduced Electron Transfer Sensor for Biomarker Dipicolinic Acid Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:949-956. [PMID: 33405936 DOI: 10.1021/acs.langmuir.0c03341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of metal ions to bridge the fluorescent materials to target analytes has been demonstrated to be a promising way to sensor design. Herein, the effect of rare-earth ions on the fluorescence of l-methionine-stabilized gold nanoclusters (Met-AuNCs) was investigated. It was found that europium (Eu3+) can significantly suppress the emission of Met-AuNCs, while other rare-earth ions showed a negligible impact. The mechanism on the observed fluorescence quenching of Met-AuNCs triggered by Eu3+ was systematically explored, with results revealing the dominant role of photoinduced electron transfer (PET). Eu3+ can bind to the surface of Met-AuNCs by the coordination effect and accepts the electron from the excited Met-AuNCs, which results in Met-AuNC fluorescence suppression. After introducing dipicolinic acid (DPA), an excellent biomarker for spore-forming pathogens, Eu3+ was removed from the surface of Met-AuNCs owing to the higher binding affinity between Eu3+ and DPA. Consequently, an immediate fluorescence recovery occurred when DPA was present in the system. Based on the Met-AuNC/Eu3+ ensemble, we then established a simple and sensitive fluorescence strategy for turn-on determination of biomarker DPA, with a linear range of 0.2-4 μM and a low limit of detection of 110 nM. The feasibility of the proposed method was further validated by the quantitative detection of DPA in the soil samples. We believe that this study would significantly facilitate the construction of metal-ion-mediated PET sensors for the measurement of various interested analytes by applying fluorescent AuNCs as detection probes.
Collapse
Affiliation(s)
- Ling-Fang Xiu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Chen-Ting Zhu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qi Zhang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
43
|
Zhou T, Huang M, Lin J, Huang R, Xing D. High-Fidelity CRISPR/Cas13a trans-Cleavage-Triggered Rolling Circle Amplified DNAzyme for Visual Profiling of MicroRNA. Anal Chem 2021; 93:2038-2044. [DOI: 10.1021/acs.analchem.0c03708] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ting Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
| | - Mengqi Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
| | - Jinqiong Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510631, PR China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
44
|
Miao W, Wang L, Liu Q, Guo S, Zhao L, Peng J. Rare earth ions‐enhanced gold nanoclusters as fluorescent sensor array for the detection and discrimination of phosphate anions. Chem Asian J 2021; 16:247-251. [DOI: 10.1002/asia.202001296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjing Miao
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 P. R. China
| | - Lei Wang
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 P. R. China
| | - Qin Liu
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 P. R. China
| | - Shuai Guo
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 P. R. China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 P. R. China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
45
|
Han S, Zhao Y, Zhang Z, Xu G. Recent Advances in Electrochemiluminescence and Chemiluminescence of Metal Nanoclusters. Molecules 2020; 25:molecules25215208. [PMID: 33182342 PMCID: PMC7664927 DOI: 10.3390/molecules25215208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Metal nanoclusters (NCs), including Au, Ag, Cu, Pt, Ni and alloy NCs, have become more and more popular sensor probes with good solubility, biocompatibility, size-dependent luminescence and catalysis. The development of electrochemiluminescent (ECL) and chemiluminescent (CL) analytical methods based on various metal NCs have become research hotspots. To improve ECL and CL performances, many strategies are proposed, from metal core to ligand, from intermolecular electron transfer to intramolecular electron transfer. Combined with a variety of amplification technology, i.e., nanostructure-based enhancement and biological signal amplification, highly sensitive ECL and CL analytical methods are developed. We have summarized the research progresses since 2016. Also, we discuss the current challenges and perspectives on the development of this area.
Collapse
Affiliation(s)
- Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
- Correspondence: (Z.Z.); (G.X.)
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Correspondence: (Z.Z.); (G.X.)
| |
Collapse
|
46
|
Hemoglobin-Conjugated Gold Nanoclusters for Qualitative Analysis of Haptoglobin Phenotypes. Polymers (Basel) 2020; 12:polym12102242. [PMID: 33003451 PMCID: PMC7601242 DOI: 10.3390/polym12102242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/29/2022] Open
Abstract
Designing a facile and rapid detection method for haptoglobin (Hp) phenotypes in human blood plasma is urgently needed to meet clinic requirements in hemolysis theranostics. In this work, a novel approach to qualitatively analyze Hp phenotypes was developed using a fluorescent probe of gold nanoclusters (AuNCs). Hemoglobin-conjugated (Hb)-AuNCs were successfully synthesized with blue-green fluorescence and high biocompatibility via one-pot synthesis. The fluorescence of Hb-AuNCs comes from the ligand-metal charge transfer between surface ligands of Hb and the gold cores with high oxidation states. The biocompatibility assays including cell viability and fluorescence imaging, demonstrated high biocompatibility of Hb-AuNCs. For the qualitative analysis, three Hp phenotypes in plasma, Hp 1-1, Hp 2-1, and Hp 2-2, were successfully discriminated according to changes in the fluorescence intensity and peak position of the maximum intensity of Hb-AuNCs. Our work provides a practical method with facile and rapid properties for the qualitative analysis of three Hp phenotypes in human blood plasma.
Collapse
|
47
|
Guan R, Tao L, Hu Y, Zhang C, Wang Y, Hong M, Yue Q. Selective determination of Ag + in the presence of Cd 2+, Hg 2+ and Cu 2+ based on their different interactions with gold nanoclusters. RSC Adv 2020; 10:33299-33306. [PMID: 35515024 PMCID: PMC9056666 DOI: 10.1039/d0ra05787h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
In this work, a fluorescence method was developed for selective detection of Ag+ in the presence of Cd2+, Hg2+, and Cu2+ based on gold nanoclusters (AuNCs). That is, bovine serum albumin (BSA) templated AuNCs with double emission peaks were synthesized using BSA as a protective agent. AuNCs with uniform distribution and average size between 2.0 and 2.2 nm were synthesized using a green and simple method, and showed bright orange-red fluorescence under ultraviolet light. AuNCs have two emission peaks at 450 nm and 630 nm with an excitation wavelength of 365 nm. Under alkaline conditions, Cd2+ can combine with the surface sulfhydryl groups of BSA–AuNCs to form Cd–S bonds, which cause AuNCs to aggregate, resulting in an increase in fluorescence intensity at 630 nm. Conversely, due to the d10–d10 metal affinity interaction, the addition of Hg2+ can reduce the fluorescence peak at 630 nm. Ag+ was reduced to Ag0 by gold nuclei in AuNCs, forming a stable hybrid Au@ AgNCs species with blue-shifted and enhanced fluorescence. Finally, the paramagnetic behavior of Cu2+ combined with BSA causes the excited electrons of the gold cluster to lose their energy via ISC, eventually leading to simultaneous quenching of the two emission peaks. The results show that the limit of detection (LOD) of Ag+, Hg2+, Cd2+ and Cu2+ is 1.19 μM, 3.39 μM, 1.83 μM and 5.95 μM, respectively. A fluorescence method was developed for selective detection of Ag+ in the presence of Cd2+, Hg2+, and Cu2+ based on gold nanoclusters. The limit of detection for Ag+, Hg2+, Cd2+ and Cu2+ is 1.19 μM, 3.39 μM, 1.83 μM and 5.95 μM, respectively.![]()
Collapse
Affiliation(s)
- Rentian Guan
- Department of Chemistry, Liaocheng University Liaocheng 252059 China
| | - Lixia Tao
- Department of Chemistry, Liaocheng University Liaocheng 252059 China
| | - Yingying Hu
- Department of Chemistry, Liaocheng University Liaocheng 252059 China
| | - Cong Zhang
- Department of Chemistry, Liaocheng University Liaocheng 252059 China
| | - Yongping Wang
- Department of Chemistry, Liaocheng University Liaocheng 252059 China
| | - Min Hong
- Department of Chemistry, Liaocheng University Liaocheng 252059 China
| | - Qiaoli Yue
- Department of Chemistry, Liaocheng University Liaocheng 252059 China
| |
Collapse
|