1
|
Lim C, Kim T, Park Y, Kim D, Shin C, Ha S, Lin JL, Li Y, Park J. Electric Field-Driven Conformational Changes in Molecular Memristor and Synaptic Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2505016. [PMID: 40305705 DOI: 10.1002/advs.202505016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Indexed: 05/02/2025]
Abstract
This paper demonstrates the use of molecular artificial synapses in neuromorphic computing systems designed for low energy consumption. A molecular junction, based on self-assembled monolayers (SAMs) of alkanethiolates terminated with 2,2'-bipyridine complexed with cobalt chloride, exhibits synaptic behaviors with an energy consumption of 8.0 pJ µm-2. Conductance can be modulated simply by applying pulses in the incoherent charge transport (CT) regime. Charge injection in this regime allows molecules to overcome the low energy barrier for C─C bond rotations, resulting in conformational changes in the SAMs. The reversible potentiation/depression process of conductance achieves 90% accuracy in recognizing patterns from the Modified National Institute of Standards and Technology (MNIST) handwritten digit database. The molecular junction further exhibits both rectifying and conductance hysteresis behaviors, showing potential for use in selector-free synaptic arrays that efficiently suppress sneak currents.
Collapse
Affiliation(s)
- Chanjin Lim
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Taegil Kim
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - YoungJu Park
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Daeho Kim
- Bruker Nano Surface, Bruker Korea Co, Ltd., Seoul, 05840, Republic of Korea
| | - ChaeHo Shin
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Suji Ha
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junwoo Park
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
- Center for Nano Materials, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
2
|
Lin Y, Huang B, Chen Y, Fu Q, Huang H, Zhuang Z, Yu Y. Mixed-Valence Coordination Strategy Creating Ordered Ternary Ultrasmall Homo-/Hetero-structures Driven by Lattice Match for Advanced Photochromism and Encryption Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500816. [PMID: 40079063 DOI: 10.1002/smll.202500816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Overcoming the challenges of integrating disparate components in nanoarchitectures, this study introduces a straightforward strategy based on a mixed-valence coordination approach, creating an ordered ternary heterostructure integrated with ultrasmall homojunction. This singular ordered homojunction-heterostructure unites ultrathin 1D rutile TiO2 nanowires (NWs) and ultrathin anatase TiO2 NWs with 0D Prussian Blue Analogs (PBAs) nanoparticles (NPs), all exhibiting crystallographic oriented alignment with each other, forming a ternary mesocrystals. Experimental and theoretical insights disclose that the complex interplay between these dissimilar components is governed by a spontaneous lattice match effect, which not only optimizes but also directs the charge transfer, thereby enhancing both efficiency and stability. It also allows for tailoring the valence states of Fe within the PBA, fine-tuning of the composite's photochromic properties, and introducing abundant defect structures that foster strong interaction with oxygen molecules, enabling controllable color-switching dynamics. Consequently, the FeII 1-xFeIII x-PBA/TiO2 exhibits an optimized ternary structure of R-TiO2/A-TiO2/PBA, demonstrating exceptional photoelectronic properties, significantly enhancing photochromism and secure encryption capabilities. These insights establish a solid foundation for engineering sophisticated complex-ordered nanoarchitectures, advancing sustainable energy and environmental technologies.
Collapse
Affiliation(s)
- Yalan Lin
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Bingqian Huang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yixie Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Qingwei Fu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Haoyang Huang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
3
|
Martinez A, Gothe PK, Liou YD, Bhayde OT, Gish JT, Sangwan VK, Rabel MP, Rumende T, Gonzalez GG, Jiang J, Cao Y, Darancet P, Meletis E, Hersam MC, Koh SJ. Sub-1K Cold-Electron Quantum Well Switching at Room Temperature. NANO LETTERS 2024; 24:13981-13990. [PMID: 39467161 DOI: 10.1021/acs.nanolett.4c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Quantum states can provide means to systematically manipulate the transport of electrons. Here we present electron transport across quasi-bound states of two heterogeneous quantum wells (QWs), where the transport of thermally excited electrons is blocked or enabled depending on the relative positions of the two quasi-bound states, with an abrupt current onset occurring when the two QW states align. The QW switch comprises a source (Cr), QW1 (Cr2O3), QW2 (SnOx, x < 2), a tunneling barrier (SiO2), and a drain (Si), where the effective electron mass of QW1 (m*QW1) is selected to be larger than QW2 (m*QW2). The current-voltage (I-V) measurements of the fabricated devices show abrupt current onsets, with the current transition occurring within 0.25 mV, corresponding to an effective electron temperature of 0.8 K at room temperature. Since transistor power consumption is fundamentally tied to effective electron temperature, this sub-1K cold-electron QW switching holds promise for highly energy-efficient computing.
Collapse
Affiliation(s)
- Anthony Martinez
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pushkar K Gothe
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi-De Liou
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ojas T Bhayde
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - J Tyler Gish
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael P Rabel
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Thévenin Rumende
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Gumaro G Gonzalez
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiechao Jiang
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ye Cao
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pierre Darancet
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Efstathios Meletis
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Seong Jin Koh
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
4
|
Wu X, Gao S, Xiao L, Wang J. WSe 2 Negative Capacitance Field-Effect Transistor for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42597-42607. [PMID: 39102741 DOI: 10.1021/acsami.4c06648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials are highly sought after for their high sensitivity, label-free detection, fast response, and ease of on-chip integration. However, the subthreshold swing (SS) of FETs is constrained by the Boltzmann limit and cannot fall below 60 mV/dec, hindering sensor sensitivity enhancement. Additionally, the gate-leakage current of 2D material biosensors in liquid environments significantly increases, adversely affecting the detection accuracy and stability. Based on the principle of negative capacitance, this paper presents for the first time a two-dimensional material WSe2 negative capacitance field-effect transistor (NCFET) with a minimum subthreshold swing of 56 mV/dec in aqueous solution. The NCFET shows a significantly improved biosensor function. The pH detection sensitivity of the NCFET biosensor reaches 994 pH-1, nearly an order of magnitude higher than that of the traditional two-dimensional WSe2 FET biosensor. The Al2O3/HfZrO (HZO) bilayer dielectric in the NCFET not only contributes to negative capacitance characteristics in solution but also significantly reduces the leakage in solution. Utilizing an enzyme catalysis method, the WSe2 NCFET biosensor demonstrates a specific detection of glucose molecules, achieving a high sensitivity of 4800 A/A in a 5 mM glucose solution and a low detection limit (10-9 M). Further experiments also exhibit the ability of the biosensor to detect glucose in sweat.
Collapse
Affiliation(s)
- Xian Wu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Sen Gao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Lei Xiao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Dragoman M, Dinescu A, Aldrigo M, Dragoman D. Quantum Graphene Asymmetric Devices for Harvesting Electromagnetic Energy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1114. [PMID: 38998720 PMCID: PMC11243634 DOI: 10.3390/nano14131114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
We present here the fabrication at the wafer level and the electrical performance of two types of graphene diodes: ballistic trapezoidal-shaped graphene diodes and lateral tunneling graphene diodes. In the case of the ballistic trapezoidal-shaped graphene diode, we observe a large DC current of 200 µA at a DC bias voltage of ±2 V and a large voltage responsivity of 2000 v/w, while in the case of the lateral tunneling graphene diodes, we obtain a DC current of 1.5 mA at a DC bias voltage of ±2 V, with a voltage responsivity of 3000 v/w. An extended analysis of the defects produced during the fabrication process and their influences on the graphene diode performance is also presented.
Collapse
Affiliation(s)
- Mircea Dragoman
- National Institute for Research and Development in Microtechnologies (IMT), Strada Erou Iancu Nicolae 126A, 077190 Voluntari, Romania
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies (IMT), Strada Erou Iancu Nicolae 126A, 077190 Voluntari, Romania
| | - Martino Aldrigo
- National Institute for Research and Development in Microtechnologies (IMT), Strada Erou Iancu Nicolae 126A, 077190 Voluntari, Romania
| | - Daniela Dragoman
- Physics Faculty, University of Bucharest, P.O. Box MG-11, 077125 Bucharest, Romania
- Academy of Romanian Scientists, Strada Ilfov, Nr. 3, 050044 Bucharest, Romania
| |
Collapse
|
6
|
Kanagarajan KS, Sadhasivan DK. Reduced subthreshold swing in a vertical tunnel FET using a low-work-function live metal strip and a low- k material at the drain. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:713-718. [PMID: 38919167 PMCID: PMC11196947 DOI: 10.3762/bjnano.15.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
In this research paper, a vertical tunnel field-effect transistor (TFET) structure containing a live metal strip and a material with low dielectric constant is designed, and its performance metrics are analyzed in detail. Low-k SiO2 is incorporated in the channel-drain region. A live molybdenum metal strip with low work function is placed in a high-k HfO2 layer in the source-channel region. The device is examined by the parameters I off, subthreshold swing, threshold voltage, and I on/I off ratio. The introduction of a live metal strip in the dielectric layer closer to the source-channel interface results in a minimum subthreshold slope and a good I on/I off ratio. The low-k material at the drain reduces the gate-to-drain capacitance. Both the SiO2 layer and the live metal strip show excellent leakage current reduction to 1.4 × 10-17 A/μm. The design provides a subthreshold swing of 5 mV/decade, which is an excellent improvement in TFETs, an on-current of 1.00 × 10-5 A/μm, an I on/I off ratio of 7.14 × 1011, and a threshold voltage of 0.28 V.
Collapse
Affiliation(s)
- Kalai Selvi Kanagarajan
- Department of Electronics and Communication Engineering, Government College of Engineering, Tirunelveli, Tamil Nadu, India
| | | |
Collapse
|
7
|
Zou T, Heo S, Byeon G, Yoo S, Kim M, Reo Y, Kim S, Liu A, Noh YY. Two-Dimensional Tunneling Memtransistor with Thin-Film Heterostructure for Low-Power Logic-in-Memory Complementary Metal-Oxide Semiconductor. ACS NANO 2024; 18:13849-13857. [PMID: 38748609 DOI: 10.1021/acsnano.4c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
With the demand for high-performance and miniaturized semiconductor devices continuously rising, the development of innovative tunneling transistors via efficient stacking methods using two-dimensional (2D) building blocks has paramount importance in the electronic industry. Hence, 2D semiconductors with atomically thin geometries hold significant promise for advancements in electronics. In this study, we introduced tunneling memtransistors with a thin-film heterostructure composed of 2D semiconducting MoS2 and WSe2. Devices with the dual function of tuning and memory operation were realized by the gate-regulated modulation of the barrier height at the heterojunction and manipulation of intrinsic defects within the exfoliated nanoflakes using solution processes. Further, our investigation revealed extensive edge defects and four distinct defect types, namely monoselenium vacancies, diselenium vacancies, tungsten vacancies, and tungsten adatoms, in the interior of electrochemically exfoliated WSe2 nanoflakes. Additionally, we constructed complementary metal-oxide semiconductor-based logic-in-memory devices with a small static power in the range of picowatts using the developed tunneling memtransistors, demonstrating a promising approach for next-generation low-power nanoelectronics.
Collapse
Affiliation(s)
- Taoyu Zou
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Seongmin Heo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Gwon Byeon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Soohwan Yoo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Mingyu Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youjin Reo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Soonhyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ao Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Yang S, Yuan J, Wang Z, Wu X, Shen X, Zhang Y, Ma C, Wang J, Lei S, Li R, Hu W. Overcoming the Unfavorable Effects of "Boltzmann Tyranny:" Ultra-Low Subthreshold Swing in Organic Phototransistors via One-Transistor-One-Memristor Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2309337. [PMID: 38416878 DOI: 10.1002/adma.202309337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Indexed: 03/01/2024]
Abstract
Organic phototransistors (OPTs), as photosensitive organic field-effect transistors (OFETs), have gained significant attention due to their pivotal roles in imaging, optical communication, and night vision. However, their performance is fundamentally limited by the Boltzmann distribution of charge carriers, which constrains the average subthreshold swing (SSave ) to a minimum of 60 mV/decade at room temperature. In this study, an innovative one-transistor-one-memristor (1T1R) architecture is proposed to overcome the Boltzmann limit in conventional OFETs. By replacing the source electrode in an OFET with a memristor, the 1T1R device exploits the memristor's sharp resistance state transitions to achieve an ultra-low SSave of 18 mV/decade. Consequently, the 1T1R devices demonstrate remarkable sensitivity to photo illumination, with a high specific detectivity of 3.9 × 109 cm W-1 Hz1/2 , outperforming conventional OPTs (4.9 × 104 cm W-1 Hz1/2 ) by more than four orders of magnitude. The 1T1R architecture presents a potentially universal solution for overcoming the detrimental effects of "Boltzmann tyranny," setting the stage for the development of ultra-low SSave devices in various optoelectronic applications.
Collapse
Affiliation(s)
- Shuyuan Yang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiangyan Yuan
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhaofeng Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xianshuo Wu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xianfeng Shen
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yu Zhang
- Ji Hua Laboratory Foshan, Guangdong, 528200, China
| | - Chunli Ma
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiamin Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shengbin Lei
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Rongjin Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
9
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
10
|
Molina-Reyes J, Cuellar-Juarez AM. Low temperature passivation of silicon surfaces for enhanced performance of Schottky-barrier MOSFET. NANOTECHNOLOGY 2023; 35:105701. [PMID: 38035390 DOI: 10.1088/1361-6528/ad1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
By using a simple device architecture along with a simple process design and a low thermal-budget of a maximum of 100 °C for passivating metal/semiconductor interfaces, a Schottky barrier MOSFET device with a low subthreshold slope of 70 mV dec-1could be developed. This device is enabled after passivation of the metal/silicon interface (found at the source/drain regions) with ultra-thin SiOxfilms, followed by the e-beam evaporation of high- quality aluminum and by using atomic-layer deposition for HfO2as a gate oxide. All of these fabrication steps were designed in a sequential process so that a gate-last recipe could minimize the defect density at the aluminum/silicon and HfO2/silicon interfaces, thus preserving the Schottky barrier height and ultimately, the outstanding performance of the transistor. This device is fully integrated into silicon after standard CMOS-compatible processing, so that it could be easily adopted into front-end-of-line or even in back-end-of-line stages of an integrated circuit, where low thermal budget is required and where its functionality could be increased by developing additional and fast logic.
Collapse
Affiliation(s)
- Joel Molina-Reyes
- Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Electronics Department. Luis Enrique Erro #1, Santa María Tonantzintla, C.P. 72840, Puebla, Mexico
| | - Adriana Mercedes Cuellar-Juarez
- Instituto Tecnológico de Tlalnepantla, División de Estudios de Posgrado e Investigación (ITTLA-DEPI). Av. Instituto Tecnológico S/N, Col. La Comunidad, C.P. 54070, Tlalnepantla de Baz, Estado de México, Mexico
| |
Collapse
|
11
|
Wang T, Liu F, Liu S, Liu B, Zhu S. Interface engineering strategy for multisource spintronic devices via TMPS 4 modulation of black-phosphorus. Phys Chem Chem Phys 2023; 25:23988-23994. [PMID: 37646169 DOI: 10.1039/d3cp01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Interface engineering is an effective strategy for significantly providing performance improvements in logic operations and information storage techniques, given the quantum effects characteristic of pristine two-dimensional ferromagnetic (FM) materials. Furthermore, the van der Waals (vdW) heterostructures enable a more efficient design of logic components. Herein, two novel designs of van der Waals heterostructures are proposed, black-phosphorus (BP)/TMPS4(TM = Cr, Fe-Mn), where the CrPS4 relies on odd and even layers for FM state - antiferromagnetic (AFM) state alternation, which is used to modulate BP with high hole mobility but no magnetism. Based on the first principles, the simulation results show that the two heterojunctions exhibit high stability, carrier mobility, and thermoelectric effects, of which the BP/CrPS4 heterojunction is specifically modulated to a type II electronic bandstructure. These two structures are applied in multi-source logic devices. The device performances show that the devices have spin Sebeck effect (SSE), perfect spin filtering effect (SFE), high extinction ratio (1347), and high thermal magnetoresistivity (1011). The above results suggest BP/TMPS4 bilayers as promising candidates for spin-based vdW devices and facilitate the future development of atomically thin magnetic information storage.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Science and Key Laboratory for Ferrous Metallurgy, Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Fangqi Liu
- College of Science and Key Laboratory for Ferrous Metallurgy, Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Sheng Liu
- Key Laboratory of Metallurgical Equipment and Control Technology, Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bin Liu
- Key Laboratory of Metallurgical Equipment and Control Technology, Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Sicong Zhu
- College of Science and Key Laboratory for Ferrous Metallurgy, Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, China.
- Key Laboratory of Metallurgical Equipment and Control Technology, Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
12
|
Wu X, Zhao H, Zhou E, Zou Y, Xiao S, Ma S, You R, Li P. Two-Dimensional Transition Metal Dichalcogenide Tunnel Field-Effect Transistors for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23583-23592. [PMID: 37020349 DOI: 10.1021/acsami.3c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials have drawn significant attention due to their outstanding sensitivity. However, the Boltzmann distribution of electrons imposes a physical limit on the subthreshold swing (SS), and a 2D-material biosensor with sub-60 mV/dec SS has not been realized, which hinders further increase of the sensitivity of 2D-material FET biosensors. Here, we report tunnel FETs (TFETs) based on a SnSe2/WSe2 heterostructure and observe the tunneling effect of a 2D material in aqueous solution for the first time with an ultralow SS of 29 mV/dec. A bilayer dielectric (Al2O3/HfO2) and graphene contacts, which significantly reduce the leakage current in solution and contact resistance, respectively, are crucial to the realization of the tunneling effect in solution. Then, we propose a novel biosensing method by using tunneling current as the sensing signal. The TFETs show an extremely high pH sensitivity of 895/pH due to ultralow SS, surpassing the sensitivity of FET biosensors based on a single 2D material (WSe2) by 8-fold. Specific detection of glucose is realized, and the biosensors show a superb sensitivity (3158 A/A for 5 mM), wide sensing range (from 10-9 to 10-3 M), low detection limit (10-9 M), and rapid response rate (11 s). The sensors also exhibit the ability of monitoring glucose in complex biofluid (sweat). This work provides a platform for ultrasensitive biosensing. The discovery of the tunneling effect of 2D materials in aqueous solution may stimulate further fundamental research and potential applications.
Collapse
Affiliation(s)
- Xian Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Haojie Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Enze Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Yixuan Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Shanpeng Xiao
- China Mobile Research Institute, Beijing 100053, China
| | - Shuai Ma
- China Mobile Research Institute, Beijing 100053, China
| | - Rui You
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| |
Collapse
|
13
|
Ji D, Zhao J, Liu Y, Wei D. Electrical Nanobiosensors for Nucleic Acid Based Diagnostics. J Phys Chem Lett 2023; 14:4084-4095. [PMID: 37125726 DOI: 10.1021/acs.jpclett.3c00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.
Collapse
Affiliation(s)
- Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Huang W, Zhang Y, Song M, Wang B, Hou H, Hu X, Chen X, Zhai T. Encapsulation strategies on 2D materials for field effect transistors and photodetectors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
In situ grown molybdenum sulfide on Laponite D clay: Visible-light-driven hydrogen evolution for high solar-to-hydrogen (STH) efficiencies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Sanjay S, Ganapathi KL, Varrla E, Bhat N. Performance tunability of field-effect transistors using MoS 2(1-x)Se 2xalloys. NANOTECHNOLOGY 2021; 32:435202. [PMID: 34293721 DOI: 10.1088/1361-6528/ac1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Ultra-thin channel materials with excellent tunability of their electronic properties are necessary for the scaling of electronic devices. Two-dimensional materials such as transition metal dichalcogenides (TMDs) are ideal candidates for this due to their layered nature and great electrostatic control. Ternary alloys of these TMDs show composition-dependent electronic structure, promising excellent tunability of their properties. Here, we systematically compare molybdenum sulphoselenide (MoS2(1-x)Se2x) alloys, MoS1Se1and MoS0.4Se1.6. We observe variations in strain and carrier concentration with their composition. Using them, we demonstrate n-channel field-effect transistors (FETs) with SiO2and high-kHfO2as gate dielectrics, and show tunability in threshold voltage, subthreshold slope (SS), drain current, and mobility. MoS1Se1shows better promise for low-power FETs with a minimum SS of 70 mV dec-1, whereas MoS0.4Se1.6, with its higher mobility, is suitable for faster operations. Using HfO2as gate dielectric, there is an order of magnitude reduction in interface traps and 2× improvement in mobility and drain current, compared to SiO2. In contrast to MoS2, the FETs on HfO2also display enhancement-mode operation, making them better suited for CMOS applications.
Collapse
Affiliation(s)
- Sooraj Sanjay
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru - 560012, India
| | - Kolla Lakshmi Ganapathi
- Department of Physics, 2D Materials Research and Innovation-group, Quantum Centers in Diamond and Emergent Materials (QuCenDiEM)-group, Indian Institute of Technology Madras, Chennai - 600036, India
| | - Eswaraiah Varrla
- Laboratory of Nanosheets and Nanocomposites, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu - 603202, India
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru - 560012, India
| |
Collapse
|
17
|
Pi SY, Wang Y, Pu C, Mao X, Liu GL, Wu HM, Liu H. Cr(VI) reduction coupled with Cr(III) adsorption/ precipitation for Cr(VI) removal at near neutral pHs by polyaniline nanowires-coated polypropylene filters. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
18
|
Fluorene-containing polyhedral oligomericsilsesquioxanes modified hyperbranched polymer for white light-emitting diodes with ultra-high color rendering index of 96. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Wu B, Xiao L, Zhang M, Yang C, Li Q, Li G, He Q, Liu J. Facile synthesis of dendritic-like CeO2/rGO composite and application for detection of uric acid and tryptophan simultaneously. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Xu H, Li Y, Jia M, Cui L, Chen C, Yang Y, Jin X. Design and synthesis of a 3D flexible film electrode based on a sodium carboxymethyl cellulose–polypyrrole@reduced graphene oxide composite for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj00204j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel, environmentally friendly and freestanding 3D flexible film electrode (CMC–PPy@RGO) was prepared by a simple vacuum filtration method.
Collapse
Affiliation(s)
- Hanping Xu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Yue Li
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Mengying Jia
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Linlin Cui
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Cheng Chen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Yupeng Yang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Xiaojuan Jin
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| |
Collapse
|