1
|
Cheng Q, Huang Y, Duan W, Liu L. A pillar[5]arene-based hyaluronic acid-decorated amorphous bimetallic metal-organic framework for multimodal synergistic cancer therapy. Int J Biol Macromol 2025; 309:142994. [PMID: 40210065 DOI: 10.1016/j.ijbiomac.2025.142994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Current antitumor monotherapies have many limitations, and developing novel synergistic anticancer strategies with low side effects and high antitumor efficiency remains a significant challenge. Herein, we developed a pH and GSH dual-responsive pillar[5]arene-based amorphous bimetallic metal-organic framework (DOX@Fe/CuP5H) for synergistic antitumor therapy involving ferroptosis, cuproptosis and apoptosis. The hydrazide-functionalized pillar[5]arene derivatives were coordinated with Cu2+ to form irregular nanoparticles, which were subsequently etched and surface-coordinated using Fe3+. Finally, doxorubicin (DOX) was loaded onto the structures, followed by surface decoration with hyaluronic acid (HA) to yield the multifunctional DOX@Fe/CuP5H. The porous structure and amorphous nature of Fe/CuP5, and the specific binding of HA to CD44 overexpressed in cancer cells endowed the DOX@Fe/CuP5H with a high drug-loading capacity and effective targeting ability, while simultaneously reducing its toxicity to normal cells. DOX@Fe/CuP5H can dissociate in the tumor microenvironment, rapidly releasing DOX to induce apoptosis. Excess Fe3+ and Cu2+ deplete intracellular GSH, leading to a redox imbalance. The accumulation of Fe2+ further promotes the production of reactive oxygen species (ROS) and lipid peroxide (LPO), triggering ferroptosis. Additionally, FDX1 regulates cellular protein lipoylation, while Cu+ binds to lipoylated proteins, causing acute proteotoxic stress and inducing cellular cuproptosis. Therefore, the rationally designed pillar[5]arene-based amorphous bimetallic metal-organic framework provides a safe and high-performance platform for enhancing the efficacy of multimodal synergistic anticancer therapies.
Collapse
Affiliation(s)
- Qi Cheng
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China
| | - Yan Huang
- Guang xi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guang xi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning, China.
| | - Wengui Duan
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China
| | - Luzhi Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China.
| |
Collapse
|
2
|
Dai Y, Yu W, Cheng Y, Zhou Y, Zou J, Meng Y, Chen F, Qian Y, Yao Y. Recent developments in pillar[5]arene-based nanomaterials for cancer therapy. Chem Commun (Camb) 2025; 61:2484-2495. [PMID: 39789890 DOI: 10.1039/d4cc05660d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanomaterials possess unique size characteristics, enabling them to cross tissue gaps, penetrate the blood-brain barrier and endothelial cells, and release drugs at the cellular level. Additionally, the surface of nanomaterials is readily functionalized, endowing them with good biocompatibility, low biotoxicity, and specific targeting. All these advantages render nanomaterials broad application prospects in tumor therapy. Pillar[5]arenes are a new category of macrocyclic host compounds featuring rich host-guest properties and diverse environmental responses. In recent years, by combining the advantages of pillar[5]arenes and nanomaterials, the application of pillar[5]arene-based nanomaterials in tumor therapy has drawn extensive attention from scientists. In this review, we summarize five distinct types of pillar[5]arene-based nanomaterials: (1) pillar[5]arene-modified inorganic nanomaterials; (2) pillar[5]arene-modified organic porous materials; (3) pillar[5]arene-modified organic/inorganic hybrid materials; (4) nanomaterials self-assembled from pillar[5]arene-based host-guest complexes; (5) nanomaterials self-assembled from amphiphilic pillar[5]arenes. Moreover, the different tumor treatment modes of these nanomaterials, including chemotherapy, photodynamic therapy, photothermal therapy, gene therapy, and multimodal synergistic therapy, are also elaborated in detail.
Collapse
Affiliation(s)
- Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Wenqiang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yushan Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yao Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Jiaye Zou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yujia Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Feiyu Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yihan Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| |
Collapse
|
3
|
Ma L, Dai Y, Meng Y, Yu W, Bai Y, Cai Y, Han Y, Wang J, Yao L, Yao Y. Perphenazine modified pillar[5]arene based nano-assemblies for synergistic photothermal and photodynamic cancer therapy. Chem Commun (Camb) 2024; 60:8387-8390. [PMID: 39027932 DOI: 10.1039/d4cc02528h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Nano-assemblies based on perphenazine modified pillar[5]arene were constructed successfully for synergistic photothermal and photodynamic (I&II) cancer therapy.
Collapse
Affiliation(s)
- Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yujia Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Wenqiang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yiqiao Bai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Long Yao
- Nantong University Analysis & Testing Center, Nantong University, Nantong, Jiangsu 226019, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
4
|
Li X, Shen M, Yang J, Liu L, Yang YW. Pillararene-Based Stimuli-Responsive Supramolecular Delivery Systems for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313317. [PMID: 38206943 DOI: 10.1002/adma.202313317] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cancer poses a significant challenge to global public health, seriously threatening human health and life. Although various therapeutic strategies, such as chemotherapy (CT), radiotherapy, phototherapy, and starvation therapy, are applied to cancer treatment, their limited therapeutic effect, severe side effects, and unsatisfactory drug release behavior need to be carefully considered. Thus, there is an urgent need to develop efficient drug delivery strategies for improving cancer treatment efficacy and realizing on-demand drug delivery. Notably, pillararenes, as an emerging class of supramolecular macrocycles, possess unique properties of highly tunable structures, superior host-guest chemistry, facile modification, and good biocompatibility, which are widely used in cancer therapy to achieve controllable drug release and reduce the toxic side effects on normal tissues under various internal/external stimuli conditions. This review summarizes the recent advance of stimuli-responsive supramolecular delivery systems (SDSs) based on pillararenes for tumor therapy from the perspectives of different assembly methods and hybrid materials, including molecular-scale SDSs, supramolecular nano self-assembly delivery systems, and nanohybrid SDSs. Moreover, the prospects and critical challenges of stimuli-responsive SDSs based on pillararenes for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Meili Shen
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Jie Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Linlin Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Ying-Wei Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| |
Collapse
|
5
|
Jiang J, Su Z, He Q, Duan W, Huang Y, Liu L. A Nanoplatform Based on Pillar[5]arene Nanovalves for Combined Drug Delivery and Enhanced Antitumor Activity. Chemistry 2024; 30:e202400007. [PMID: 38258423 DOI: 10.1002/chem.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Modern nanodrug delivery technologies offer new approaches in the fight against cancer. However, due to the heterogeneity of tumors and side effects of anticancer drugs, monotherapies are less effective. Herein, we report a novel pH and light dual-responsive nanodrug delivery platform. The platform was formed by sulfonate-modified gold nanoparticles loaded with the anticancer drugs doxorubicin (DOX) and glucose oxidase (GOx) and then covered by water-soluble pillar[5]arene as a nanovalve. The nanovalve formed by the host-guest interaction between pillar[5]arene and the sulfonic acid group grafted onto the gold nanoparticle increased the drug loading capacity of the nanoplatform and enabled sustained release of the drug in a simulated weakly acidic tumor environment. The released GOx can consume intracellular glucose, namely, starvation therapy, while the generated hydrogen peroxide can further kill tumor cells, complementing DOX chemotherapy. Gold nanoparticles have good photothermal conversion ability and can enhance the drugs release rate under specific wavelengths of light irradiation. The results of in vitro and in vivo experiments showed that this novel nanodrug delivery platform has good biocompatibility and better therapeutic efficacy relative to monotherapy. This study successfully developed a combined chemo/starvation therapy strategy with good tumor suppression, providing a new approach for cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Jiang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhilian Su
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qin He
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Wengui Duan
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yan Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning, China
| | - Luzhi Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry, Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, PR China
| |
Collapse
|
6
|
Yu S, Zhu RX, Niu KK, Han N, Liu H, Xing LB. Switchover from singlet oxygen to superoxide radical through a photoinduced two-step sequential energy transfer process. Chem Sci 2024; 15:1870-1878. [PMID: 38303940 PMCID: PMC10829035 DOI: 10.1039/d3sc05820d] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024] Open
Abstract
The competitive nature of type II photosensitizers in the transfer of excitation energy for the generation of singlet oxygen (1O2) presents significant challenges in the design of type I photosensitizers to produce the superoxide anion radical (O2˙-). In this study, we present an efficient method for the direct transformation of type II photosensitizers into type I photosensitizers through the implementation of an artificial light-harvesting system (ALHSs) involving a two-step sequential energy transfer process. The designed supramolecular complex (DNPY-SBE-β-CD) not only has the ability to generate 1O2 as type II photosensitizers, but also demonstrates remarkable fluorescence properties in aqueous solution, which renders it an efficient energy donor for the development of type I photosensitizers ALHSs, thereby enabling the efficient generation of O2˙-. Meanwhile, to ascertain the capability and practicality of this method, two organic reactions were conducted, namely the photooxidation reaction of thioanisole and oxidative hydroxylation of arylboronic acids, both of which display a high level of efficiency and exhibit significant catalytic performance. This work provides an efficient method for turning type II photosensitizers into type I photosensitizers by a two-step sequential energy transfer procedure.
Collapse
Affiliation(s)
- Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Rong-Xin Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven Leuven 3001 Belgium
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| |
Collapse
|
7
|
Tang R, Zhou L, Dai Y, Wang Y, Cai Y, Chen T, Yao Y. Polydopamine modified by pillar[5]arene in situ for targeted chemo-photothermal cancer therapy. Chem Commun (Camb) 2024; 60:1160-1163. [PMID: 38192227 DOI: 10.1039/d3cc04196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A pillar[5]arene-modified polydopamine (PDA-P[5]OH) displaying pH/NIR dual-responsive properties was constructed successfully in situ for targeted chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
8
|
Nisa K, Lone IA, Arif W, Singh P, Rehmen SU, Kumar R. Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Med Chem 2023; 14:2438-2458. [PMID: 38107171 PMCID: PMC10718592 DOI: 10.1039/d3md00396e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
One of the world's serious health challenges is cancer. Anti-cancer agents delivered to normal cells and tissues pose several problems and challenges. In this connection, photodynamic therapy (PDT) is a minimally invasive therapeutic technique used for selectively destroying malignant cells while sparing the normal tissues. Development in photosensitisers (PSs) and light sources have to be made for PDT as a first option treatment for patients. In the pursuit of developing new attractive molecules and their formulations for PDT, researchers are working on developing such type of PSs that perform better than those being currently used. For the widespread clinical utilization of PDT, effective PSs are of particular importance. Host-guest interactions based on nanographene assemblies such as functionalized hexa-cata-hexabenzocoronenes, hexa-peri-hexabenzocoronenes and coronene have attracted increasing attention owing to less complicated synthetic steps and purification processes (gel permeation chromatography) during fabrication. Noncovalent interactions provide easy and facile approaches for building supramolecular PSs and enable them to have sensitive and controllable photoactivities, which are important for maximizing photodynamic effects and minimizing side effects. Various versatile supramolecular assemblies based on cyclodextrins, cucurbiturils, calixarenes, porphyrins and pillararenes have been designed in order to make PDT an effective therapeutic technique for curing cancer and tumours. The supramolecular assemblies of porphyrins display efficient electron transfer and fluorescence for use in bioimaging and PDT. The multifunctionalization of supramolecular assemblies is used for designing biomedically active PSs, which are helpful in PDT. It is anticipated that the development of these functionalized supramolecular assemblies will provide more fascinating advances in PDT and will dramatically expand the potential and possibilities in cancer treatments.
Collapse
Affiliation(s)
- Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ishfaq Ahmad Lone
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Waseem Arif
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University Meerut-250005 India
| | - Sajad Ur Rehmen
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| |
Collapse
|
9
|
Zhao Z, Yang J, Liu Y, Wang S, Zhou W, Li ZT, Zhang DW, Ma D. Acyclic cucurbit[ n]uril-based nanosponges significantly enhance the photodynamic therapeutic efficacy of temoporfin in vitro and in vivo. J Mater Chem B 2023; 11:9027-9034. [PMID: 37721029 DOI: 10.1039/d3tb01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.
Collapse
Affiliation(s)
- Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jingyu Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
10
|
Wang H, Fu Y, Du S, Liu P, Ren J, Liu Y, Tao J, Zhang L, Zhu J. Mechanically Robust Dissolving Microneedles Made of Supramolecular Photosensitizers for Effective Photodynamic Bacterial Biofilm Elimination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37196354 DOI: 10.1021/acsami.3c03614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bacterial biofilms pose severe threats to public health worldwide and are intractable by conventional antibiotic treatment. Antimicrobial photodynamic therapy (PDT) is emerging as a promising strategy for eradicating biofilms by virtue of low invasiveness, broad-spectrum antibacterial activity, and nondrug resistance. However, its practical efficacy is impeded by the low water solubility, severe aggregation, and poor penetration of photosensitizers (PSs) into the dense extracellular polymeric substances (EPS) of biofilms. Herein, we develop a dissolving microneedle (DMN) patch composed of a sulfobutylether-β-cyclodextrin (SCD)/tetra(4-pyridyl)-porphine (TPyP) supramolecular PS for enhanced biofilm penetration and eradication. The inclusion of TPyP into the SCD cavity can drastically inhibit the aggregation of TPyP, thereby allowing for nearly tenfold reactive oxygen species production and high photodynamic antibacterial efficacy. Moreover, the TPyP/SCD-based DMN (TSMN) possesses excellent mechanical performance that can easily pierce the EPS of biofilm with a penetration depth of ∼350 μm, enabling sufficient contact of TPyP with bacteria and optimal photodynamic elimination of bacterial biofilms. Furthermore, TSMN could efficiently eradicate Staphylococcus aureus biofilm infection in vivo with good biosafety. This study offers a promising platform for supramolecular DMN for efficient biofilm elimination and other PDTs.
Collapse
Affiliation(s)
- Hua Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Shuo Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Pei Liu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jingli Ren
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yijing Liu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
11
|
Liang P, Zhang Y, Schmidt BF, Ballou B, Qian W, Dong Z, Wu J, Wang L, Bruchez MP, Dong X. Esterase-Activated, pH-Responsive, and Genetically Targetable Nano-Prodrug for Cancer Cell Photo-Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207535. [PMID: 36807550 DOI: 10.1002/smll.202207535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/31/2023] [Indexed: 05/11/2023]
Abstract
Activatable prodrugs have drawn considerable attention for cancer cell ablation owing to their high specificity in drug delivery systems. However, phototheranostic prodrugs with dual organelle-targeting and synergistic effects are still rare due to low intelligence of their structures. Besides, the cell membrane, exocytosis, and diffusional hindrance by the extracellular matrix reduce drug uptake. Moreover, the up-regulation of heat shock protein and short singlet-oxygen lifetime in cancer cells hamper photo-ablation efficacy, especially in the mono-therapeutic model. To overcome those obstacles, we prepare an esterase-activated DM nano-prodrug, which is conjugated by diiodine-substituted fluorogenic malachite green derivative (MG-2I) and phototherapeutic agent DPP-OH via hydrolyzable ester linkage, having pH-responsiveness and genetically targetable activity for dual organelles-targeting to optimize photo-ablation efficacy. The DM nanoparticles (NPs) present improved pH-responsive photothermal/photodynamic property by the protonation of diethylaminophenyl units in acidic environment. More importantly, the MG-2I and DPP-OH moieties can be released from DM nano-prodrug through overexpressed esterase; then specifically target lysosomes and mitochondria in CT-26 Mito-FAP cells. Hence, near-infrared DM NPs can trigger parallel damage in dual-organelles with strong fluorescence and effective phototoxicity, thus inducing serious mitochondrial dysfunction and apoptotic death, showing excellent photo-ablation effect based on esterase-activated, pH-responsive, and genetically targetable activities.
Collapse
Affiliation(s)
- Pingping Liang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuanying Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Byron Ballou
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Wei Qian
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ziyi Dong
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jiahui Wu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lingling Wang
- Department of general surgery of the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230002, China
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
12
|
Zhao K, Zeng L, Zhao J, Yang P, Nie J, Chang Y. Supra-herbicide based on sunlight-opened macrocycle gate with reduced toxicity. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Li M, Huo L, Zeng J, Zhu G, Liu X, Zhu X, Huang G, Wang Y, Ni K, Zhao Z. Switchable ROS Scavenger/Generator for MRI-Guided Anti-Inflammation and Anti-Tumor Therapy with Enhanced Therapeutic Efficacy and Reduced Side Effects. Adv Healthc Mater 2023; 12:e2202043. [PMID: 36367363 DOI: 10.1002/adhm.202202043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Photosensitizer in photodynamic therapy (PDT) accumulates in both tumor and adjacent normal tissue due to low selective biodistribution, results in undesirable side effect with limited clinic application. Herein, an intelligent nanoplatform is reported that selectively acts as reactive oxygen species (ROS) scavenger in normal tissue but as ROS generator in tumor microenvironment (TME) to differentially control ROS level in tumor and surrounding normal tissue during PDT. By down-regulating the produced ROS with dampened cytokine wave in normal tissue after PDT, the nanoplatform reduces the inflammatory response of normal tissue in PDT, minimizing the side effect and tumor metastasis in PDT. Alternatively, the nanoplatform switches from ROS scavenger to generator through the glutathione (GSH) responsive degradation in TME, which effectively improves the PDT efficacy with reduced GSH level and amplified oxidative stress in tumor. Simultaneously, the released Mn ions provide real-time and in situ signal change of magnetic resonance imaging (MRI) to monitor the reversal process of catalysis activity and achieve accurate tumor diagnosis. This TME-responsive ROS scavenger/generator with activable MRI contrast may provide a new dimension for design of next-generation PDT agents with precise diagnosis, high therapeutic efficacy, and low side effect.
Collapse
Affiliation(s)
- Muyao Li
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Guifen Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiangqing Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xianglong Zhu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
14
|
Tian J, Chen T, Huang B, Liu Y, Wang C, Cui Z, Xu H, Li Q, Zhang W, Liang Q. Inflammation specific environment activated methotrexate-loaded nanomedicine to treat rheumatoid arthritis by immune environment reconstruction. Acta Biomater 2023; 157:367-380. [PMID: 36513249 DOI: 10.1016/j.actbio.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA), as an autoimmune inflammatory disease, is featured by enhanced vascular permeability, irreversible cartilage destroys and bone erosion. Although the pathogenesis of RA is still unclear, the immune environment, particularly the lymphatic system, which is instrumental to immune cell surveillance and interstitial fluid balance, plays vital roles in the process of RA. Herein, an inflammation specific environment activated methotrexate-encapsulated nanomedicine (MTX@NPs) was constructed for RA treatment, which accumulated in inflamed joints, and released MTX in the specific RA microenvironment. Notably, MTX@NPs could regulate the immune environment including reducing the expressions of inflammatory cytokines of macrophages and the inflammatory level of lymphatic epithelial cells (LECs), and ameliorating the lymphatic vessel contraction and drainage. In vitro and In vivo studies illustrated that MTX@NPs exhibited a high RA therapeutic efficacy and insignificant systemic toxicity owing to the suppression of the inflammation response and the improved lymphatic functions of RA joints. It suggests that the nanomedicine paves a potential way to the clinical practice of autoimmune diseases treatments via the regulation of immune environment and lymphatic functions. STATEMENT OF SIGNIFICANCE: Although 1.0% of the population in the world suffers from rheumatoid arthritis (RA), the pathogenesis of RA is still unclear and the therapeutic effect of the first-line clinical drugs is relatively low. Herein, we propose a specific RA-microenvironment triggered nanomedicine (MTX@NPs), which enhances RA treatment of a first-line antirheumatic drug (methotrexate, MTX) by immune environment reconstruction. The nanomedicine exhibits RA joints accumulation by EPR effect, and releases MTX under the specific RA environment, leading to the dramatical drop of M1-type macrophages and acceleration of lymphatic vessel contraction and drainage. Finally, the inflammatory cytokines in RA immune environment are reduced sharply, indicating the outstanding therapeutic efficacy of MTX@NPs to RA.
Collapse
Affiliation(s)
- Jia Tian
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Chao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Qiang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
15
|
Zhong H, Li L, Zhu S, Wang Y. Controllable self-assembly of thiophene-based π-conjugated molecule and further construction of pillar[5]arene-based host-guest white-light emission system. Front Chem 2022; 10:980173. [PMID: 36118325 PMCID: PMC9478560 DOI: 10.3389/fchem.2022.980173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Photoluminescence materials have been widely applied in biological imaging and sensing, anti-counterfeiting, light-emitting diodes, logic gates et al. The fabrication of luminescent materials with adjustable emission color by self-assembly of π-conjugated molecules has attracted particular attention. In this study, we designed and synthesized a thiophene-based α-cyanostyrene-derivative (TPPA), then investigate its self-assembly morphology and fluorescence emission under different organic solvents, different proportions of H2O/THF (DMSO) mixture and different pH conditions by UV, FL and SEM images. It was found that TPPA formed nanoparticles by self-assembly in organic solvent (THF or DMSO), accompanied by strong fluorescence emission. However, with the increase of water ratio, the fluorescence intensity decreased accompany with red shift, and the self-assembly morphology changed from nanoparticles to fibers. More interestingly, when pillar[5]arene (P5) was added to form host-guest complex with TPPA, white light emission could be successfully constructed when the ratio of TPPA to P5 was 1:20 and THF to water was 19:1.
Collapse
Affiliation(s)
- Haibo Zhong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| |
Collapse
|
16
|
Wang S, Zhao Z, Yao J, Jiang S, Li ZT, Ma D. Reactive oxygen specie-induced photodynamic therapy activation by supramolecular strategy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Dai X, Huo M, Zhang B, Liu Z, Liu Y. Folic Acid-Modified Cyclodextrin Multivalent Supramolecular Assembly for Photodynamic Therapy. Biomacromolecules 2022; 23:3549-3559. [PMID: 35921592 DOI: 10.1021/acs.biomac.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The construction of supramolecular multivalent assemblies with unique photoluminescence behaviors and biological functions has become a research hot spot recently in the biomaterial field. Herein, we report an adaptive supramolecular assembly via a multivalent co-assembly strategy prepared in two stages by using an adamantane-connected pyrenyl pyridinium derivative (APA2), sulfonated aluminum phthalocyanine (PcS), and folic acid-modified β-cyclodextrin (FA-CD) for efficient dual-organelle targeted photodynamic cancer cell ablation. Benefiting from π-π and electrostatic interactions, APA2 and PcS could first assemble into non-fluorescent irregular nanoaggregates because of the heterodimer aggregation-induced quenching and then secondarily assemble with FA-CD to afford targeted spherical nanoparticles (NPs) with an average diameter of around 50 nm, which could be specifically taken up by HeLa cancer cells through endocytosis in comparison with 293T normal cells. Intriguingly, such multivalent NPs could adaptively disaggregate in an intracellular physiological environment of cancer cells and further respectively and selectively accumulate in mitochondria and lysosomes, which not only displayed near-infrared two-organelle localization in situ but also aroused efficient singlet oxygen generation under light irradiation to effectively eliminate cancer cells up to 99%. This supramolecular multivalent assembly with an adaptive feature in a specific cancer cell environment provides a feasible strategy for precise organelle-targeted imaging and an efficiently synergetic photodynamic effect in situ for cancer cell ablation.
Collapse
Affiliation(s)
- Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300071, P. R. China
| | - Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Wang J, Cen M, Wang J, Wang D, Ding Y, Zhu G, Lu B, Yuan X, Wang Y, Yao Y. Water-soluble pillar[4]arene[1]quinone: Synthesis, host-guest property and application in the fluorescence turn-on sensing of ethylenediamine in aqueous solution, organic solvent and air. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Yue T, Xia L, Tian J, Huang B, Chen C, Cao H, Zhang W. A carboxylatopillar[5]arene-based pH-triggering supramolecular photosensitizer for enhanced photodynamic antibacterial efficacy. Chem Commun (Camb) 2022; 58:2991-2994. [PMID: 35147152 DOI: 10.1039/d1cc06116j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A pH-triggering supramolecular antibacterial photosensitizer was constructed by host-guest interaction between a water-soluble porphyrin photosensitizer and carboxylatopillar[5]arene (P[5]). The formation of the supramolecular complex not only improves the biocompatibility of the photosensitizer, but also enhances antibacterial efficacy by pH-triggering dissociation under the low pH bacterial microenvironment.
Collapse
Affiliation(s)
- Tao Yue
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Chao Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
21
|
Lu B, Yan X, Wang J, Jing D, Bei J, Cai Y, Yao Y. Rim-differentiated pillar[5]arene based nonporous adaptive crystals. Chem Commun (Camb) 2022; 58:2480-2483. [PMID: 35088788 DOI: 10.1039/d1cc07124f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first rim-differentiated pillar[5]arene based nonporous adaptive crystals (NACs) were developed and used to separate dichloromethane from a halomethane mixture with 99.1% purity.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Danni Jing
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiali Bei
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
22
|
Hou X, Chang Y, Yue Y, Wang Z, Ding F, Li Z, Li H, Xu Y, Kong X, Huang F, Guo D, Liu J. Supramolecular Radiosensitizer Based on Hypoxia-Responsive Macrocycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104349. [PMID: 34994113 PMCID: PMC8867162 DOI: 10.1002/advs.202104349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Indexed: 05/15/2023]
Abstract
Radiotherapy (RT) has been viewed as one of the most effective and extensively applied curatives in clinical cancer therapy. However, the radioresistance of tumor severely discounts the radiotherapy outcomes. Here, an innovative supramolecular radiotherapy strategy, based on the complexation of a hypoxia-responsive macrocycle with small-molecule radiosensitizer, is reported. To exemplify this tactic, a carboxylated azocalix[4]arene (CAC4A) is devised as molecular container to quantitatively package tumor sensitizer banoxantrone dihydrochloride (AQ4N) through reversible host-guest interaction. Benefited from the selective reduction of azo functional groups under hypoxic microenvironment, the supramolecular prodrug CAC4A•AQ4N exhibits high tumor accumulation and efficient cellular internalization, thereby significantly amplifying radiation-mediated tumor destruction without appreciable systemic toxicity. More importantly, this supramolecular radiotherapy strategy achieves an ultrahigh sensitizer enhancement ratio (SER) value of 2.349, which is the supreme among currently reported noncovalent-based radiosensitization approach. Further development by applying different radiosensitizing drugs can make this supramolecular strategy become a general platform for boosting therapeutic effect in cancer radiotherapies, tremendously promising for clinical translation.
Collapse
Affiliation(s)
- Xiaoxue Hou
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Yu‐Xuan Chang
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Yu‐Xin Yue
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Ze‐Han Wang
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Fei Ding
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Zhi‐Hao Li
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Hua‐Bin Li
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Yicheng Xu
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Xianglei Kong
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Fan Huang
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Dong‐Sheng Guo
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Jianfeng Liu
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
23
|
Xia L, Tian J, Yue T, Cao H, Chu J, Cai H, Zhang W. Pillar[5]arene-Based Acid-Triggered Supramolecular Porphyrin Photosensitizer for Combating Bacterial Infections and Biofilm Dispersion. Adv Healthc Mater 2022; 11:e2102015. [PMID: 34787954 DOI: 10.1002/adhm.202102015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Indexed: 12/14/2022]
Abstract
The treatment of pathogenic bacterial infection has long been the most serious threat to human life and attracted widespread attention. Herein, a supramolecular photosensitizer platform based on carboxylatopillar[5]arene (CP5) and tetrafluorophenyl porphyrin functionalized with a quaternary ammonium group (TFPP-QA) for combating bacteria and dispersing biofilm via photodynamic treatment is constructed. By introducing the host macrocycle CP5 and host-guest interaction, the supramolecular photosensitizer has great biocompatibility and acid responsiveness. On the one hand, the acid-triggered dissociation of TFPP-QA/CP5 could induce the porphyrin photosensitizer to target bacterial cells and disrupt the charge balance of bacterial membranes, enhance the permeability of the bacterial membrane. On the other hand, the TFPP-QA/CP5 antibacterial platform possesses superb reactive oxygen species (ROS) generation capability under light irradiation, leading to enhanced photodynamic antibacterial efficacy. The in vitro and in vivo studies show that the supramolecular photosensitizers exhibit high antibacterial efficiency and biofilm dissipation effect under 660 nm light irradiation. Therefore, it is anticipated that the rational design and integration of photosensitizers and quaternary ammonium compounds through the supramolecular strategy would provide a promising prospect for clinical photodynamic antimicrobial therapy.
Collapse
Affiliation(s)
- Lei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Tao Yue
- Shanghai Key Laboratory of Functional Materials Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry East China University of Science and Technology Shanghai 200237 China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
24
|
Hu T, Qin Z, Shen C, Gong HL, He ZY. Multifunctional Mitochondria-Targeting Nanosystems for Enhanced Anticancer Efficacy. Front Bioeng Biotechnol 2021; 9:786621. [PMID: 34900973 PMCID: PMC8652136 DOI: 10.3389/fbioe.2021.786621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria, a kind of subcellular organelle, play crucial roles in cancer cells as an energy source and as a generator of reactive substrates, which concern the generation, proliferation, drug resistance, and other functions of cancer. Therefore, precise delivery of anticancer agents to mitochondria can be a novel strategy for enhanced cancer treatment. Mitochondria have a four-layer structure with a high negative potential, which thereby prevents many molecules from reaching the mitochondria. Luckily, the advances in nanosystems have provided enormous hope to overcome this challenge. These nanosystems include liposomes, nanoparticles, and nanomicelles. Here, we summarize the very latest developments in mitochondria-targeting nanomedicines in cancer treatment as well as focus on designing multifunctional mitochondria-targeting nanosystems based on the latest nanotechnology.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Han-Lin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
26
|
Chen J, Chen F, Zhang L, Yang Z, Deng T, Zhao Y, Zheng T, Gan X, Zhong H, Geng Y, Fu X, Wang Y, Yu C. Self-Assembling Porphyrins as a Single Therapeutic Agent for Synergistic Cancer Therapy: A One Stone Three Birds Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27856-27867. [PMID: 34110146 DOI: 10.1021/acsami.1c04868] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Combining photodynamic therapy (PDT), chemodynamic therapy (CDT), and ferroptosis is a valuable means for an enhanced anticancer effect. However, traditional combination of PDT/CDT/ferroptosis faces several hurdles, including excess glutathione (GSH) neutralization and preparation complexity. In this work, a versatile multifunctional nanoparticle (HCNP) self-assembled from two porphyrin molecules, chlorin e6 and hemin, is developed. The as-constructed HCNPs exhibit a peroxidase-mimic catalytic activity, which can lead to the in situ generation of endogenous O2, thereby enhancing the efficacy of PDT. Furthermore, the generation of hydroxyl radicals (•OH) in the tumor environment in reaction to the high level of H2O2 and the simultaneous disruption of intracellular GSH endow the HCNPs with the capacity of enhanced CDT, resulting in a more effective therapeutic outcome in combination with PDT. More importantly, GSH depletion further leads to the inactivation of GSH peroxide 4 and induced ferroptosis. Both in vitro and in vivo results showed that the combination of PDT/CDT/ferroptosis realizes highest antitumor efficacy significantly under laser irradiation. Therefore, by integrating the superiorities of O2 and •OH generation capacity, GSH-depletion effect, and bioimaging into a single nanosystem, the HCNPs are a promising single therapeutic agent for tumor PDT/CDT/ferroptosis combination therapy.
Collapse
Affiliation(s)
- Jun Chen
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Feng Chen
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Lei Zhang
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Zhangyou Yang
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Tao Deng
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Yunfei Zhao
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Tianye Zheng
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Xuelan Gan
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Hangtian Zhong
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing 400000, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction and Development, School of Basic Medicine, Chongqing Medical University, Chongqing 400000, China
| | - Xinwei Fu
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400000, China
| | - Chao Yu
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
27
|
The construction of supramolecular and hybrid Ag-AgCl nanoparticles with photodynamic therapy action on the base of tetraundecylсalix[4]resorcinarene-mPEG conjugate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Li J, Wang T, Jiang F, Hong Z, Su X, Li S, Han S. Activatable Dual ROS-Producing Probe for Dual Organelle-Engaged Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4618-4628. [PMID: 35006799 DOI: 10.1021/acsabm.1c00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photodynamic therapy (PDT) necessitates approaches capable of increasing antitumor effects while decreasing nonspecific photodamage. We herein report an activatable probe (Glu-PyEB) comprising two distinct photosensitizers with mutually suppressed photodynamics. Activation by tumor-associated γ-glutamyltranspeptidase gives rise to a generator of superoxide radical (O2-•) accumulated in lysosomes and a producer of singlet oxygen (1O2) enriched in mitochondria. This enables light-irradiation-triggered damage of lysosomes and mitochondria, robust cell death, and tumor retardation in vivo, showing the use of paired photosensitizers subjected to reciprocally suppressed photodynamics for activatable PDT.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Feng Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Shuang Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China
| |
Collapse
|
29
|
Zhou M, Liu X, Chen F, Yang L, Yuan M, Fu DY, Wang W, Yu H. Stimuli-activatable nanomaterials for phototherapy of cancer. Biomed Mater 2021; 16. [PMID: 33882463 DOI: 10.1088/1748-605x/abfa6e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT), as non-invasive therapy approaches, have gained accumulated attention for cancer treatment in past years. PTT and PDT can generate local hyperthermia effects and reactive oxygen species (ROS) respectively, for tumor eradication. To improve the therapeutic performance while minimizing the reverse side effects of phototherapy, extensive efforts have been devoted to developing stimuli-activatable (e.g. pH, redox, ROS, enzyme, etc) nanomaterials for tumor-specific delivery/activation of the phototherapeutics. In this review, we first overviewed the recent advances of the engineered stimuli-responsive nanovectors for the phototherapy of cancer. We particularly summarized the progress of stimuli-activatable nanomaterials-based combinatory therapy strategies for augmenting the performance of phototherapy. We further discuss challenges for the clinical translation of nanomaterials-based phototherapy.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China.,State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Lili Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Minjian Yuan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Ding-Yi Fu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Weiqi Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China.,State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.,Peking University Shenzhen Institute, Shenzhen 518055, People's Republic of China
| |
Collapse
|
30
|
Tao Y, Sun Y, Shi K, Pei P, Ge F, Yang K, Liu T. Versatile labeling of multiple radionuclides onto a nanoscale metal-organic framework for tumor imaging and radioisotope therapy. Biomater Sci 2021; 9:2947-2954. [PMID: 33625404 DOI: 10.1039/d0bm02225j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radionuclides for cancer theranostic have confronted problems such as limitation in real-time visualization and unsatisfactory therapeutic effect sacrificed by the nonspecific distribution. Nanoscale metal-organic frameworks (nMOFs) have been widely used in biomedical applications including cancer imaging and drug delivery. However, there have been rare reports utilizing nMOFs as a single nanoplatform to label various radionuclides for tumor imaging and radioisotope therapy (RIT). In this work, we developed polyethylene glycol (PEG) modified zirconium-based nMOFs (PCN-224) with favorable size, water solubility and biocompatibility. Interestingly, without the help of chelating agents, metal radionuclides (technetium-99 m/99mTc, lutetium-177/177Lu) could be efficiently labeled onto nMOFs via chelating with the porphyrin structure and iodine-125 (125I) via chemical substitution of hydrogen in the benzene ring. The radionuclide-labeled PCN-PEG nanoparticles all exhibit excellent radiolabeling stability in different solutions. In accordance with the fluorescence imaging of mice injected with PCN-PEG, SPECT/CT imaging illustrates strong tumor accumulation of 99mTc-PCN-PEG. Moreover, 177Lu-PCN-PEG significantly inhibited the growth of tumor without inducing any perceptible toxicity to the treated mice. Hence, the radionuclide-delivery nanoplatform based on nMOFs would provide more opportunities for precise tumor theranostics and expand the biomedical applications of MOF nanomaterials.
Collapse
Affiliation(s)
- Yugui Tao
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Yuanchen Sun
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Kexin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Fei Ge
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
31
|
Wang H, Yang Y, Yuan B, Ni XL, Xu JF, Zhang X. Cucurbit[10]uril-Encapsulated Cationic Porphyrins with Enhanced Fluorescence Emission and Photostability for Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2269-2276. [PMID: 33411497 DOI: 10.1021/acsami.0c18725] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porphyrins are widely applied for imaging, diagnosis, and treatment of diseases because of their excellent photophysical properties. However, porphyrins easily tend to aggregate driven by hydrophobic interaction and π-π stacking in an aqueous medium, which causes fluorescence quenching of the porphyrins as well as limitation of cell uptake and intracellular accumulation. Herein, cucurbit[10]uril (CB[10]) was used to fully encapsulate cationic porphyrin (CPor) in the large cavity with strong binding affinity in aqueous solutions, and the CPor aggregates were efficient disassembled, companying remarkable enhancing its fluorescence intensity. The CB[10]-based host-guest complex provided excellent protection to CPor, resulting in less susceptibility to oxidation and imparting higher photostability to CPor for cell imaging. In addition, by complexation with CB[10], it was found that the fluorescence signals and photostability of CPor were also effectively improved in cells with different reactive oxygen species levels. It is highly anticipated that the large macrocyclic host cavity-triggered large-guest encapsulation strategy in this work will provide a convenient and efficient method for designing supramolecular porphyrin dyes, thus broadening the diagnosis and imaging application in cells and microorganisms.
Collapse
Affiliation(s)
- Hua Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, Guizhou University, Guiyang 550025, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|