1
|
Dierner M, Peters S, Wu M, Rubach C, Harsha S, Sharma RK, Siah ZY, Abudukade MT, Ng S, Spiecker E, Altomare M, Will J. Role of polycrystalline F-SnO 2 substrate topography in formation mechanism and morphology of Pt nanoparticles by solid-state-dewetting. NANOSCALE 2025. [PMID: 40421661 PMCID: PMC12107527 DOI: 10.1039/d5nr00729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
Solid-state-dewetting (SSD) of thin films is increasingly utilized to fabricate nanoparticles for catalysis. In-depth understanding of particle formation mechanism is crucial to control key properties of catalytic particles such as size, size distribution, and structure. In contrast to most studies on SSD of thin metal films on smooth substrates (e.g., SiO2/Si, …), here we investigate how the topography of practical substrates, such as electrically conductive F-SnO2 (FTO), affects the formation mechanism and size of Pt particles - with potential use as nanoparticle electrodes, e.g., in electrochemical conversion or sensing applications. For this, we combined in situ scanning transmission electron microscopy (STEM) with ex situ rapid thermal annealing (RTA) methodologies. Our results indicate that, by dewetting 5 nm of Pt films on FTO, the arrangement of Pt nanoparticles exhibits a bimodal particle distribution. This is driven by: (i) a thinner initial Pt film thickness in the "depths" of the FTO substrate due to shadowing effects, and (ii) the formation of varying surface curvatures in the Pt film, both caused the topography and grain structure of the FTO substrate. Particularly, the latter introduces an additional driving force for Pt diffusion from peaks and ridges (positive local curvature) to flat terraces (no curvature) and valleys (negative local curvature).
Collapse
Affiliation(s)
- M Dierner
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany.
| | - S Peters
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany.
| | - M Wu
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany.
| | - C Rubach
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany.
| | - S Harsha
- Department of Chemical Engineering, MESA+ Institute of Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - R K Sharma
- Department of Chemical Engineering, MESA+ Institute of Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Z Y Siah
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - M T Abudukade
- Department of Chemical Engineering, MESA+ Institute of Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - S Ng
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - E Spiecker
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany.
| | - M Altomare
- Department of Chemical Engineering, MESA+ Institute of Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - J Will
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Abudukade M, Pinna M, Spanu D, De Amicis G, Minguzzi A, Vertova A, Recchia S, Ghigna P, Mul G, Altomare M. In Situ X-ray Absorption Spectroscopy Study of the Deactivation Mechanism of a Ni-SrTiO 3 Photocatalyst Slurry Active in Water Splitting. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:16020-16031. [PMID: 39355014 PMCID: PMC11440603 DOI: 10.1021/acs.jpcc.4c04688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
We used in situ X-ray absorption spectroscopy (XAS) to investigate the composition-performance correlation of Ni-SrTiO3 photocatalysts active for water splitting. After preparation and exposure to ambient conditions, the Ni particles on SrTiO3 consist of Ni(0) and Ni(II) phases, with a 4:1 at % ratio, in a metal/oxide core/shell configuration, as confirmed by XPS and TEM-EDX. In situ XAS experiments using an aqueous slurry of the Ni-SrTiO3 photocatalyst and simultaneous continuous exposure to 365 nm light with a power density of 100 mW cm-2 and the X-rays do not reveal significant changes in oxidation state of the Ni particles. Contrarily, when the X-rays are discontinuously applied, UV excitation leads to oxidation of a significant fraction of Ni(0) to Ni(II), specifically to NiO and Ni(OH)2 phases, along with cocatalyst restructuring. Ni dissolution or oxidation to higher valence states (e.g., Ni(III)) was not observed. The UV light-induced oxidation of Ni(0) causes the hydrogen evolution rate to drop to similar rates as observed for pristine SrTiO3, suggesting that Ni(0) is the active phase for H2 generation. Our results underscore the importance of assessing the effects of (continuous) X-ray exposure to (photo)catalyst-containing aqueous slurries during in situ XAS experiments, which can significantly influence the observation of compositional and structural changes in the (photo)catalysts. We ascribe this to X-ray induced water photolysis and formation of free electrons, which in this study quench SrTiO3 photoholes and prevent Ni oxidation.
Collapse
Affiliation(s)
- MemetTursun Abudukade
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Marco Pinna
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como 22100, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como 22100, Italy
| | - Giuditta De Amicis
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 16, Pavia 27100, Italy
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
- UdR INSTM di Milano - Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
- UdR INSTM di Milano - Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como 22100, Italy
| | - Paolo Ghigna
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 16, Pavia 27100, Italy
| | - Guido Mul
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Marco Altomare
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
3
|
Wang Y, Shi H, Zhao D, Zhang D, Yan W, Jin X. Lattice-Strained Bimetallic Nanocatalysts: Fundamentals of Synthesis and Structure. Molecules 2024; 29:3062. [PMID: 38999017 PMCID: PMC11242965 DOI: 10.3390/molecules29133062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 07/14/2024] Open
Abstract
Bimetallic nanostructured catalysts have shown great promise in the areas of energy, environment and magnetics. Tunable composition and electronic configurations due to lattice strain at bimetal interfaces have motivated researchers worldwide to explore them industrial applications. However, to date, the fundamentals of the synthesis of lattice-mismatched bimetallic nanocrystals are still largely uninvestigated for most supported catalyst materials. Therefore, in this work, we have conducted a detailed review of the synthesis and structural characterization of bimetallic nanocatalysts, particularly for renewable energies. In particular, the synthesis of Pt, Au and Pd bimetallic particles in a liquid phase has been critically discussed. The outcome of this review is to provide industrial insights of the rational design of cost-effective nanocatalysts for sustainable conversion technologies.
Collapse
Affiliation(s)
- Yaowei Wang
- Shandong Chambroad Zhongcheng Clean Energy, Boxing Economic Development Zone, Boxing County, Binzhou 256500, China
| | - Huibing Shi
- Shandong Chambroad Petrochemicals, Boxing Economic Development Zone, Boxing County, Binzhou 256500, China
| | - Deming Zhao
- Shandong Chambroad Petrochemicals, Boxing Economic Development Zone, Boxing County, Binzhou 256500, China
| | - Dongpei Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao 266580, China
| | - Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao 266580, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
4
|
Zhang J, Li X, Peng Z, Deng X, Wang Y, Li Z, Liang Q. PtCu Alloy-Modified Triptycene-Based Polymer with Charge Separation for Photocatalytic Hydrogen Evolution from Water/Seawater. Inorg Chem 2024; 63:6418-6426. [PMID: 38526055 DOI: 10.1021/acs.inorgchem.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Direct photocatalytic hydrogen from earth-abundant seawater is a great potential way to achieve sustainable and clean energy, yet unsatisfactory decomposition and rapid electron-hole pair recombination of catalysts hinder the solar-driven H2 conversion efficiency. Herein, we designed a series of PtCu alloy nanoparticle-modified porous triptycene-based polymers (PtxCu1-TCP) to construct the heterostructure for highly efficient hydrogen generation from photocatalytic water/seawater splitting. Characterizations displayed that TCP with an ultrahigh surface area can confine the agglomeration of PtCu alloy; meanwhile, the PtCu alloy can facilitate the rapid electron transfer from TCP. In addition, TCP with a stable covalent bond structure can resist the corrosion of seawater. Benefiting from these two advantages, Pt7Cu1-TCP showed a remarkably enhanced photocatalytic performance with a maximum H2 evolution rate of 3255 μmol g-1 h-1 in natural seawater with triethanolamine, which is 2.69, 116.25, and 1.08 times that of Pt-TCP, Cu-TCP, and optimal catalyst in pure water, respectively. This study provides an idea for the development of a novel catalytic system for hydrogen production from solar-driven water/seawater splitting.
Collapse
Affiliation(s)
- Jian Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xinglong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zheng Peng
- Center for Transformative Science, Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE), Shanghai Tech University, Shanghai 201210, P. R. China
| | - Xiuzheng Deng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yanan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Qian Liang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
5
|
Altomare M, Qin S, Saveleva VA, Badura Z, Tomanec O, Mazare A, Zoppellaro G, Vertova A, Taglietti A, Minguzzi A, Ghigna P, Schmuki P. Metastable Ni(I)-TiO 2-x Photocatalysts: Self-Amplifying H 2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent. J Am Chem Soc 2023; 145:26122-26132. [PMID: 37984877 DOI: 10.1021/jacs.3c08199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.
Collapse
Affiliation(s)
- Marco Altomare
- PhotoCatalytic Synthesis PCS Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Shanshan Qin
- Department Materials Science WW-4, LKO, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen 91058, Germany
| | - Viktoriia A Saveleva
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble Cedex 9 38043, France
| | - Zdenek Badura
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, Olomouc 779 00, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Ondrej Tomanec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| | - Anca Mazare
- Department Materials Science WW-4, LKO, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen 91058, Germany
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, Olomouc 779 00, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
| | - Angelo Taglietti
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 13, Pavia 27100, Italy
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
| | - Paolo Ghigna
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 13, Pavia 27100, Italy
| | - Patrik Schmuki
- Department Materials Science WW-4, LKO, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen 91058, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| |
Collapse
|
6
|
Wang C, Dragoe D, Colbeau-Justin C, Haghi-Ashtiani P, Ghazzal MN, Remita H. Highly Dispersed Ni-Pt Bimetallic Cocatalyst: The Synergetic Effect Yields Pt-Like Activity in Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42637-42647. [PMID: 37649420 DOI: 10.1021/acsami.3c08842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Achieving high photocatalytic activity with the lowest possible platinum (Pt) consumption is crucial for reducing the cost of Pt-based cocatalysts and enabling large-scale applications. Bimetallic Ni-Pt cocatalysts exhibit excellent photocatalytic performance and are considered one of the most promising photocatalysts capable of replacing pure Pt for hydrogen evolution reaction (HER). However, the synergistic photocatalytic mechanism between bimetallic Ni-Pt cocatalysts needs to be further investigated. Herein, we deposit highly dispersed Ni-Pt bimetallic cocatalysts on the surface of TiO2 by radiolytic reduction. We study the dynamics of photogenerated charge carriers of the Ni-Pt-comodified TiO2 and propose their underlying electron transfer mechanisms, in which Pt acts as an electron trap, whereas Ni serves as an electron supplier. The synergistic effect is Ni/Pt ratio-dependent and can confer bimetallic Ni-Pt to pure Pt-like photocatalytic activity in HER. The Ni2-Pt1-comodified TiO2 is optimized to be the most cost-effective photocatalyst with robust stability, which exhibits about 40-fold higher performance than bare TiO2.
Collapse
Affiliation(s)
- Cong Wang
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Diana Dragoe
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Université Paris-Saclay, Orsay 91405, France
| | | | - Paul Haghi-Ashtiani
- Laboratoire de Mécanique des Sols, Structures et Matériaux, CNRS UMR 8579, Centrale Supélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Mohamed Nawfal Ghazzal
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Hynd Remita
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, Orsay 91405, France
| |
Collapse
|
7
|
Li F, Wan S, Wang D, Schaaf P. Formation of nanoflowers: Au and Ni silicide cores surrounded by SiO x branches. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:133-140. [PMID: 36743299 PMCID: PMC9874233 DOI: 10.3762/bjnano.14.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
This work reports the formation of nanoflowers after annealing of Au/Ni bilayers deposited on SiO2/Si substrates. The cores of the nanoflowers consist of segregated Ni silicide and Au parts and are surrounded by SiO x branches. The SiO2 decomposition is activated at 1050 °C in a reducing atmosphere, and it can be enhanced more by Au compared to Ni. SiO gas from the decomposition of SiO2 and the active oxidation of Si is the source of Si for the growth of the SiO x branches of the nanoflowers. The concentration of SiO gas around the decomposition cavities is inhomogeneously distributed. Closer to the cavity border, the concentration of the Si sources is higher, and SiO x branches grow faster. Hence, nanoflowers present shorter and shorter branches as they are getting away from the border. However, such inhomogeneous SiO gas concentration is weakened in the sample with the highest Au concentration due to the strong ability of Au to enhance SiO2 decomposition, and nanoflowers with less difference in their branches can be observed across the whole sample.
Collapse
Affiliation(s)
- Feitao Li
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Straße 5, 98693 Ilmenau, Germany
| | - Siyao Wan
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Straße 5, 98693 Ilmenau, Germany
| | - Dong Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Straße 5, 98693 Ilmenau, Germany
| | - Peter Schaaf
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Straße 5, 98693 Ilmenau, Germany
| |
Collapse
|
8
|
Wierzbicka E, Schultz T, Syrek K, Sulka GD, Koch N, Pinna N. Ultra-stable self-standing Au nanowires/TiO 2 nanoporous membrane system for high-performance photoelectrochemical water splitting cells. MATERIALS HORIZONS 2022; 9:2797-2808. [PMID: 36004811 DOI: 10.1039/d2mh00718e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We introduce for the first time a core-shell structure composed of nanostructured self-standing titania nanotubes (TNT, light absorber) filled with Au nanowire (AuNW) array (electrons collector) applied to the photoelectrocatalytic water splitting. Its activity is four times higher than that of reference TNT-Ti obtained with the same anodizing conditions. The composite photoanode brings a distinct photocurrent generation (8 mA cm-2 at 1.65 V vs. RHE), and a high incident photon to current efficiency of 35% obtained under UV light illumination. Moreover, the full system concept of selected constitutional materials, based on Au noble metal and the very stable semiconductor TiO2, ensures a stable performance over a long-time range with no photocurrent loss during 100 on-off cycles of light illumination, after 12 h constant illumination and after one-month storage in air. We provide experimental evidence by photoelectron spectroscopy measurements, confirming that the electronic structure of TNT-AuNW is rectifying for electrons and ohmic for holes, while the electrochemical characterization confirms that the specific architecture of the photoanode supports electron separation due to the presence of a Schottky type contact and fast electron transport through the Au nanowires. Although the composite material shows an unchanged electrochemical band gap, typical for plain TiO2, we find this material to be an innovative platform for efficient photoelectrochemical water splitting under UV light illumination, with significant potential for further modifications, for example extension into the visible light regime.
Collapse
Affiliation(s)
- Ewa Wierzbicka
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Department of Functional Materials and Hydrogen Technology, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Street, 00908 Warsaw, Poland.
| | - Thorsten Schultz
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Karolina Syrek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Dariusz Sulka
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Norbert Koch
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
9
|
Feng Y, Wei L, Wang Z, Liu Y, Dai H, Wang C, Hsi HC, Duan E, Peng Y, Deng J. Boosting catalytic stability for VOCs removal by constructing PtCu alloy structure with superior oxygen activation behavior. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129612. [PMID: 35872456 DOI: 10.1016/j.jhazmat.2022.129612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The elimination of volatile organic compounds (VOCs) emitted from the process of industry production is of great significance to improve the atmospheric environment. Herein the catalytic oxidation of the toluene and iso-hexane mixture, as the typical components from furniture paint industry, and the enhancement in the catalytic stability for toluene oxidation were investigated in detail. The formation rate of active oxygen species was very important for the development of the catalyst with high catalytic stability. Compared with the Pt/M catalyst, the Pt-Cu/M catalyst owned stronger ability of VOCs adsorption and gaseous oxygen activation by introducing additional sites for activating O2. The Langmuir-Hinshelwood (adsorbed oxygen) and Mars-van Krevelen (lattice oxygen) mechanism existed in toluene oxidation over the present Pt/M and Pt-Cu/M catalysts, respectively. The change in the involved active oxygen species during toluene oxidation was resulted from the Pt-Cu alloy structure. In addition to the adsorption of O2, a part of active lattice oxygen species can also be replenished by the migration of bulk lattice oxygen over Pt-Cu/M. With a rise in the reaction temperature, weakly adsorbed iso-hexane could be timely reacted with the more active lattice oxygen species to keep the catalytic stability over the Pt/M and Pt-Cu/M catalysts. Generally, we not only prepared a promising material for the catalytic removal of VOCs from the furniture paint industry, but also provided a new strategy for the generation of active oxygen species, making the catalyst exhibit high catalytic oxidation stability.
Collapse
Affiliation(s)
- Yuan Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lu Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
10
|
Jiang X, Zhao D, Chen J, Li W, Li K, Chen C. The Synergistic Photocatalytic Effect of H3PW12O40 and Pt Nanoparticles Comodified UiO-66-NH2 on the Reduction of Aqueous Cr(VI) under Original pH. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422050056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Chang CJ, Chao PY, Chen JK, Pundi A, Yu YH, Chiang CL, Lin YG. Metal Complex/ZnS-Modified Ni Foam as Magnetically Stirrable Photocatalysts: Roles of Redox Mediators and Carrier Dynamics Monitored by Operando Synchrotron X-ray Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41870-41882. [PMID: 36001354 DOI: 10.1021/acsami.2c07857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetically stirrable photocatalysts binding the ZnS-decorated Ni foam with the metal complex cocatalyst as a redox mediator and light-absorbing composition were investigated. Loading metal complex can improve light absorption, surface hydrophilicity, interfacial charge migration, and H2 production activity. The variation of the metal valences of the composite photocatalysts in an operando environment (with sacrificial agent solution) with and without light irradiation was investigated by X-ray absorption near-edge structure (XANES) spectra and Fourier-transformed extended X-ray absorption fine structure (EXAFS) spectra to monitor the charge carrier dynamics of photocatalysis and explain how the macrocyclic Cu complex (CuC) acted as a redox mediator better than the Ni complex. The smaller valence difference of copper valence in ZS/CuC for dark and light states revealed that the Cu complex facilitates a reversible electron transfer between the ZnS photocatalyst and H+. Loading the Cu complex can improve the separation of photogenerated carriers by the redox couple of complexes, leading to a significantly improved photocatalytic H2 production activity of 8150 μmol h-1 g-1. The reactants can flow through these magnetically stirrable Ni foam-based photocatalysts by magnetic-field-driven stirring, which improves the contact between photocatalysts and the sacrificial agents. The operando synchrotron provides new insights for understanding the roles of redox mediators.
Collapse
Affiliation(s)
- Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Pei-Yao Chao
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Jem-Kun Chen
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 106, Taiwan
| | - Arul Pundi
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Yuan-Hsiang Yu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chao-Lung Chiang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
12
|
Fan F, Chen DH, Yang L, Qi J, Fan Y, Wang Y, Chen W. PtCuFe alloy nanochains: Synthesis and composition-performance relationship in methanol oxidation and hydrogen evolution reactions. J Colloid Interface Sci 2022; 628:153-161. [PMID: 35987154 DOI: 10.1016/j.jcis.2022.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
The controllable synthesis of 1-dimensional (1D) multi-metal Pt-based alloys, with enhanced electro-chemical properties remains a challenge, despite the wide application of Pt-based catalysts in fuel cells and in the hydrogen evolution reaction (HER). Herein, we fabricate PtCuFe alloy nanochains (NCs) that have a tunable composition by flexibly adjusting the molar ratios of the metal precursors. It was found that Cu2+ is key in the formation of 1D NCs, as confirmed by transmission electron microscopy characterizations. In addition, the alloyed Fe can further increase the content of the metallic state of Cu in the PtCuFe NCs. The as-prepared PtCuFe NCs exhibited higher catalytic activity and stability than those of the Pt nanoparticles (NPs), PtFe NPs, and PtCu NCs, for the methanol oxidation reaction (MOR) and HER. Additionally, the composition-performance relationship of PtCuxFey NCs toward the MOR and HER were investigated. The hybrid density functional theory calculation and analysis showed that the 1D PtCuFe NCs have a lower lowest unoccupied molecular orbital (LUMO) than those of the 2- and 3-dimensional PtCuFe, verifying that the 1D PtCuFe NCs exhibit the highest activity for the MOR. This work has established a new method for the controllable synthesis of multi-metal Pt-based NCs/alloy catalysts and their subsequent applications in other electro-catalytic reactions.
Collapse
Affiliation(s)
- Fangfang Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Du-Hong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Linjuan Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiuhui Qi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yixuan Wang
- Department of Chemistry and Forensic Science, Albany State University, Albany, GA 31705, USA.
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
13
|
Hussain A, Hou J, Tahir M, Ali S, Rehman ZU, Bilal M, Zhang T, Dou Q, Wang X. Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asif Hussain
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
- Department of Physics, University of Lahore, Lahore, Pakistan
| | - Jianhua Hou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
- Guangling College, Yangzhou University, 225009, Yangzhou, Jiangsu. PR, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, P. R. China
| | - Muhammad Tahir
- Physics Department, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - S.S Ali
- School of Physical Sciences University of the Punjab Lahore, 54590, Pakistan
| | - Zia Ur Rehman
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
| | - Muhammad Bilal
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
| | - Tingting Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Qian Dou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Xiaozhi Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, P. R. China
| |
Collapse
|
14
|
Li X, Li N, Gao Y, Ge L. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63863-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Zhu X, Xiong J, Wang Z, Chen R, Cheng G, Wu Y. Metallic Copper-Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. SMALL METHODS 2022; 6:e2101001. [PMID: 35174995 DOI: 10.1002/smtd.202101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor photocatalysis has long been regarded as a potential solution to tackle the energy and environmental challenges since the first discovery of water splitting by TiO2 almost 50 years ago. The past few years have seen a tremendous flurry of research interest in the modification of semiconductors because of their shortcomings in the aspects of solar harvesting, electron-hole pairs separation, and utilization of photogenerated carriers. Among the various strategies, the introduction of metallic copper into the photocatalysis system can not only enhance the absorption of sunlight and the separation efficiency of photogenerated electrons and holes, but also increase the adsorption ability of substrate and the number of active sites, so as to realize the high solar to chemical energy conversion efficiency. This review focuses on the rational design of copper-based composites and their applications in photoredox catalysis. First, the preparation methods of metallic copper-containing composites are discussed. Then, the applications of different types of copper-based composites in the photocatalytic removal of pollutants, splitting of water to hydrogen production, reduction of carbon dioxide, and conversion of organic matter are introduced. Finally, the opportunities and challenges in the design and synthesis of copper-based composites and their applications in the photocatalysis are prospected.
Collapse
Affiliation(s)
- Xueteng Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, P. R. China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
16
|
Yin XH, Xu YM, Lau ATY. Nanoparticles: Excellent Materials Yet Dangerous When They Become Airborne. TOXICS 2022; 10:50. [PMID: 35202237 PMCID: PMC8874650 DOI: 10.3390/toxics10020050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023]
Abstract
Since the rise and rapid development of nanoscale science and technology in the late 1980s, nanomaterials have been widely used in many areas including medicine, electronic products, crafts, textiles, and cosmetics, which have provided a lot of convenience to people's life. However, while nanomaterials have been fully utilized, their negative effects, also known as nano pollution, have become increasingly apparent. The adverse effects of nanomaterials on the environment and organisms are mainly based on the unique size and physicochemical properties of nanoparticles (NPs). NPs, as the basic unit of nanomaterials, generally refer to the ultrafine particles whose spatial scale are defined in the range of 1-100 nm. In this review, we mainly introduce the basic status of the types and applications of NPs, airborne NP pollution, and the relationship between airborne NP pollution and human diseases. There are many sources of airborne NP pollutants, including engineered nanoparticles (ENPs) and non-engineered nanoparticles (NENPs). The NENPs can be further divided into those generated from natural activities and those produced by human activities. A growing number of studies have found that exposure to airborne NP pollutants can cause a variety of illnesses, such as respiratory diseases, cardiovascular diseases, and neurological disorders. To deal with the ever increasing numbers and types of NPs being unleashed to the air, we believe that extensive research is needed to provide a comprehensive understanding of NP pollution hazards and their impact mechanisms. Only in this way can we find the best solution and truly protect the safety and quality of life of human beings.
Collapse
Affiliation(s)
- Xiao-Hui Yin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
17
|
Li H, Zhao H, Wang Z, Zhou F, Lan M. Facilely proposed PtCu-rGO bimetallic nanocomposites modified carbon fibers microelectrodes for detecting hydrogen peroxide released from living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
18
|
Wang J, Li Y, Zhao J, Xiong Z, Zhao Y, Zhang J. PtCu alloy cocatalysts for efficient photocatalytic CO 2 reduction into CH 4 with 100% selectivity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00048b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, PtCu alloys with varying Pt/Cu ratios were deposited onto TiO2 nanocrystals to selectively photoreduce CO2 into CH4.
Collapse
Affiliation(s)
- Junyi Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youzi Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangting Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuo Xiong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongchun Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junying Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Jiao ZF, Tian YM, Guo XN, Radius U, Braunschweig H, Marder TB, Guo XY. Visible-light-driven graphene supported Cu/Pd alloy nanoparticle-catalyzed borylation of alkyl bromides and chlorides in air. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|