1
|
Liu F, Hong J, Chen X, Ding X, Li S, Yu X, Lu J, Zhao X, Tang K, Xie C, Zhao K. Ultrafast humidity sensor and transient humidity detections in high dynamic environments. COMMUNICATIONS ENGINEERING 2025; 4:4. [PMID: 39827232 PMCID: PMC11742969 DOI: 10.1038/s44172-025-00342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Limited by the adsorption and diffusion rate of water molecules, traditional humidity sensors, such as those based on polymer electrolytes, porous ceramics, and metal oxides, typically have long response times, which hinder their application in monitoring transient humidity changes. Here we present an ultrafast humidity sensor with a millisecond-level response. The sensor is prepared by assembling monolayer graphene oxide quantum dots on silica microspheres using a simple electrostatic self-assembly technique. Benefiting from the joint action of the micro spheres and the ultrathin humidity-sensitive film, it displays the fastest response time (2.76 ms) and recovery time (12.4 ms) among electronic humidity sensors. With the ultrafast response of the sensor, we revealed the correlation between humidity changes in speech airflow and speech activities, demonstrated the noise immunity of humidity speech activity detection, confirmed the humidity shock caused by explosions, realized ultrahigh frequency respiratory monitoring, and verified the effect of humidity-triggering in the non-invasive ventilator. This ultrafast humidity sensor has broad application prospects in monitoring transient humidity changes.
Collapse
Affiliation(s)
- Fang Liu
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Jin Hong
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Xiangdong Chen
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China.
| | - Xing Ding
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Shaopeng Li
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Xiang Yu
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Jiaqi Lu
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Xuan Zhao
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Kun Tang
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Chenghua Xie
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| | - Kemei Zhao
- The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
2
|
Chen L, Hu K, Lu M, Chen Z, Chen X, Zhou T, Liu X, Yin W, Casiraghi C, Song X. Wearable Sensors for Breath Monitoring Based on Water-Based Hexagonal Boron Nitride Inks Made with Supramolecular Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312621. [PMID: 38168037 DOI: 10.1002/adma.202312621] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Wearable humidity sensors are attracting strong attention as they allow for real-time and continuous monitoring of important physiological information by enabling activity tracking as well as air quality assessment. Amongst 2Dimensional (2D) materials, graphene oxide (GO) is very attractive for humidity sensing due to its tuneable surface chemistry, high surface area, processability in water, and easy integration onto flexible substrates. However, strong hysteresis, low sensitivity, and cross-sensitivity issues limit the use of GO in practical applications, where continuous monitoring is preferred. Herein, a wearable and wireless impedance-based humidity sensor made with pyrene-functionalized hexagonal boron nitride (h-BN) nanosheets is demonstrated. The device shows enhanced sensitivity towards relative humidity (RH) (>1010 Ohms/%RH in the range from 5% to 100% RH), fast response (0.1 ms), no appreciable hysteresis, and no cross-sensitivity with temperature in the range of 25-60 °C. The h-BN-based sensor is able to monitor the whole breathing cycle process of exhaling and inhaling, hence enabling to record in real-time the subtlest changes of respiratory signals associated with different daily activities as well as various symptoms of flu, without requiring any direct contact with the individual.
Collapse
Affiliation(s)
- Liming Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Kui Hu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Mingyang Lu
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Ziqi Chen
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Xiwen Chen
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Tianqi Zhou
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Xuqing Liu
- Department of Materials Science, University of Manchester, Manchester, M13 9PL, UK
| | - Wuliang Yin
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Xiuju Song
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Montes-García V, Samorì P. Humidity Sensing with Supramolecular Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2208766. [PMID: 36810806 DOI: 10.1002/adma.202208766] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Indexed: 06/18/2023]
Abstract
Precise monitoring of the humidity level is important for the living comfort and for many applications in various industrial sectors. Humidity sensors have thus become one among the most extensively studied and used chemical sensors by targeting a maximal device performance through the optimization of the components and working mechanism. Among different moisture-sensitive systems, supramolecular nanostructures are ideal active materials for the next generation of highly efficient humidity sensors. Their noncovalent nature guarantees fast response, high reversibility, and fast recovery time in the sensing event. Herein, the most enlightening recent strategies on the use of supramolecular nanostructures for humidity sensing are showcased. The key performance indicators in humidity sensing, including operation range, sensitivity, selectivity, response, and recovery speed are discussed as milestones for true practical applications. Some of the most remarkable examples of supramolecular-based humidity sensors are presented, by describing the finest sensing materials, the operating principles, and sensing mechanisms, the latter being based on the structural or charge-transport changes triggered by the interaction of the supramolecular nanostructures with the ambient humidity. Finally, the future directions, challenges, and opportunities for the development of humidity sensors with performance beyond the state of the art are discussed.
Collapse
Affiliation(s)
- Verónica Montes-García
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|
4
|
Muñoz R, León-Boigues L, López-Elvira E, Munuera C, Vázquez L, Mompeán F, Martín-Gago JÁ, Palacio I, García-Hernández M. Acrylates Polymerization on Covalent Plasma-Assisted Functionalized Graphene: A Route to Synthesize Hybrid Functional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46171-46180. [PMID: 37738025 PMCID: PMC10561134 DOI: 10.1021/acsami.3c07200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The modification of the surface properties of graphene with polymers provides a method for expanding its scope into new applications as a hybrid material. Unfortunately, the chemical inertness of graphene hinders the covalent functionalization required to build them up. Developing new strategies to enhance the graphene chemical activity for efficient and stable functionalization, while preserving its electronic properties, is a major challenge. We here devise a covalent functionalization method that is clean, reproducible, scalable, and technologically relevant for the synthesis of a large-scale, substrate-supported graphene-polymer hybrid material. In a first step, hydrogen-assisted plasma activation of p-aminophenol (p-AP) linker molecules produces their stable and covalent attachment to large-area graphene. Second, an in situ radical polymerization reaction of 2-hydroxyethyl acrylate (HEA) is carried out on the functionalized surface, leading to a graphene-polymer hybrid functional material. The functionalization with a hydrophilic and soft polymer modifies the hydrophobicity of graphene and might enhance its biocompatibility. We have characterized these hybrid materials by atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS) and Raman spectroscopy and studied their electrical response, confirming that the graphene/p-AP/PHEA architecture is anchored covalently by the sp3 hybridization and controlled polymerization reaction on graphene, retaining its suitable electronic properties. Among all the possibilities, we assess the proof of concept of this graphene-based hybrid platform as a humidity sensor. An enhanced sensitivity is obtained in comparison with pristine graphene and related materials. This functional nanoarchitecture and the two-step strategy open up future potential applications in sensors, biomaterials, or biotechnology fields.
Collapse
Affiliation(s)
- Roberto Muñoz
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Laia León-Boigues
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
- Universidad
Complutense de Madrid, Madrid E-28040, Spain
| | - Elena López-Elvira
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Carmen Munuera
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Luis Vázquez
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Federico Mompeán
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - José Ángel Martín-Gago
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Irene Palacio
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| | - Mar García-Hernández
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Madrid E-28049, Spain
| |
Collapse
|
5
|
Janica I, Montes-García V, Urban F, Hashemi P, Nia AS, Feng X, Samorì P, Ciesielski A. Covalently Functionalized MXenes for Highly Sensitive Humidity Sensors. SMALL METHODS 2023; 7:e2201651. [PMID: 36808898 DOI: 10.1002/smtd.202201651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Transition metal carbides and nitrides (MXenes) are an emerging class of 2D materials, which are attracting ever-growing attention due to their remarkable physicochemical properties. The presence of various surface functional groups on MXenes' surface, e.g., F, O, OH, Cl, opens the possibility to tune their properties through chemical functionalization approaches. However, only a few methods have been explored for the covalent functionalization of MXenes and include diazonium salt grafting and silylation reactions. Here, an unprecedented two-step functionalization of Ti3 C2 Tx MXenes is reported, where (3-aminopropyl)triethoxysilane is covalently tethered to Ti3 C2 Tx and serves as an anchoring unit for subsequent attachment of various organic bromides via the formation of CN bonds. Thin films of Ti3 C2 Tx functionalized with linear chains possessing increased hydrophilicity are employed for the fabrication of chemiresistive humidity sensors. The devices exhibit a broad operation range (0-100% relative humidity), high sensitivity (0.777 or 3.035), a fast response/recovery time (0.24/0.40 s ΔH-1 , respectively), and high selectivity to water in the presence of saturated vapors of organic compounds. Importantly, our Ti3 C2 Tx -based sensors display the largest operating range and a sensitivity beyond the state of the art of MXenes-based humidity sensors. Such outstanding performance makes the sensors suitable for real-time monitoring applications.
Collapse
Affiliation(s)
- Iwona Janica
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Francesca Urban
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Payam Hashemi
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Ali Shaygan Nia
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Artur Ciesielski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
6
|
Korotcenkov G. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061110. [PMID: 36986004 PMCID: PMC10059663 DOI: 10.3390/nano13061110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
7
|
Wu K, Fei T, Zhang T. Humidity Sensors Based on Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4208. [PMID: 36500831 PMCID: PMC9740828 DOI: 10.3390/nano12234208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Humidity sensors are important in industrial fields and human activities. Metal-organic frameworks (MOFs) and their derivatives are a class of promising humidity-sensing materials with the characteristics of a large specific surface area, high porosity, modifiable frameworks, and high stability. The drawbacks of MOFs, such as poor film formation, low electrical conductivity, and limited hydrophilicity, have been gradually overcome with the development of material science. Currently, it is moving towards a critical development stage of MOF-based humidity sensors from usability to ease of use, of which great challenges remain unsolved. In order to better understand the related challenges and point out the direction for the future development of MOF-based humidity sensors, we reviewed the development of such sensors based on related published work, focusing on six primary types (impedance, capacitive, resistive, fluorescent, quartz crystal microbalance (QCM), and others) and analyzed the sensing mechanism, material design, and sensing performance involved, and presented our thoughts on the possible future research directions.
Collapse
Affiliation(s)
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Gogoi A, Neyts EC, Milošević MV, Peeters FM. Arresting Aqueous Swelling of Layered Graphene-Oxide Membranes with H 3O + and OH - Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34946-34954. [PMID: 35872649 DOI: 10.1021/acsami.2c05926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling.
Collapse
Affiliation(s)
- Abhijit Gogoi
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium
- Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Erik C Neyts
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Milorad V Milošević
- Department of Physics, University of Antwerp, Antwerp 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | | |
Collapse
|
9
|
Banerjee AN. Green syntheses of graphene and its applications in internet of things (IoT)-a status review. NANOTECHNOLOGY 2022; 33:322003. [PMID: 35395654 DOI: 10.1088/1361-6528/ac6599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Internet of Things (IoT) is a trending technological field that converts any physical object into a communicable smarter one by converging the physical world with the digital world. This innovative technology connects the device to the internet and provides a platform to collect real-time data, cloud storage, and analyze the collected data to trigger smart actions from a remote location via remote notifications, etc. Because of its wide-ranging applications, this technology can be integrated into almost all the industries. Another trending field with tremendous opportunities is Nanotechnology, which provides many benefits in several areas of life, and helps to improve many technological and industrial sectors. So, integration of IoT and Nanotechnology can bring about the very important field of Internet of Nanothings (IoNT), which can re-shape the communication industry. For that, data (collected from trillions of nanosensors, connected to billions of devices) would be the 'ultimate truth', which could be generated from highly efficient nanosensors, fabricated from various novel nanomaterials, one of which is graphene, the so-called 'wonder material' of the 21st century. Therefore, graphene-assisted IoT/IoNT platforms may revolutionize the communication technologies around the globe. In this article, a status review of the smart applications of graphene in the IoT sector is presented. Firstly, various green synthesis of graphene for sustainable development is elucidated, followed by its applications in various nanosensors, detectors, actuators, memory, and nano-communication devices. Also, the future market prospects are discussed to converge various emerging concepts like machine learning, fog/edge computing, artificial intelligence, big data, and blockchain, with the graphene-assisted IoT field to bring about the concept of 'all-round connectivity in every sphere possible'.
Collapse
|
10
|
Xia J, Wang X, Wang X, Majer-Baranyi K, Zhang X. Hysteresis Dynamic Modeling and Analysis of Flexible Nano Silver-Polyvinyl Alcohol Humidity Sensor Based on the Microscopic Process and Langmuir-Fick Theory. ACS OMEGA 2022; 7:14994-15004. [PMID: 35557680 PMCID: PMC9089386 DOI: 10.1021/acsomega.2c00743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
In recent years, advances in materials science and manufacturing technologies have facilitated the development of flexible sensors. However, there are still performance gaps between emerging flexible sensors and traditional silicon-based rigid sensors, especially lacking dynamic modeling and optimization analysis for addressing above challenges. This paper describes a hysteresis dynamic modeling method for flexible humidity sensors. Through inkjet printing and coating methods, the polyvinyl alcohol (PVA) sensitive layer and nano silver interdigital electrode are fabricated on flexible polyethylene naphthalate substrates. The performance characterization results show that the sensitivity and maximum hysteresis within the range of 12-98% relative humidity (RH) are -0.02167 MΩ/% RH and 2.7% RH, respectively. The sensor also has outstanding dynamic response ability and stability in a wide range of humidity variation. The hysteresis mechanism of flexible humidity sensors is theoretically analyzed from microscopic hysteresis processes, Langmuir monomolecular adsorption dynamic modeling, and Fick diffusion dynamic modeling. These hysteresis models provide a path for the hysteresis optimization of flexible PVA humidity sensors. Further exploration of the diffusion rate of water molecules and the proportion of PVA in ink represents promising hysteresis optimization directions of flexible humidity sensors based on PVA-sensitive material.
Collapse
Affiliation(s)
- Jie Xia
- College
of Engineering, China Agricultural University, Beijing 100083, China
| | - Xuepei Wang
- College
of Engineering, China Agricultural University, Beijing 100083, China
- School
of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Wang
- College
of Engineering, China Agricultural University, Beijing 100083, China
| | - Krisztina Majer-Baranyi
- Food
Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, Budapest H-1022, Hungary
| | - Xiaoshuan Zhang
- College
of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Urbanos FJ, Gullace S, Samorì P. Field-effect-transistor-based ion sensors: ultrasensitive mercury(II) detection via healing MoS 2 defects. NANOSCALE 2021; 13:19682-19689. [PMID: 34817489 DOI: 10.1039/d1nr05992k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The contamination of water with heavy metal ions represents a harsh environmental problem resulting from societal development. Among various hazardous compounds, mercury ions (Hg2+) surely belong to the most poisonous ones. Their accumulation in the human body results in health deterioration, affecting vital organs and eventually leading to chronic diseases, and, in the worst-case scenario, early death. High selectivity and sensitivity for the analyte of choice can be achieved in chemical sensing using suitable active materials capable of interacting at the supramolecular level with the chosen species. Among them, 2D transition metal dichalcogenides (TMDCs) have attracted great attention as sensory materials because of their unique physical and chemical properties, which are highly susceptible to environmental changes. In this work, we have fabricated MoS2-based field-effect transistors (FETs) and exploited them as platforms for Hg2+ sensing, relying on the affinity of heavy metal ions for both point defects in TMDCs and sulphur atoms in the MoS2 lattice. X-ray photoelectron spectroscopy characterization showed both a significant reduction of the defectiveness of MoS2 when exposed to Hg2+ with increasing concentration and a shift in the binding energy of 0.2 eV suggesting p-type doping of the 2D semiconductor. The efficient defect healing has been confirmed also by low-temperature photoluminescence measurements by monitoring the attenuation of defect-related bands after Hg2+ exposure. Transfer characteristics in MoS2 FETs provided further evidence that Hg2+ acts as a p-dopant of MoS2. Interestingly, we observed a strict correlation of doping with the concentration of Hg2+, following a semi-log trend. Hg2+ concentrations as low as 1 pM can be detected, being way below the limits imposed by health regulations. Electrical characterization also revealed that our sensor can be efficiently washed and used multiple times. Moreover, the developed devices displayed a markedly high selectivity for Hg2+ against other metal ions as ruled by soft/soft interaction among chemical systems with appropriate redox potentials, being a generally applicable approach to develop chemical sensing devices combining high sensitivity, selectivity and reversibility, to meet technological needs.
Collapse
Affiliation(s)
- Fernando J Urbanos
- University of Strasbourg CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg F-67000, France.
| | - Sara Gullace
- University of Strasbourg CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg F-67000, France.
| | - Paolo Samorì
- University of Strasbourg CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg F-67000, France.
| |
Collapse
|
12
|
Li Z, Wang J, Xu Y, Shen M, Duan C, Dai L, Ni Y. Green and sustainable cellulose-derived humidity sensors: A review. Carbohydr Polym 2021; 270:118385. [PMID: 34364627 DOI: 10.1016/j.carbpol.2021.118385] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
Cellulose, as the most abundant natural polysaccharide, is an excellent material for developing green humidity sensors, especially due to its humidity responsiveness as a result of its rich hydrophilic groups. In combination with other components including carbon materials and polymers, cellulose and its derivatives can be used to design high-performance humidity sensors that meet various application requirements. This review summarizes the recent advances in the field of various cellulose-derived humidity sensors, with particular attention paid to different sensing mechanisms including resistance, capacitance, colorimetry and gravity, and so on. Furthermore, the roles of cellulose and its derivatives are highlighted. This work may promote the development of cellulose-derived humidity sensors, as well as other cellulose-based intelligent materials.
Collapse
Affiliation(s)
- Zixiu Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jian Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
13
|
Furlan de Oliveira R, Montes-García V, Ciesielski A, Samorì P. Harnessing selectivity in chemical sensing via supramolecular interactions: from functionalization of nanomaterials to device applications. MATERIALS HORIZONS 2021; 8:2685-2708. [PMID: 34605845 DOI: 10.1039/d1mh01117k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical sensing is a strategic field of science and technology ultimately aiming at improving the quality of our lives and the sustainability of our Planet. Sensors bear a direct societal impact on well-being, which includes the quality and composition of the air we breathe, the water we drink, and the food we eat. Pristine low-dimensional materials are widely exploited as highly sensitive elements in chemical sensors, although they suffer from lack of intrinsic selectivity towards specific analytes. Here, we showcase the most recent strategies on the use of (supra)molecular interactions to harness the selectivity of suitably functionalized 0D, 1D, and 2D low-dimensional materials for chemical sensing. We discuss how the design and selection of receptors via machine learning and artificial intelligence hold a disruptive potential in chemical sensing, where selectivity is achieved by the design and high-throughput screening of large libraries of molecules exhibiting a set of affinity parameters that dictates the analyte specificity. We also discuss the importance of achieving selectivity along with other relevant characteristics in chemical sensing, such as high sensitivity, response speed, and reversibility, as milestones for true practical applications. Finally, for each distinct class of low-dimensional material, we present the most suitable functionalization strategies for their incorporation into efficient transducers for chemical sensing.
Collapse
Affiliation(s)
| | - Verónica Montes-García
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Artur Ciesielski
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Paolo Samorì
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| |
Collapse
|
14
|
Mao X, Cheng M, Chen L, Cheng J, Li H. Host–Guest Chemistry Triggered Differential HeLa Cell Behavior Based on Pillar[5]arene-Modified Graphene Oxide Surfaces. ACS APPLIED BIO MATERIALS 2021; 4:6954-6961. [DOI: 10.1021/acsabm.1c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaowei Mao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
15
|
Anichini C, Samorì P. Graphene-Based Hybrid Functional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100514. [PMID: 34174141 DOI: 10.1002/smll.202100514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Indexed: 06/13/2023]
Abstract
Graphene is a 2D material combining numerous outstanding physical properties, including high flexibility and strength, extremely high thermal conductivity and electron mobility, transparency, etc., which make it a unique testbed to explore fundamental physical phenomena. Such physical properties can be further tuned by combining graphene with other nanomaterials or (macro)molecules to form hybrid functional materials, which by design can display not only the properties of the individual components but also exhibit new properties and enhanced characteristics arising from the synergic interaction of the components. The implementation of the hybrid approach to graphene also allows boosting the performances in a multitude of technological applications. This review reports the hybrids formed by graphene combined with other low-dimensional nanomaterials of diverse dimensionality (0D, 1D, and 2D) and (macro)molecules, with emphasis on the synthetic methods. The most important applications of these hybrids in the fields of sensing, water purification, energy storage, biomedical, (photo)catalysis, and opto(electronics) are also reviewed, with a special focus on the superior performances of these hybrids compared to the individual, nonhybridized components.
Collapse
Affiliation(s)
- Cosimo Anichini
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|