1
|
Peng Z, Chen B, Yu S, Wu K, Zhang F, Gao P. Cu 2+ substitution regulating Na 3V 2(PO 4) 3 with solid SEI membrane for superior electrochemical performance. Dalton Trans 2025; 54:4743-4754. [PMID: 39969398 DOI: 10.1039/d4dt03559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Na3V2(PO4)3 (NVP) suffers from poor ionic and electronic conductivity. Herein, a dual-optimized design with Cu2+ doping and wrapping in tubular carbon nanotubes (CNTs) is proposed for the first time. This strategy not only modifies the internal electronic structure but also regulates the morphological features of NVP material. Notably, Cu2+ occupying V3+ sites introduces favorable p-type doping effects. Consequently, newly generated holes can act as charge carriers to improve electronic conductivity. Meanwhile, to conserve the charge balance of the whole system, a series of distinctive Na3+xV2-xCux(PO4)3 cathode materials are designed. The Na-rich scheme maintains charge integrity, as well as supplying more active Na+ to take part in the reversible de-intercalation process. Due to the larger ionic radius of Cu2+, Cu2+ doping plays a great role as a pillar to support the crystal skeleton and then expand the Na+ migration channels, thus significantly elevating the ionic transport rate. Furthermore, moderate CNTs are wrapped around the active grains, functioning together with coated carbon layers to construct a highly conductive framework, enhancing electronic transfer. Meanwhile, the tubular CNTs and porous morphology effectively increase the contact areas between active particles and electrolyte, providing more active sites. Furthermore, in situ EIS measurement demonstrates that a stable SEI membrane covers the cycled Na3.07V1.93Cu0.07(PO4)3@CNTs grains to maintain electrode stability and prevent the occurrence of side-effects. Comprehensively, the Na3.07V1.93Cu0.07(PO4)3@CNTs sample releases 124.2 mA h g-1 at 0.1 C. It releases 101.9 and 98.6 mA h g-1 at 10 and 50 C, suggesting superior rate capability.
Collapse
Affiliation(s)
- Zhenbo Peng
- Ningbo Key Laboratory of High Performance Petroleum Resin Preparation Engineering and technology, Ningbo Polytechnic, Ningbo, 315800, China.
| | - Bifen Chen
- Ningbo Key Laboratory of High Performance Petroleum Resin Preparation Engineering and technology, Ningbo Polytechnic, Ningbo, 315800, China.
| | - Shan Yu
- Ningbo Key Laboratory of High Performance Petroleum Resin Preparation Engineering and technology, Ningbo Polytechnic, Ningbo, 315800, China.
| | - Kaiyu Wu
- Ningbo Key Laboratory of High Performance Petroleum Resin Preparation Engineering and technology, Ningbo Polytechnic, Ningbo, 315800, China.
| | - Farao Zhang
- Ningbo MaterChem Technology Co., Ltd, Ningbo, 315800, China
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
2
|
Hu J, Zhao W, Wang Y, Jiang S, Yu B, Dou SX, Liu HK, Chen S, Zhang K, Zhou L, Chen M. The Role of Fluorine in Polyanionic Cathode Materials for Sodium-Ion Batteries. SMALL METHODS 2025:e2402099. [PMID: 39910872 DOI: 10.1002/smtd.202402099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/26/2025] [Indexed: 02/07/2025]
Abstract
With the growing global demand for renewable energy and the increasing scarcity of lithium resources, sodium-ion batteries have received extensive attention and research as a potential alternative. Among many cathode materials for sodium-ion batteries, polyanion materials are favored for their high operating voltage, stable cycling performance, and good safety. However, the low electronic conductivity and low energy density of polyanionic materials limit their potential for large-scale commercial applications. To overcome this challenge, various strategies have been explored to improve their electrochemical performance. Among them, fluorine doping has been proven to be an effective means. In this study, we have systematically explored the effects of trace fluorine doping and mass fluorine substitution on the structure, dynamics, and electrochemistry of polyanionic cathode materials for sodium-ion batteries and deeply analyzed their reaction mechanisms. The analysis results show that trace fluorine doping can effectively improve the electronic conductivity of the material, thus enhancing its electrochemical performance. A large amount of fluorine substitution can effectively improve the voltage plateau of the material, thus enhancing its energy density. However, the environmental and safety challenges associated with the introduction of fluorine should also be addressed. Overall, the introduction of fluorine in polyanionic cathode materials can further optimize the electronic structure and electrochemical performance, thus realizing the wide application of high-performance sodium-ion batteries and making them a competitive battery technology.
Collapse
Affiliation(s)
- Jinqiao Hu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenxi Zhao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuqiu Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shikang Jiang
- Herbert Gleiter Institute of Nanoscience School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Binkai Yu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shi-Xue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hua-Kun Liu
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuangqiang Chen
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Limin Zhou
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingzhe Chen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Wang S, Bai J, Wang P, Mao Y, Xiao K, Liu Y, Qiu S, Zhu X, Zhao B, Sun Y. Activating Reversible V 4+/V 5+ Redox Couple in NASICON-Type Phosphate Cathodes by High Entropy Substitution for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500566. [PMID: 39871740 DOI: 10.1002/smll.202500566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 01/29/2025]
Abstract
Vanadium-based Na superionic conductor (NASICON) type materials (NaxVM(PO4)3, M = transition metals) have attracted extensive attention when used as sodium-ion batteries (SIBs) cathodes due to their stable structures and large Na+ diffusion channels. However, the materials have poor electrical conductivity and mediocre energy density, which hinder their practical applications. Activating the V4+/V5+ redox couple (V4+/V5+≈4.1 V vs Na+/Na) is an effective way to elevate the energy density of SIBs, whereas the irreversible phase transition of V4+/V5+ and severe structural distortion will inevitably result in fast capacity fading and unsatisfactory rate capability. Herein, a high entropy regulation strategy is proposed to optimize the detailed crystal structure and improve the reversibility of crystalline phase transformation and electrical conductivity of the material. With the activated reversible V4+/V5+ redox couple, stable structure, and fast electrochemical kinetics, the high entropy material Na3.2V1.5Fe0.1Al0.1Cr0.1Mn0.1Cu0.1(PO4)3 (NVMP-HE) exhibits an outstanding electrochemical performance with highly reversible specific capacity of 120.1 mAh g-1 at 0.1 C and excellent cycling stability (92.4% retention after 1000 cycles at 20 C). Besides, the in situ X-ray diffraction (XRD) measurement reveals that a smooth three-phase transition reaction is involved in this high-entropy cathode and the existence of mesophase facilitates a fast phase transition.
Collapse
Affiliation(s)
- Siya Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jin Bai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Peiyao Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yunjie Mao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Ke Xiao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuanyuan Liu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shiyu Qiu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Bangchuan Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
4
|
Li J, Liang Z, Jin Y, Yu B, Wang T, Wang T, Zhou L, Xia H, Zhang K, Chen M. A High-Voltage Cathode Material with Ultralong Cycle Performance for Sodium-Ion Batteries. SMALL METHODS 2024; 8:e2301742. [PMID: 38461542 DOI: 10.1002/smtd.202301742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Vanadium-based polyanionic materials are promising electrode materials for sodium-ion batteries (SIBs) due to their outstanding advantages such as high voltage, acceptable specific capacity, excellent structural reversibility, good thermal stability, etc. Polyanionic compounds, moreover, can exhibit excellent multiplicity performance as well as good cycling stability after well-designed carbon covering and bulk-phase doping and thus have attracted the attention of multiple researchers in recent years. In this paper, after the modification of carbon capping and bulk-phase nitrogen doping, compared to pristine Na3V2(PO4)3, the well optimized Na3V(PO3)3N/C possesses improved electromagnetic induction strength and structural stability, therefore exhibits exceptional cycling capability of 96.11% after 500 cycles at 2 C (1 C = 80 mA g-1) with an elevated voltage platform of 4 V (vs Na+/Na). Meanwhile, the designed Na3V(PO3)3N/C possesses an exceptionally low volume change of ≈0.12% during cycling, demonstrating its quasi-zero strain property, ensuring an impressive capacity retention of 70.26% after 10,000 cycles at 2 C. This work provides a facial and cost-effective synthesis method to obtain stable vanadium-based phosphate materials and highlights the enhanced electrochemical properties through the strategy of carbon rapping and bulk-phase nitrogen doping.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zixin Liang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuqin Jin
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Binkai Yu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ting Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Wang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Limin Zhou
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hui Xia
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mingzhe Chen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Sapra SK, Chang JK, Dhaka RS. Improved Electrochemical Performance of NASICON Type Na 3V 2-xCo x(PO 4) 3/C ( x = 0-0.15) Cathode for High Rate and Stable Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43535-43547. [PMID: 39106362 DOI: 10.1021/acsami.4c07348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In recent years, the Na-ion SuperIonic CONductor (NASICON) based polyanionics are considered pertinent cathode materials in sodium-ion batteries due to their 3D open framework, which can accommodate a wide range of Na content and can offer high ionic conductivity with great structural stability. However, owing to the inferior electronic conductivity, these materials suffer from unappealing rate capability and cyclic stability for practical applications. Therefore, in this work we investigate the effect of Co substitution at the V site on the electrochemical performance and diffusion kinetics of Na3V2-xCox(PO4)3/C (x = 0-0.15) cathodes. All the samples are characterized through Rietveld refinement of the X-ray diffraction patterns, Raman spectroscopy, transmission electron microscopy, etc. We demonstrate improved electrochemical performance for the x = 0.05 electrode with a reversible capacity of 105 mAh g-1 at 0.1 C. Interestingly, the specific capacity of 80 mAh g-1 is achieved at 10 C with retention of about 92% after 500 cycles and 79.5% after 1500 cycles and having nearly 100% Coulombic efficiency. The extracted diffusion coefficient values through the galvanostatic intermittent titration technique and cyclic voltammetry are found to be in the range of 10-9 to 10-11 cm2 s-1. The post-mortem studies show excellent structural and morphological stability after testing for 500 cycles at 10 C. Our study reveals the role of optimal dopant of Co3+ ions at the V site in improving the cyclic stability at a high current rate.
Collapse
Affiliation(s)
- Simranjot K Sapra
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Jeng-Kuei Chang
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Taoyuan 32023, Taiwan
| | - Rajendra S Dhaka
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Qian C, Shi M, Fan C, Liu C, Huang Q, Chen Y. Facile Al 2O 3 coating suppress dissolution of Mn 2+ in Mn-substituted Na 3V 2(PO 4) 3 with outstanding electrochemical performance for full sodium ion batteries. J Colloid Interface Sci 2024; 664:573-587. [PMID: 38490033 DOI: 10.1016/j.jcis.2024.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Na3V2(PO4)3 (NVP) encounters significant obstacles, including limited intrinsic electronic and ionic conductivities, which hinder its potential for commercial feasibility. Currently, the substitution of V3+ with Mn2+ is proposed to introduce favorable carriers, enhancing the electronic conductivity of the NVP system while providing structural support and stabilizing the NASICON framework. This substitution also widens the Na+ migration pathways, accelerating ion transport. Furthermore, to bolster stability, Al2O3 coating is applied to suppress the dissolution of transition metal Mn in the electrolyte. Notably, the Al2O3 coating serves a triple role in reducing HClO4 concentration in the electrolyte, inhibiting Mn dissolution, and functioning as the ion-conducting phase. Likewise, carbon nanotubes (CNTs) effectively hinder the agglomeration of active particles during high-temperature sintering, thereby optimizing the conductivity of NVP system. In addition, the excellent structural stability is investigated by in situ XRD measurement, effectively improving the volume collapse during Na+ de-embedding. Moreover, the Na3V5.92/3Mn0.04(PO4)3/C@CNTs@1wt.%Al2O3 (NVMP@CNTs@1wt.%Al2O3) possesses unique porous structure, promoting rapid Na+ transport and increasing the interface area between the electrolyte and the cathode material. Comprehensively, the NVMP@CNTs@1wt.%Al2O3 sample demonstrates a remarkable reversible specific capacity of 122.6 mAh/g at 0.1 C. Moreover, it maintains a capacity of 115.9 mAh/g at 1 C with a capacity retention of 90.2 mAh/g after 1000 cycles. Even at 30 C, it achieves a capacity of 87.9 mAh/g, with a capacity retention rate of 84.87 % after 6000 cycles. Moreover, the NVMP@CNTs@1wt.%Al2O3//CHC full cell can deliver a high reversible capacity of 205.5 mAh/g at 0.1 C, further indicating the superior application potential in commercial utilization.
Collapse
Affiliation(s)
- Chenghao Qian
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China
| | - Mengna Shi
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China
| | - Chunfang Fan
- North University of China, Taiyuan 030051, Shanxi, People's Republic of China
| | - Changcheng Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
| | - Que Huang
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; School of Resources and Safety Engineering, Central South University, Changsha 410010, Hunan, People's Republic of China.
| | - Yanjun Chen
- Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
| |
Collapse
|
7
|
Zhu Q, Wu J, Li W, Hu X, Tian N, He L, Li Y. Boosting sodium-ion battery performance by anion doping in NASICON Na 4MnCr(PO 4) 3 cathode. J Colloid Interface Sci 2024; 663:191-202. [PMID: 38401440 DOI: 10.1016/j.jcis.2024.02.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Na superionic conductor (NASICON)-structured Na4MnCr(PO4)3 (NMCP) possessing unique three-electron transfer process renders admirable energy density for sodium ion batteries (SIBs). However, the current issues like its sluggish Na+ diffusion kinetics, deficient intrinsic conductivity, and unsatisfactory structural stability, hinder its practical application. Herein, a selective replacement of O elements in PO4 group by Cl anions in the NMCP system was developed to significantly enhance its electrochemical performance. The results affirm that the enhanced performance of Cl doped samples can be attributed to the enlargement of cell size, the creation of Na vacancies and the weakness of Na2O bond after Cl doping. The as-prepared Na3.85□0.15MnCr(PO3.95Cl0.05)3/C (NMCPC - 15/C) cathode delivers a high capacity (128.0 mAh/g at 50 mA g-1) and excellent rate performance (73.0 mAh/g at 1000 mA g-1) in contrast to NMCP/C that merely provides 105.2 mAh/g at 50 mA g-1 and reduces to 47.4 mAh/g at 1000 mA g-1. Meanwhile, NMCPC - 15/C shows a capacity retention of 60.7 % at 1000 mA g-1 after 500 cycles, while only 37.1 % for NMCP/C in the same test conditions. Moreover, the satisfactory performance and energy density of NMCPC - 15/C||hard carbon (HC) full cell confirm the potential practicality of NMCPC - 15. Therefore, chloride ions doping into NMCP has practical application prospects in the preparation of high-performance cathode materials and our work also offers new inspiration to apply anion doping strategies in promoting the performance of the other NASICON-structured cathodes for SIBs.
Collapse
Affiliation(s)
- Qing Zhu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Jinxin Wu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Wenhao Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Xiuli Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Ningchen Tian
- Nation Quality Supervision and Inspection Center of Graphite Products, Chenzhou 423000, PR China
| | - Liqing He
- Hefei General Machinery Research Institute Co., Ltd, Hefei 230031, PR China
| | - Yanwei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| |
Collapse
|
8
|
Jeong J, Kim J, Sun J, Min K. Machine-Learning-Driven High-Throughput Screening for High-Energy Density and Stable NASICON Cathodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693838 DOI: 10.1021/acsami.3c18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The Na super ionic conductor (NASICON), which has outstanding structural stability and a high operating voltage, is an appealing material for overcoming the limits of low specific energy and larger volume distortion of sodium-ion batteries. In this study, to discover ideal NASICON cathode materials, a screening platform based on density functional theory (DFT) calculations and machine learning (ML) is developed. A training database was generated utilizing the previous 124 545 electrode databases, and a test set of 3126 potential NASICON structures [NaxMyM'1-y(PO4)3] with 27 dopants at the metal site and 6 dopants at the polyanion central site was constructed. The developed ML surrogate model identifies 796 materials that satisfy the following criteria: formation energy of <0.0 eV/atom, energy above hull of ≤0.025 eV/atom, volume change of ≤4%, and theoretical capacity of ≥50 mAh/g. The thermodynamically stable configurations of doped NASICON structures were then selected using machine learning interatomic potential (MLIP), enabling rapid consideration of various dopant site configurations. DFT calculations are followed on 796 screened materials to obtain energy density, average voltage, and volume change. Finally, 50 candidates with an average voltage of ≥3.5 V are identified. The suggested platform accelerates the exploration for optimal NASICON materials by narrowing the focus on materials with desired properties, saving considerable resources.
Collapse
Affiliation(s)
- Jinyoung Jeong
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Juo Kim
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jiwon Sun
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Kyoungmin Min
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
9
|
Kang Y, Lin X, Tong S, Zhu W, Wang Y, Jia M, Zhang X. Synergetic impact of high-entropy microdoping modification in Na 3V 2(PO 4) 3. Chem Commun (Camb) 2024; 60:2512-2515. [PMID: 38334048 DOI: 10.1039/d4cc00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
High entropy polyanionic Na3V1.9(Ca,Mg,Cr,Ti,Mn)0.1(PO4)3 was synthesized, which activated a reversible redox reaction of V4+/V5+ and reached a remarkable capacity of 116 mA h g-1 at 1C and maintained 90% capacity retention after 1000 cycles at 10C. Structure evolution and sodium storage mechanisms were revealed by an in situ XRD method, which disclosed the high-entropy effect of material design. Together with the full battery tests, these findings promote the wide applications of high-entropy polyanionic cathodes in SIBs.
Collapse
Affiliation(s)
- Yahao Kang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xitao Lin
- Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, Chongqing 400715, P. R. China.
| | - Shuai Tong
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Wenlong Zhu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yang Wang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Min Jia
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoyu Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Kim Y, Oh G, Lee J, Baek J, Alfaza G, Lee S, Mathew V, Kansara S, Hwang JY, Kim J. NASICON-Type Na 3V 1.5Cr 0.4Fe 0.1(PO 4) 3: High-Voltage and High-Rate Cathode Materials for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5896-5904. [PMID: 38266753 DOI: 10.1021/acsami.3c17166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Cationic alteration related to a sodium super ion conductor (NASICON)-structured Na3V2(PO4)3 (NVP) is an effective strategy for formulating high-energy and stable cathodes for sodium-ion batteries (SIBs). In this study, we altered the structure of NVP with dual cations, namely, Cr and Fe, to develop Na3V1.5Cr0.4Fe0.1(PO4)3 cathodes for SIBs with high-rate capability (∼71 mAh g-1 at 100 C) and an extreme cycle life output (∼75 mAh g-1 with 95% capacity retention for 10,000 cycles). These excellent electrochemical properties can be ascribed to the synergistic effects of Cr and Fe in the NVP structure, as verified experimentally and theoretically. Therefore, the proposed cosubstitution method can enhance the performance of SIBs by improving their structural stability, electronic conductivity, and phase-change behavior.
Collapse
Affiliation(s)
- Yeongmin Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Gwangeon Oh
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jun Lee
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jaeryeol Baek
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ghalib Alfaza
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seunggyeong Lee
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Vinod Mathew
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shivam Kansara
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jang-Yeon Hwang
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Battery Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jaekook Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
11
|
Huang Q, Qian C, Liu C, Chen Y. Simultaneous modification of dual-substitution with CeO 2 coating boosting high performance sodium ion batteries. J Colloid Interface Sci 2024; 654:626-638. [PMID: 37864868 DOI: 10.1016/j.jcis.2023.10.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Na3V2(PO4)3 (NVP) is highly valued based on the stable construction among the polyanionic compounds. Nevertheless, the drawback of low intrinsic conductivity has been impeded its further application. In this paper, the internal channels of the crystal structure are extended by the introduction of larger radius Ce3+, which increases the transport rate of Na+. The introduction of Mo6+ replacing the V site leads to a beneficial n-type doping effect and facilitates the transportation of electrons. Besides, CeO2 cladding is introduced to further enhance the electronic conductivity of NVP system. Initially, CeO2 serves as an n-type semiconductor and functions as a conductive additive to significantly enhance the electronic conductivity of the electrode, thereby improving the electrochemical characteristics. Moreover, CeO2 functions as an oxygen buffer, aiding in the maintenance of active metal dispersion during operation and enabling efficient electron transfer between CeO2 and [VO6] octahedra in NVP, thus fostering outstanding electrical connectivity between the oxides. CeO2 cladding can be effectively integrated with the carbon layer to stabilize the NVP system. Comprehensively, the modified Na3V1.79Ce0.07Mo0.07(PO4)3/C@8wt.%CeO2 (CeMo0.07@8wt.%CeO2) composite exhibits excellent rate and cycling properties. It delivers a capacity of 113.4 mAh/g at 1C with a capacity retention rate of 80.3 % after 150 cycles. Even at 10C and 40C, it also submits high capacities of 84.7 mAh/g and 76 mAh/g, respectively. Furthermore, the CHC//CeMo0.07@8wt.%CeO2 asymmetric full cell possesses excellent sodium storage property, indicating its prospective application potentials.
Collapse
Affiliation(s)
- Que Huang
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; School of Resources and Safety Engineering, Central South University, Changsha 410010, Hunan, People's Republic of China
| | - Chenghao Qian
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
| | - Changcheng Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
| | - Yanjun Chen
- Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China; School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
| |
Collapse
|
12
|
Puspitasari DA, Patra J, Hernandha RFH, Chiang YS, Inoishi A, Chang BK, Lee TC, Chang JK. Enhanced Electrochemical Performance of Ca-Doped Na 3V 2(PO 4) 2F 3/C Cathode Materials for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:496-506. [PMID: 38114419 DOI: 10.1021/acsami.3c12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Na3V2(PO4)2F3 (NVPF) with a NASICON structure has garnered attention as a cathode material owing to its stable 3D structure, rapid ion diffusion channels, high operating voltage, and impressive cycling stability. Nevertheless, the low intrinsic electronic conductivity of the material leading to a poor rate capability presents a significant challenge for practical application. Herein, we develop a series of Ca-doped NVPF/C cathode materials with various Ca2+ doping levels using a simple sol-gel and carbon thermal reduction approach. X-ray diffraction analysis confirmed that the inclusion of Ca2+ does not alter the crystal structure of the parent material but instead expands the lattice spacing. Density functional theory calculations depict that substituting Ca2+ ions at the V3+ site reduces the band gap, leading to increased electronic conductivity. This substitution also enhanced the structural stability, preventing lattice distortion during the charge/discharge cycles. Furthermore, the presence of the Ca2+ ion introduces two localized states within the band gap, resulting in enhanced electrochemical performance compared to that of Mg-doped NVPF/C. The optimal NVPF-Ca-0.05/C cathode exhibits superior specific capacities of 124 and 86 mAh g-1 at 0.1 and 10 C, respectively. Additionally, the NVPF-Ca-0.05/C demonstrates satisfactory capacity retention of 70% after 1000 charge/discharge cycles at 10 C. These remarkable results can be attributed to the optimized particle size, excellent structural stability, and enhanced ionic and electronic conductivity induced by the Ca doping. Our findings provide valuable insight into the development of cathode material with desirable electrochemical properties.
Collapse
Affiliation(s)
- Diah Agustina Puspitasari
- Department of Chemical and Materials Engineering, National Central University, 300 Jhong-Da Rd., Taoyuan 320, Taiwan
- Department of Chemical Engineering, Brawijaya University, MT Haryono 167, Malang, East Java 65145, Indonesia
| | - Jagabandhu Patra
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | | | - Yu-Shen Chiang
- Department of Chemical and Materials Engineering, National Central University, 300 Jhong-Da Rd., Taoyuan 320, Taiwan
| | - Atsushi Inoishi
- International Institute for Materials and Engineering, Kyushu University, Fukuoka 8190395, Japan
| | - Bor Kae Chang
- Department of Chemical and Materials Engineering, National Central University, 300 Jhong-Da Rd., Taoyuan 320, Taiwan
| | - Tai-Chou Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Jhong-Da Rd., Taoyuan 320, Taiwan
| | - Jeng-Kuei Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Taoyuan 32023, Taiwan
| |
Collapse
|
13
|
Zhou Y, Xu G, Lin J, Zhang Y, Fang G, Zhou J, Cao X, Liang S. Reversible Multielectron Redox Chemistry in a NASICON-Type Cathode toward High-Energy-Density and Long-Life Sodium-Ion Full Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304428. [PMID: 37721370 DOI: 10.1002/adma.202304428] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Na-superionic-conductor (NASICON)-type cathodes (e.g., Na3 V2 (PO4 )3 ) have attracted extensive attention due to their open and robust framework, fast Na+ mobility, and superior thermal stability. To commercialize sodium-ion batteries (SIBs), higher energy density and lower cost requirements are urgently needed for NASICON-type cathodes. Herein, Na3.5 V1.5 Fe0.5 (PO4 )3 (NVFP) is designed by an Fe-substitution strategy, which not only reduces the exorbitant cost of vanadium, but also realizes high-voltage multielectron reactions. The NVFP cathode can deliver extraordinary capacity (148.2 mAh g-1 ), and decent cycling durability up to 84% after 10 000 cycles at 100 C. In situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy characterizations reveal reversible structural evolution and redox processes (Fe2+ /Fe3+ , V3+ /V4+ , and V4+ /V5+ ) during electrochemical reactions. The low ionic-migration energy barrier and ideal Na+ -diffusion kinetics are elucidated by density functional theory calculations. Combined with electron paramagnetic resonance spectroscopy, Fe with unpaired electrons in the 3d orbital is inseparable from the higher-valence redox activation. More competitively, coupling with a hard carbon (HC) anode, HC//NVFP full cells demonstrate high-rate capability and long-duration cycling lifespan (3000 stable cycles at 50 C), along with material-level energy density up to 304 Wh kg-1 . The present work can provide new perspectives to accelerate the commercialization of SIBs.
Collapse
Affiliation(s)
- Yifan Zhou
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan, 410083, P. R. China
| | - Guofu Xu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan, 410083, P. R. China
| | - Jiande Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yangpu Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan, 410083, P. R. China
| | - Guozhao Fang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan, 410083, P. R. China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan, 410083, P. R. China
| | - Xinxin Cao
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan, 410083, P. R. China
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
14
|
Zhou T, Chen Y. Heterojunction of Y 3+-substituted Na 3V 2(PO 4) 3-NaYO 2 accelerating kinetics with superior performance for full sodium-ion batteries. J Colloid Interface Sci 2023; 654:1163-1176. [PMID: 39491906 DOI: 10.1016/j.jcis.2023.10.124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The inherent poor ionic and electronic conductivity and relatively low capacity seriously limit the development of Na3V2(PO4)3 (NVP). Currently, Y3+ substitution is proposed for the first time and corresponding Y-doped NVP samples are successfully synthesized by traditional solid phase method. By replacing V3+ (0.64 Å) of Y3+ (0.9 Å) with large ionic radius, the transport channel of Na+ is expanded, accelerating the migration rate of Na+. Meanwhile, the strong Y-O chemical bond reinforces the crystal structure of NVP and improves its stability. It is worth noting that Y3+ reacts with slightly excess Na+ during the sintering process to form a new conductive phase NaYO2 coated on the surface of NVP particles. NaYO2 possesses excellent semiconductor properties and can form a double conductive construction together with the amorphous carbon layer to improve the kinetics of NVP system. Moreover, the unique heterojunction could be generated between the boundaries of Na3V2(PO4)3-NaYO2, further elevating the ionic conductivity. According to the investigations of ex-situ XRD and in-situ EIS, NaYO2 can provide active Na+, participating in the electrochemical process to supply extra reversible capacity. Comprehensively, the optimized NVP-Y0.07/C releases a high capacity of 125.2 mAh/g at 0.1 C, far exceeding the theoretical value of NVP (117.6 mAh/g). Even at 60 C, a high specific capacity of 94.2 mAh g-1 can be achieved. When cycled at 250 C, it maintains 85.5 % after 2000 cycles. Besides, the assembled NVP-Y0.07/C//hard carbon full cell can deliver a reversible value of 118.2 mAh/g, suggesting the superior practical application potentials.
Collapse
Affiliation(s)
- Tao Zhou
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China
| | - Yanjun Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China.
| |
Collapse
|
15
|
Nitric acid free cyclohexane to adipic acid production using nickel and vanadium incorporated AlPO-5 molecular sieve. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Hao ZL, Du M, Guo JZ, Gu ZY, Zhao XX, Wang XT, Lü HY, Wu XL. Nanodesigns for Na 3V 2(PO 4) 3-based cathode in sodium-ion batteries: a topical review. NANOTECHNOLOGY 2023; 34:202003. [PMID: 36745917 DOI: 10.1088/1361-6528/acb944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the rapid development of sodium-ion batteries (SIBs), it is urgent to exploit the cathode materials with good rate capability, attractive high energy density and considerable long cycle performance. Na3V2(PO4)3(NVP), as a NASICON-type electrode material, is one of the cathode materials with great potential for application because of its good thermal stability and stable. However, NVP has the inherent problem of low electronic conductivity, and various strategies are proposed to improve it, moreover, nanotechnology or nanostructure are involved in these strategies, the construction of nanostructured active particles and nanocomposites with conductive carbon networks have been shown to be effective in improving the electrical conductivity of NVP. Herein, we review the research progress of NVP performance improvement strategies from the perspective of nanostructures and classifies the prepared nanomaterials according to their different nano-dimension. In addition, NVP nanocomposites are reviewed in terms of both preparation methods and promotion effects, and examples of NVP nanocomposites at different nano-dimension are given. Finally, some personal views are presented to provide reasonable guidance for the research and design of high-performance polyanionic cathode materials of SIBs.
Collapse
Affiliation(s)
- Ze-Lin Hao
- Department of Chemistry, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
| | - Miao Du
- Department of Chemistry, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
| | - Xin-Xin Zhao
- Department of Chemistry, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
| | - Xiao-Tong Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
| | - Hong-Yan Lü
- Department of Chemistry, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
| | - Xing-Long Wu
- Department of Chemistry, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun 130022, Jilin, People's Republic of China
| |
Collapse
|
17
|
Li P, Gao M, Wang D, Li Z, Liu Y, Liu X, Li H, Sun Y, Liu Y, Niu X, Zhong B, Wu ZG, Guo X. Optimizing Vanadium Redox Reaction in Na 3V 2(PO 4) 3 Cathodes for Sodium-Ion Batteries by the Synergistic Effect of Additional Electrons from Heteroatoms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9475-9485. [PMID: 36758114 DOI: 10.1021/acsami.2c22038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Na3V2(PO4)3 (NVP) is one of the most potential cathode materials for sodium-ion batteries (SIBs), but its actual electrochemical performance is limited by the defects of large electron and ion transfer resistance. Multicomponent design is considered an effective method to optimize the conductivity of NVP electrodes. Therefore, Cr and Si are added in NVP to form a multielement component of Na3V1.9Cr0.1(PO4)2.9(SiO4)0.1 (NVP-CS). It is confirmed that 3d electrons of Cr are beneficial for improving the conductivity and increasing the average potential by activating V4+/V5+. Theoretical calculations show that the introduction of Si changes the electronic structure of V and O, thus promoting the electrochemical reaction of V3+/V4+ to exert higher capacity. Due to the coordination of the two elements, a lower migration barrier is obtained in NVP-CS. Specifically, NVP-CS retains the advantages of single-doped electrodes very well (capacity retention of 90% after 300 cycles at 1 C and a high capacity of 94.1 mA h g-1 at 5 C, compared to NVP with only 82.6% capacity retention at 1 C and 59.4 mA h g-1 at 5 C). The excellent electrochemical performance results show that NVP can be successfully optimized by the introduction of Cr and Si. This work can provide some inspiration for multicomponent material research of cathode materials.
Collapse
Affiliation(s)
- Ping Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuangzhi Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yalan Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Sun
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, XinXiang 453007, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Benhe Zhong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen-Guo Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China
| |
Collapse
|
18
|
Liao Y, Geng F, Jiang Y, Shen M, Hu B. Vanadium dissolution at 30 °C and its suppression at a low temperature of -20 °C for a Na 3V 1.5Cr 0.5(PO 4) 3 cathode. Chem Commun (Camb) 2022; 58:8488-8491. [PMID: 35801620 DOI: 10.1039/d2cc02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Na3V1.5Cr0.5(PO4)3 cycled at 30 °C shows fast capacity decay, due to the migration of V ions into the electrolyte and the loss of V3+/V4+ redox. A low temperature of -20 °C attenuates V-ion dissolution, retains V3+/V4+ redox and improves the electrochemical performance, favorable for use in cold climates and high-altitude drones.
Collapse
Affiliation(s)
- Yuxin Liao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.
| | - Yu Jiang
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.
| | - Ming Shen
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.
| |
Collapse
|
19
|
Unveiling Zn substitution and carbon nanotubes enwrapping in Na3V2(PO4)3 with high performance for sodium ion batteries: Experimental and theoretical study. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Li X, Shen X, Zhao J, Yang Y, Zhang Q, Ding F, Han M, Xu C, Yang C, Liu H, Hu YS. O3-NaFe (1/3-x)Ni 1/3Mn 1/3Al xO 2 Cathodes with Improved Air Stability for Na-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33015-33023. [PMID: 34240842 DOI: 10.1021/acsami.1c07554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Na-ion batteries (NIBs) have been considered as potential candidates for large-scale energy storage, where O3-type Na-based layered oxide cathodes have attracted great attention due to their high capacity and low cost. However, O3-NaxTMO2 materials still suffer from insufficient air stability, which could lead to deteriorative electrochemical properties and thus hinder their practical application. In this work, a series of Al-doped O3-NaFe(1/3-x)Ni1/3Mn1/3AlxO2 cathodes prepared by a co-precipitation method were investigated to enhance their electrochemical performance and air stability through stabilizing their structural and interface chemical properties. The Al-doped O3-NaFe(1/3-0.01)Ni1/3Mn1/3Al0.01O2 (NFNMA0.01) cathode delivers a comparable capacity of 138 mAh g-1 and keeps a capacity retention of 85.88% after 50 cycles at 0.2 C, while the undoped O3-NaFe1/3Ni1/3Mn1/3O2 (NFNM) can only keep a capacity retention of 71.02%, although with an initial capacity of 141 mAh g-1 at 0.2 C. For the air stability, the capacity decay rates are 58.87 and 5.07% for the undoped NFNM and Al-doped NFNMA0.01 after the air exposure for 30 days, respectively. The greatly decaying electrochemical performance could be due to the formation of carbonates during air exposure, which can be efficiently suppressed by Al doping. The doped Al3+ has been confirmed to be inserted into the NFNM crystal lattice, inducing the reduced values of lattice parameters a and c due to the smaller ionic radius of Al3+ (53.5 pm) vs Fe3+ (55.0 pm). This study demonstrates that Al doping plays an important role in the air stability and cycling stability for layered cathode materials, which offers an efficient strategy to optimize the material design for their practical application in NIBs.
Collapse
Affiliation(s)
- Xiaowei Li
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Shen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Zhao
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiangqiang Zhang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feixiang Ding
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Han
- Beijing Institute of Technology, Chongqing Innovation Center, Chongqing, 401120, China
| | - Chunliu Xu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huizhou Liu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong-Sheng Hu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Wang Q, Gao H, Li J, Liu GB, Jin H. Importance of Crystallographic Sites on Sodium-Ion Extraction from NASICON-Structured Cathodes for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14312-14320. [PMID: 33749228 DOI: 10.1021/acsami.1c01663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The V4+/V3+ (3.4 V) redox couple has been well-documented in cathode material Na3V2(PO4)3 for sodium-ion batteries. Recently, partial cation substitution at the vanadium site of Na3V2(PO4)3 has been actively explored to access the V5+/V4+ redox couple to achieve high energy density. However, the V5+/V4+ redox couple in partially substituted Na3V2(PO4)3 has a voltage far below its theoretical voltage in Na3V2(PO4)3, and the access of the V5+/V4+ redox reaction is very limited. In this work, we compare the extraction/insertion behavior of sodium ions from/into two isostructural compounds of Na3VGa(PO4)3 and Na3VAl(PO4)3, found that, by DFT calculations, the lower potential of the V5+/V4+ redox couple in Na3VM(PO4)3 (M = Ga or Al) than that in Na3V2(PO4)3 is because of the extraction/insertion of sodium ions through the V5+/V4+ redox reaction at different crystallographic sites, that is, sodium ions extracting from the Na(2) site in Na3VM(PO4)3 while from the Na(1) site in Na3V2(PO4)3, and further evidenced that the full access of the V5+/V4+ redox reaction is restrained by the excessive diffusion activation energy in Na3VM(PO4)3.
Collapse
Affiliation(s)
- Qianchen Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hongcai Gao
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, P. R. China
| | - Jingbo Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Gui-Bin Liu
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Haibo Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|