1
|
Sathish S, Dharmaraj K, Krishnaswamy S, Shanmugan S. Development of Underwater Oleophobic and Underoil Hydrophobic Strontium(II)-Cyclotriphosphazene Hexacarboxylate Framework with Prewetting-Induced Switchable Wettability and Self-Cleanability for Continuous Oil-Water Mixture and Emulsion Separations. Inorg Chem 2025. [PMID: 40415267 DOI: 10.1021/acs.inorgchem.5c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Oil spill management presents significant challenges, particularly when addressing spills that occur beneath the water's surface. In this context, Sr-HCPCP (SRMIST-2) is an innovative MOF with underwater oleophobic and underoil hydrophobic properties, incorporating enhanced coordination, a strong affinity for water and hydrophilic strontium, and a nontoxic, eco-friendly, biocompatible, and hydrophobic cyclotriphosphazene. It is designed with switchable wetting properties and exceptional chemical and thermal stability. SRMIST-2 is synthesized via a hydrothermal reaction between strontium nitrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. Its structure consists of edge-sharing {Sr3(COO)6(H2O)3} polyhedra that form 1-D chains, which pair to create 2-D networks that further interact with HCPCP ligands to construct a three-dimensional framework. When coated onto cotton fiber using polydopamine, the resulting CF-PDA-SRMIST-2 demonstrates excellent oil-water separation. Depending on whether it is prewetted with water or oil, it achieves separation efficiencies of 88-99%, with high flux rates (3409 Lm2-h-1 for water and 2840 Lm2-h-1 for oil) and remains effective over 15 cycles. It effectively separates oil-in-water and water-in-oil emulsions with 98% and 95% efficiency, respectively. CF-PDA-SRMIST-2 remains stable under acidic, alkaline, saline, and extreme temperature conditions. Its self-cleaning, amphiphobic properties ensure durability and reusability. With its low-cost, scalability, and eco-friendly nature, CF-PDA-SRMIST-2 is a promising material for sustainable oil spill remediation and environmental protection.
Collapse
Affiliation(s)
- Sankar Sathish
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kanakarasu Dharmaraj
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shobhana Krishnaswamy
- Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
2
|
Wei Z, Ru Y, Jiang H, Zhang X, Qi G, Liu W, Guo Z, Zhang L, Wang G, Hu C, Jiang C, Wang X, Li B, Han P, Qiao J. Amphiphilic Superspreading Polymer Membranes Prepared by Capillary Force-Driven Self-Assembly. Macromol Rapid Commun 2024; 45:e2400325. [PMID: 38900581 DOI: 10.1002/marc.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Indexed: 06/22/2024]
Abstract
To overcome the two main obstacles of large-scale application of superspreading material, self assembly is used to prepare superspreading polymer membrane (SPPM) in this work. An amphiphilic SPPM is prepared by capillary force-driven self assembly using PP melt-blown nonwovens and polyvinyl alcohol (PVA). The prepared SPPM has low preparation cost and stable performance since self assembly needs low energy consumption, and the production is thermodynamically stable. By using cryo-electron microscopy, transmission electron microscopy, X-ray photoelectron spectrum and scanning electron microscope with energy dispersive X-ray spectroscopy. It is proved that PVA is successfully assembled on the fiber surface of PP melt-blown nonwovens. The prepared SPPM has excellent spreading performance, the "spreading times" of both water and oil are less than 0.5 s. They showed much superior performance compared to traditional materials when applied in oil-water separation, seawater desalination, and ion separation. This work will definitely promote the development of self assembly, superspreading materials, and related sciences.
Collapse
Affiliation(s)
- Zhong Wei
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Yue Ru
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Haibin Jiang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xiaohong Zhang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Guicun Qi
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Wenlu Liu
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Zhaoyan Guo
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Liangdong Zhang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Guoyu Wang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Chenxi Hu
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Chao Jiang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xiang Wang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Binghai Li
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Peng Han
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Jinliang Qiao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| |
Collapse
|
3
|
Shu H, Wang C, Yang L, Sun D, Song C, Zhang X, Chen D, Ma Y, Yang W. Preparation of multifunctional PET membrane and its application in high-efficiency filtration and separation in complex environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134669. [PMID: 38805815 DOI: 10.1016/j.jhazmat.2024.134669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Nowadays, effluent treatment is a severe challenge mainly because of its complex composition, which includes oil, heavy metal ions, and dyes. Developing new intelligent membranes is one of the strategies to tackle these significant challenges in wastewater treatment. In this study, we fabricated asymmetric polyethylene glycol terephthalate (PET) membranes by grafting cross-linked poly (itaconic anhydride) (CL-PITA) nanoparticles onto the irradiated face. These nanoparticles were then functionalized with polyethyleneimine (PEI) and protonated with HCl to introduce numerous active electropositive amine groups. The fundamental purpose was to increase surface roughness, introduce numerous hydrophilic groups, and modify it to create a multi-functional PET membrane to separate complex environments. The promising results demonstrated that the protonated PET-g-ITA/DVB(10)-cat membrane exhibited excellent separation efficiencies (SE) for water/light oil, water/heavy oil and oil-in-water (O/W) emulsion. Compared to PET-g-ITA/DVB(0)-cat, it showed superior performance in SE for O/W emulsion and flux decay for water/light oil after 10 cycles. More interestingly, owing to numerous positively charged active amino groups and negativley charged carboxylate groups, the intelligent membrane exhibited a high removal rate of ca. 90 % for anionic dye (congo red) and heavy metals (Cu2+ and Co2+), showing great potential in complex water treatment environments.
Collapse
Affiliation(s)
- Hongyi Shu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changtong Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Tang C, Zhu Y, Bai H, Li G, Liu J, Wu W, Yang Y, Xuan S, Yin H, Chen Z, Lai L, Song Y, Cao M, Qiu B. Spontaneous Separation of Immiscible Organic Droplets on Asymmetric Wedge Channels with Hierarchical Microchannels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49762-49773. [PMID: 37843979 DOI: 10.1021/acsami.3c10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Spontaneous separation of immiscible organic droplets has substantial research implications for environmental protection and resource regeneration. Compared to the widely explored separation of oil-water mixtures, there are fewer reports on separating mixed organic droplets on open surfaces due to the low surface tension differences. Efficient separation of mixed organic liquids by exploiting the rapid spontaneous transport of droplets on open surfaces remains a challenge. Here, through the fusion of inspiration from the fast droplet transport capability of Sarracenia trichome and the asymmetric wedge channel structure of shorebird beaks, this work proposes a spine with hierarchical microchannels and wedge channels (SHMW). Due to the synergistic effect of capillary force and asymmetric Laplace force, the SHMW can rapidly separate mixed organic droplets into two pure phases without requiring additional energy. In particular, the self-spreading of the oil solution on the open channel surface is utilized to amplify the surface energy difference between two droplets, and SHMW achieves the pickup of oil droplets floating on the surface of the organic solution. The maximum separation efficiency on 3-SHMW can reach 99.63%, and it can also realize the antigravity separation of mixed organic droplets with a surface tension difference as low as 0.87 mN·m-1. Furthermore, SHMW performs controllable separation, oil droplet pickup, and continuous separation and collection of mixed organic droplets. It is expected that this cooperative structure composed of hierarchical microchannels and wedge channels will be realized in resource recovery or chemical reactions in industrial production processes.
Collapse
Affiliation(s)
- Chengning Tang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuying Zhu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Guoqiang Li
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jiasong Liu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Weiming Wu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yi Yang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Sensen Xuan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huan Yin
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Zuqiao Chen
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Lin Lai
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuegan Song
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| |
Collapse
|
5
|
Jiang X, Liu B, Zeng Q, Yang F, Guo Z. Mussel-Inspired Robust Peony-like Cu 3(PO 4) 2 Composite Switchable Superhydrophobic Surfaces for Bidirectional Efficient Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13700-13710. [PMID: 36862602 DOI: 10.1021/acsami.2c21151] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To alleviate the economic and environmental damage caused by industrial discharges of oily wastewater, materials applied for efficient oil/water separation are receiving significant attention from researchers and engineers. Among others, switchable wettable materials for bidirectional oil/water separation show great potential for practical applications. Inspired by mussels, we utilized a simple immersion method to construct a polydopamine (PDA) coating on a peony-like copper phosphate surface. Then, TiO2 was deposited on the PDA coating surface to build a micro-nano hierarchical structure, which was modified with octadecanethiol (ODT) to obtain a switchable wettable peony-like superhydrophobic surface. The water contact angle of the obtained superhydrophobic surface reached 153.5°, and the separation efficiency was as high as 99.84% with a flux greater than 15,100 L/(m2·h) after 10 separation cycles for a variety of heavy oil/water mixtures. Notably, the modified membranes have a unique photoresponsiveness, transforming to superhydrophilic upon ultraviolet irradiation, achieving separation efficiencies of up to 99.83% and separation fluxes greater than 32,200 L/(m2·h) after 10 separation cycles for a variety of light oil/water mixtures. More importantly, this switch behavior is reversible, and the high hydrophobicity can be restored after heating to achieve efficient separation of heavy oil/water mixtures. In addition, the prepared membranes can maintain high hydrophobicity under acid-base conditions and after 30 sandpaper abrasion cycles, and damaged membranes can be restored to superhydrophobicity after a brief modification in the ODT solution. This simple-to-prepare, easy-to-repair, robust membrane with switchable wettability shows great potential in the field of oil/water separation.
Collapse
Affiliation(s)
- Xian Jiang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Bing Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Qinghong Zeng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
6
|
Wu J, Ma X, Gnanasekar P, Wang F, Zhu J, Yan N, Chen J. Superhydrophobic lignin-based multifunctional polyurethane foam with SiO 2 nanoparticles for efficient oil adsorption and separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160276. [PMID: 36403829 DOI: 10.1016/j.scitotenv.2022.160276] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Superhydrophobic polyurethane foam is one of the most promising materials for oil-water separation. However, there are only limited studies prepared matrix superhydrophobic foams as adsorbents. In this paper, SiO2 modified by 1H, 1H, 2H, 2H-perfluorododecyl trichlorosilane (F-SiO2) was added into the lignin-based foam matrix by a one-step foaming technique. The average diameter of F-SiO2 was about 480 nm with an water contact angle (WCA) of 160.3°. The lignin-based polyurethane foam with F-SiO2 had a superhydrophobic water contact angle of 151.3°. There is no obvious change in contact angle after 100 cycles of compression or after cutting and abrasion. Scanning electron microscopy (SEM) analysis showed that F-SiO2 was distributed both on the surface and inside of the foam. The efficiency for oil-water separation reached 99 %. Under the light intensity of 1 kW/m2, the surface temperature of the lignin-based foam rose to 77.6 °C. In addition, the foam exhibited self-cleaning properties and degraded within 2 h in an alcoholic alkali solution. Thus, in this study, we developed a novel matrix superhydrophobic lignin-based polyurethane foam with an excellent promise to be used as oil water separation adsorbents in industrial wastewater treatment and oil spill clean-up processes.
Collapse
Affiliation(s)
- Jialong Wu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Fan Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jin Zhu
- Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College street, ON M5S 3E5, Canada.
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
7
|
Highly hydrophobic oil—water separation membrane: reutilization of waste reverse osmosis membrane. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Yang J, He T, Li X, Wang R, Wang S, Zhao Y, Wang H. Rapid dipping preparation of superhydrophobic TiO2 cotton fabric for multifunctional highly efficient oil-water separation and photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Chen C, Li Z, Hu Y, Huang Q, Li X, Qing Y, Wu Y. Rosin acid and SiO 2 modified cotton fabric to prepare fluorine-free durable superhydrophobic coating for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129797. [PMID: 36027752 DOI: 10.1016/j.jhazmat.2022.129797] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Currently, fluorides and long-chain aliphatic compounds are the most frequent low surface energy chemicals utilized in the preparation of superhydrophobic coatings, but associated environmental risks and instability restrict their potential application in oil-water separation. This research described a superhydrophobic coating based on rosin acid and SiO2 modified cotton fabric to overcome this challenge. By means of spray impregnation and UV-assisted click reaction, sulfhydryl modified rosin acid (RA), Octavinyl-POSS, and SiO2 were grafted onto the surface of cotton fabric to obtain RA-SiO2 superhydrophobic coating with rough surfaces such as lotus leaf and low surface energy. The RA-SiO2 superhydrophobic coating had favorable self-cleaning ability, and also adsorbed various light and heavy oils to achieve efficient separation of oil-water mixtures. The separation efficiency was 96.3% and the permeate flux was 6110.84 (L⋅m-2⋅h-1) after 10 repetitions. The RA-SiO2 superhydrophobic coating was found to be effective in separating oil-in-water and oil-in-water emulsions, and the separation mechanism was elaborated. In addition, it could effectively separate emulsions even after mechanical abrasion and chemical immersion, and had excellent stability. The fluorine-free and environmentally friendly low-cost superhydrophobic coating based on rosin acid is expected to play a significant potential in oil-water separation applications due to its excellent separation performance.
Collapse
Affiliation(s)
- Chaoqi Chen
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Zhaoshuang Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China.
| | - Yinchun Hu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| |
Collapse
|
10
|
Wang J, Wang H. Tolerant chitosan/carboxymethyl cellulose@calcium composite films on nylon fabric for high-flux water/oil separation. Carbohydr Polym 2022; 294:119832. [PMID: 35868777 DOI: 10.1016/j.carbpol.2022.119832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 11/15/2022]
Abstract
Nacre as a natural organic-inorganic composite has outstanding mechanical toughness and oil repellency. Enlightened by nacre, we present here a novel strategy to fabricate superhydrophilic/underwater superoleophobic hybrid films on nylon fabric (NF). The hybrid films were constructed via facile and green layer-by-layer (LbL) assembly of calcium ion (Ca2+), chitosan (CS), and carboxymethyl cellulose (CMC) combined with biomimetic mineralization in CO2 atmosphere. The resulting NF exhibits excellent superoleophobicity underwater, anti-oil-fouling ability, and stability. Under the drive of gravity, the deposited fabric can selectively remove pure and corrosive water from various oil-containing water with preferable separation efficiencies, great water flux (>6903 L·m-2·h-1), favorable oil penetration pressure (1.47 kPa), and outstanding recyclability. Especially, the NF can still sustain high underwater oleophobicity after repeatedly separating oil/corrosive water for 80 times. The green preparation process, eco-friendly and durable coating, and good separation performance allow the as-fabricated NF to be applied in oily wastewater treatment.
Collapse
Affiliation(s)
- Jintao Wang
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Ankang University, Ankang 725000, PR China.
| | - Hongfei Wang
- Suzhou Wuwei Environmental Technology Co., Ltd., Suzhou 215100, PR China
| |
Collapse
|
11
|
Fan Q, Lu T, Deng Y, Zhang Y, Ma W, Xiong R, Huang C. Bio-based materials with special wettability for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Ag/AgCl nanoparticles reinforced cellulose-based hydrogel coated cotton fabric with self-healing and photo-induced self-cleaning properties for durable oil/water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
The Fabrication of Oleophobic Coating and Its Application in Particulates Filtration. COATINGS 2022. [DOI: 10.3390/coatings12070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The stir-frying process in Chinese cooking has produced serious emissions of oily particles, which are an important source of urban air pollution. In particular, the complex composition of fine particulate may pose a threat to human respiratory and immune systems. However, current filtration methods for oily particulate fumes have low filtration efficiency, high resistance, and high equipment costs. In polypropylene (PP) electret filters, efficiency rapidly decreases and pressure drop (wind resistance) sharply increases after the adsorption of oily particles, due to the oleophilic properties of the PP fibre. We addressed this issue of filter performance degradation by fabricating a sodium perfluorooctanoate (SPFO) oleophobic coating on polyvinylidene fluoride (PVDF) fibre membranes for oily particle filtration. The SPFO coating showed a promising oleophobic effect even at low concentrations, which suggests it has oleophobic properties for different oil types and can be modified for different substrates. This fabricated oleophobic coating is thermostable and the oleophobic effect is unaffected by temperatures from 0 to 100 °C. By modifying the SPFO coating on the PVDF membrane, a high filtration efficiency (89.43%) and low wind resistance (69 Pa) was achieved without oil adhesion, so the proposed coating can be applied in the filtration and purification of oily fine particles and offers a potential strategy for preventing atmospheric oil pollution.
Collapse
|
14
|
Anbazhagan R, Krishnamoorthi R, Thankachan D, Van Dinh TT, Wang CF, Yang JM, Chang YH, Tsai HC. Fluorine-Free Superhydrophobic Covalent-Organic-Polymer Nanosheet Coating for Selective Dye and Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4310-4320. [PMID: 35369694 DOI: 10.1021/acs.langmuir.1c03492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent organic polymer nanosheets (COPNs) endowed with porous networks and large surface areas in their structures offer great advantages over other materials in addressing environmental problems. In this study, fluorine-free superhydrophobic COPNs were designed and applied to selective dye absorption. Notably, COPNs selectively adsorb dyes with a high hydrophobic index (HI) and reject low HI dyes with maximum adsorption capacities of 361 and 263 mg/g for crystal violet and methylene blue, respectively. The adsorption isotherm model showed that the COPNs follow the Langmuir adsorption isotherm model and pseudo-second-order kinetics. Next, we explored the superhydrophobicity of the COPNs by in situ fabrication with melamine sponge (COPNs-MS), which incorporates the superhydrophobicity of COPNs [water contact angle (WCA) of >150°] with the structure and flexibility of the MS skeleton. The COPNs-MS shows various oil-adsorbing properties with good adsorption capacity (from 60 to 120 g/g) and also effectively separates various surfactant-stabilized emulsions with a separation efficiency of over 99%. The as-fabricated COPNs-MS retains its superhydrophobicity in various solvents and hazardous conditions (WCA ≥ 150°) and exhibits good flame retardancy and excellent compression properties with excellent antifouling property due to the superhydrophobic COPN coating. Furthermore, COPNs-MS also demonstrates excellent recyclability because the strong COPN coating in the MS skeleton retains its hydrophobicity. Therefore, our fluorine-free superhydrophobic COPNs are not only capable of selective dye adsorption but also exhibit very good oil adsorption and surfactant-stabilized emulsion separation performance.
Collapse
Affiliation(s)
- Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Darieo Thankachan
- Department of Material Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Thi Thuy Van Dinh
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Centre for Membrane Technology, Chung Yuan University, Taoyuan 320, Taiwan
| | - Jen Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Centre for Membrane Technology, Chung Yuan University, Taoyuan 320, Taiwan
| |
Collapse
|
15
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
16
|
Layer-by-layer construction of CS-CNCs multilayer modified mesh with robust anti-crude-oil-fouling performance for efficient oil/water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Shami Z, Amininasab SM, Katoorani SA, Gharloghi A, Delbina S. NaOH-Induced Fabrication of a Superhydrophilic and Underwater Superoleophobic Styrene-Acrylate Copolymer Filtration Membrane for Effective Separation of Emulsified Light Oil-Polluted Water Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12304-12312. [PMID: 34644497 DOI: 10.1021/acs.langmuir.1c01692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oil-polluted water mixtures are difficult to separate, and thus, they are considered as a global challenge. A superior superhydrophilic and low-adhesive underwater superoleophobic styrene-acrylate copolymer filtration membrane is constructed using a salt (NaOH)-induced phase-inversion approach. The as-fabricated filtration membrane provides a hierarchical-structured surface morphology and three-dimensional high density open-rough porous geometry with a special chemical composition including highly accessible hydrophilic -COO- agents, which all are of great importance for long-term usage of immiscible/emulsified (light) oil-polluted wastewater separation. The separation is performed with a high efficiency and a high flux under either a gravity-driven force or a small applied pressure of 0.1 bar. The filtration membrane indicates an excellent anti-fouling property and is easily recycled during multiple cycles. The outstanding performance of the filtration membrane in separating oil-polluted water mixtures and the cost-effective synthetic approach as well as commercially scaled-up initial materials all highlight its potential for practical applications.
Collapse
Affiliation(s)
- Zahed Shami
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| | - Seyed Mojtaba Amininasab
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| | - Seyed Adib Katoorani
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| | - Atefeh Gharloghi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| | - Somayeh Delbina
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| |
Collapse
|
18
|
Liao XL, Sun DX, Cao S, Zhang N, Huang T, Lei YZ, Wang Y. Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125926. [PMID: 34492858 DOI: 10.1016/j.jhazmat.2021.125926] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient oil/water separation ability is a prerequisite for the actual application of the membranes in oily sewage treatment, which is closely related to the surface feature and the porous structure of the membranes. In this work, the electrospun poly(vinylidene fluoride) (PVDF) porous fibers were firstly fabricated through blend-electrospinning with poly(vinyl pyrrolidone) (PVP) and then treating in distilled water. The results showed that the fibers exhibited the sponge-like porous structure, and a few PVP was reserved in the fibers due to the relatively good interaction between PVDF and PVP. The fibrous membrane exhibited high porosity, super-wettability with freely switchable super-lipophilicity and super-hydrophilicity. The oil adsorption capacities as well as the oil and water fluxes were measured, and the oil adsorption capacities were varied in the range of 22.7-76.0 g/g, and oil and water fluxes were 54,737.3 and 56,869.9 L/(m2h), respectively. Specifically, the PVDF porous fibrous membranes showed excellent separation abilities and they could highly efficiently separate oil from oil-in-water emulsions or separate water from water-in-oil emulsions, accompanied with the extremely high water or oil flux. This work confirms that the PVDF membranes composed of the porous fibers can be used in wastewater treatment.
Collapse
Affiliation(s)
- Xiao-Lei Liao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - De-Xiang Sun
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Sheng Cao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| | - Ting Huang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
19
|
Meng Y, Song F, Chen H, Cheng Y, Lu J, Wang H. Composited Gels from Nature Growing Scaffold: Synthesis, Properties, and Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5498-5507. [PMID: 33475354 DOI: 10.1021/acsami.0c18504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a nature ultralight, well-aligned porous and anisotropy feedstock, cornstalk pith (CSP) has not been exploited for material design. Herein, we use CSP as substrate to prepare multifunctional elastic composite gels. First, CSP is pretreated by ferric chloride then immersed in an unsaturated monomer solution, following by a polymerization to form enhanced networks. The ferric ions act as junction sites for the combination between the polymer chains and the CSP matrix, therefore, dynamically reversible bonds are constructed. The bonds dissipate the compression force by breaking the dynamic bonds and reconstruct when the loading is removed. The reconstructed dynamic bonds endow an antifatigue performance of the prepared gels, in the cyclic compression test conducting 100 times with a 50% strain, and the gel holds a 94% elastic recovery. Furtherly, oil/water separation, cushioning system and biobased sensor are developed on the basis of what the matrix endows and what the reversible bonds exhibit. The preparation method in this study enriches a simply and high value-added method to utilize biobased material.
Collapse
Affiliation(s)
- Yi Meng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Fuyu Song
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Hang Chen
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| |
Collapse
|