1
|
Jia Y, Fu J, Zhang Z, Yan J, Zhang Y, Cheng Q. Strong MXene Induced Conductive Silk Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501420. [PMID: 40370147 DOI: 10.1002/adma.202501420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Conductive silk fibers (CSFs) are attractive in the field of flexible wearable electronics and textiles, but it still exists a great challenge to simultaneously enhance the electrical conductivity and mechanical properties. Inspired by the core-sheath structure of Bombyx mori silks, a continuous strategy is demonstrated for the fabrication the strong MXene induced conductive silk fibers (MCSFs). The sericin sheath of silk fibers (SFs) is replaced by MXene/sodium alginate (MSA) layer, and the ultrathin sheath layer is tightly bridged with the core through strong interfacial interactions, including hydrogen bonds and electrostatic interactions. Therefore, the MCSFs show extraordinary tensile strength of 1037.9 MPa and outstanding electrical conductivity of 6400 S m-1, which exhibits obvious advantages compared with the previous reported silk fibers modified by other methods. In addition, the MCSFs also have a high toughness of 194.9 MJ m-3 and an ultra-sensitive gauge factor of 2269.3, resulting in their ability to monitor human pulse, body movements, and changes of ambient humidity in real time. The proposed bioinspired strategy for continuously fabricating ultra-strong and tough MCSFs provides an avenue for implementing functionalized silk fibers in next-generation wearable technologies, intelligent textiles, and human-machine interaction etc.
Collapse
Affiliation(s)
- Yanyan Jia
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Junsong Fu
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zejun Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Yan
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yifan Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Qunfeng Cheng
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
2
|
Zhu H, Dong D, Wei Y, Lu H, Zhong Y, Wei M, Lai X, Li H, Zeng X. Self-Healing, Degradable, and Biobased Polyurethane Elastomer for High-Performance Piezoresistive Pressure Sensors with a Hump-like Microstructure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5603-5613. [PMID: 39971615 DOI: 10.1021/acs.langmuir.4c05344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Flexible sensors are widely applied in the fields of electronic skins and wearable devices, yet it is still a big challenge to effectively prolong the lifespan of the damaged sensors and reduce environmental pollution caused by discarded sensors after updating and upgrading. Herein, we proposed a self-healing, degradable, and biobased polyurethane elastomer for high-performance flexible pressure sensors. The elastomer synthesized using fatty diamine as a chain extender possessed a high tensile strength of 13.25 MPa and an elongation at break of 830%, and the self-healing efficiency reached up to 109.2%. Additionally, the elastomer could be fully degraded within 7 days in a 1 mol L-1 NaOH solution with the assistance of ethanol. The elastomer-based pressure sensor with a hump-like microstructure was fabricated with reduced graphene oxide as the conductive material via a simple template method. The sensor showed a high sensitivity of 9.448 kPa-1, a large sensing range of 0-300 kPa, a short response/recovery time of 40/80 ms, and a good sensing stability of 14,000 cycles. Moreover, the sensor was utilized to monitor different human motions, including muscle contraction, joint bending, swallowing, voice recognition, and pulse beat. Importantly, even after being severely damaged, the sensor was able to recover its function in detecting human motions. The findings of this research provide a strategy for the sustainable development of environmentally friendly and functional elastomers and flexible sensors.
Collapse
Affiliation(s)
- Hongtao Zhu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Die Dong
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Ye Wei
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Han Lu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yunchang Zhong
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Ming Wei
- Guangzhou ULink International School, Guangzhou 511458, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Wang F, Yu H, Lv X, Ma X, Qu Q, Wang H, Chen D, Liu Y. MXene-MWCNT Conductive Network for Long-Lasting Wearable Strain Sensors with Gesture Recognition Capabilities. MICROMACHINES 2025; 16:123. [PMID: 40047595 PMCID: PMC11857537 DOI: 10.3390/mi16020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 03/09/2025]
Abstract
In this work, a conductive composite film composed of multi-walled carbon nanotubes (MWCNTs) and multi-layer Ti3C2Tx MXene nanosheets is used to construct a strain sensor on sandpaper Ecoflex substrate. The composite material forms a sophisticated conductive network with exceptional electrical conductivity, resulting in sensors with broad detection ranges and high sensitivities. The findings indicate that the strain sensing range of the Ecoflex/Ti3C2Tx/MWCNT strain sensor, when the mass ratio is set to 5:2, extends to 240%, with a gauge factor (GF) of 933 within the strain interval from 180% to 240%. The strain sensor has demonstrated its robustness by enduring more than 33,000 prolonged stretch-and-release cycles at 20% cyclic tensile strain. Moreover, a fast response time of 200 ms and detection limit of 0.05% are achieved. During application, the sensor effectively enables the detection of diverse physiological signals in the human body. More importantly, its application in a data glove that is coupled with machine learning and uses the Support Vector Machine (SVM) model trained on the collected gesture data results in an impressive recognition accuracy of 93.6%.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Da Chen
- Laboratory for Intelligent Flexible Electronics, College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (F.W.); (H.Y.); (X.L.); (X.M.); (Q.Q.); (H.W.)
| | - Yijian Liu
- Laboratory for Intelligent Flexible Electronics, College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (F.W.); (H.Y.); (X.L.); (X.M.); (Q.Q.); (H.W.)
| |
Collapse
|
4
|
Kong M, Zhou R, Yang M, Zhang J, Ma X, Gao T, Zhang Y, Li B, Liu M, Cui X, Long Y, Li C. Mechanism and Performance Evaluation of a Strain Sensor Made from a Composite Hydrogel Containing Conductive Fibers of Thermoplastic Polyurethane and Polyvinyl Alcohol. ACS OMEGA 2024; 9:43743-43755. [PMID: 39494030 PMCID: PMC11525740 DOI: 10.1021/acsomega.4c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024]
Abstract
Monitoring human physiological conditions using flexible, stretchable strain sensors is an effective approach to prevent and treat critical illnesses, emergencies, and infectious diseases. However, achieving ultralow detection limits, high sensitivity, and a wide detection range in a cost-effective manner is challenging. In this study, a strain sensor was developed by embedding an adhesive hydrogel composed of polyvinyl alcohol, starch, and glutaraldehyde into conductive fibers made from thermoplastic polyurethane. By leveraging the high sensitivity of the conductive fibers and the wide detection range of the hydrogel, a robust dual-layer continuous conductive network was formed through their synergistic interaction. Tensile strength tests and other assessments indicated that the sensitivity of the sensor increased from a gauge factor of 49.32 (for fiber-based sensors) to 74.18, while the detection range expanded from 250 to 400%. Furthermore, the sensor demonstrated a low detection limit (0.6%), fast response and recovery times (80 ms/120 ms), and durability exceeding 800 cycles. Tests on pulse monitoring, joint movement, and voice recognition confirmed the significant applicability of the sensor for real-time monitoring of various physiological activities throughout a human's life. This study aims to provide technical support for the development of flexible wearable systems.
Collapse
Affiliation(s)
- Ming Kong
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| | - Ruiyu Zhou
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| | - Min Yang
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
- College
of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- College
of Physics, Qingdao University, Qingdao 266071, China
| | - Xiao Ma
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| | - Teng Gao
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| | - Yanbin Zhang
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| | - Benkai Li
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| | - Mingzheng Liu
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| | - Xin Cui
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| | - Yunze Long
- College
of Physics, Qingdao University, Qingdao 266071, China
| | - Changhe Li
- Key
Lab of Industrial Fluid Energy Conservation and Pollution Control,
Ministry of Education, Qingdao University
of Technology, Qingdao 266033, China
| |
Collapse
|
5
|
Del Bosque A, Sánchez-Romate XF, Sánchez M, Ureña A. Toward flexible piezoresistive strain sensors based on polymer nanocomposites: a review on fundamentals, performance, and applications. NANOTECHNOLOGY 2024; 35:292003. [PMID: 38621367 DOI: 10.1088/1361-6528/ad3e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
The fundamentals, performance, and applications of piezoresistive strain sensors based on polymer nanocomposites are summarized herein. The addition of conductive nanoparticles to a flexible polymer matrix has emerged as a possible alternative to conventional strain gauges, which have limitations in detecting small strain levels and adapting to different surfaces. The evaluation of the properties or performance parameters of strain sensors such as the elongation at break, sensitivity, linearity, hysteresis, transient response, stability, and durability are explained in this review. Moreover, these nanocomposites can be exposed to different environmental conditions throughout their lifetime, including different temperature, humidity or acidity/alkalinity levels, that can affect performance parameters. The development of flexible piezoresistive sensors based on nanocomposites has emerged in recent years for applications related to the biomedical field, smart robotics, and structural health monitoring. However, there are still challenges to overcome in designing high-performance flexible sensors for practical implementation. Overall, this paper provides a comprehensive overview of the current state of research on flexible piezoresistive strain sensors based on polymer nanocomposites, which can be a viable option to address some of the major technological challenges that the future holds.
Collapse
Affiliation(s)
- Antonio Del Bosque
- Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, C/Canteros s/n, E-05005 Ávila, Spain
| | - Xoan F Sánchez-Romate
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
| | - María Sánchez
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
- Instituto de Tecnologías Para la Sostenibilidad, Rey Juan Carlos University, C/Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Alejandro Ureña
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
- Instituto de Tecnologías Para la Sostenibilidad, Rey Juan Carlos University, C/Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
6
|
Boland CS. Performance analysis of solution-processed nanosheet strain sensors-a systematic review of graphene and MXene wearable devices. NANOTECHNOLOGY 2024; 35:202001. [PMID: 38324912 DOI: 10.1088/1361-6528/ad272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nanotechnology has led to the realisation of many potentialInternet of Thingsdevices that can be transformative with regards to future healthcare development. However, there is an over saturation of wearable sensor review articles that essentially quote paper abstracts without critically assessing the works. Reported metrics in many cases cannot be taken at face value, with researchers overly fixated on large gauge factors. These facts hurt the usefulness of such articles and the very nature of the research area, unintentionally misleading those hoping to progress the field. Graphene and MXenes are arguably the most exciting organic and inorganic nanomaterials for polymer nanocomposite strain sensing applications respectively. Due to their combination of cost-efficient, scalable production and device performances, their potential commercial usage is very promising. Here, we explain the methods for colloidal nanosheets suspension creation and the mechanisms, metrics and models which govern the electromechanical properties of the polymer-based nanocomposites they form. Furthermore, the many fabrication procedures applied to make these nanosheet-based sensing devices are discussed. With the performances of 70 different nanocomposite systems from recent (post 2020) publications critically assessed. From the evaluation of these works using universal modelling, the prospects of the field are considered. Finally, we argue that the realisation of commercial nanocomposite devices may in fact have a negative effect on the global climate crisis if current research trends do not change.
Collapse
Affiliation(s)
- Conor S Boland
- School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, United Kingdom
| |
Collapse
|
7
|
Xue R, Wang CX, Zhao ZG, Chen YH, Yang J, Feng CP. Flexible Silica/MXene/Natural rubber film strain sensors with island chain structure for Healthcare monitoring. J Colloid Interface Sci 2023; 650:1235-1243. [PMID: 37478740 DOI: 10.1016/j.jcis.2023.07.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
The demand for flexible strain sensors with high sensitivity and durability has increased significantly. However, traditional sensors are limited in terms of their detection ranges and fabrications. In this work, a space stacking method was proposed to fabricate natural rubber (NR)/ Ti3C2Tx (MXene)/silica (SiO2) films that possessed exceptional electrical conductivity, sensitivity and reliability. The introduction of SiO2 into the NR/MXene composite enabled the construction of an "island-chain structure", which promoted the formation of conductive pathways and significantly improved the conductivity of the composite. Specifically, the electrical conductivity of the NR/MXene/10 wt%SiO2 composite was enhanced by about 200 times compared to that of the NR/MXene composite alone (from 0.07 to 13.4 S/m). Additionally, the "island-chain structure" further enhanced the sensing properties of the NR/MXene/10 wt%SiO2 composite, as evidenced by its excellent sensitivity (GF = 189.2), rapid response time (102 ms), and good repeatability over 10,000 cycles. The fabricated device demonstrates an outstanding mechanical sensing performance and can accurately detect human physiological signals. Specifically, the device serves as a strain detector, recognizing different strain signals by monitoring the movement of fingers, arms, and thighs. This study provides critical insights into composite manufacturing with exceptional conductivity, flexibility and stability, which are essential properties for creating high-performance flexible sensors.
Collapse
Affiliation(s)
- Rong Xue
- National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Chou-Xuan Wang
- National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Zhong-Guo Zhao
- National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Yan-Hui Chen
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jie Yang
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Chang-Ping Feng
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
8
|
An ZW, Xue R, Ye K, Zhao H, Liu Y, Li P, Chen ZM, Huang CX, Hu GH. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods. NANOSCALE 2023; 15:6505-6520. [PMID: 36883369 DOI: 10.1039/d2nr07110j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To meet more application requirements, improving mechanical properties and self-healing efficiency has become the focus of current research on self-healing PU. The competitive relationship between self-healing ability and mechanical properties cannot be avoided by a single self-healing method. To address this problem, a growing number of studies have combined dynamic covalent bonding with other self-healing methods to construct the PU structure. This review summarizes recent studies on PU materials that combine typical dynamic covalent bonds with other self-healing methods. It mainly includes four parts: hydrogen bonding, metal coordination bonding, nanofillers combined with dynamic covalent bonding and multiple dynamic covalent bond bonding. The advantages and disadvantages of different self-healing methods and their significant role in improving self-healing ability and mechanical properties in PU networks are analyzed. At the same time, the possible challenges and research directions of self-healing PU materials in the future are discussed.
Collapse
Affiliation(s)
- Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Rui Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
- Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Zhen-Ming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Chong-Xing Huang
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering, CNRS-University of Lorraine, Nancy 54001, France
| |
Collapse
|
9
|
Fan K, Li K, Han L, Yang Z, Yang J, Zhang J, Cheng J. Multifunctional double-network Ti3C2Tx MXene composite hydrogels for strain sensors with effective electromagnetic interference and UV shielding properties. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
10
|
Zeng W, Deng L, Yang G. Self-Healable Elastomeric Network with Dynamic Disulfide, Imine, and Hydrogen Bonds for Flexible Strain Sensor. Chemistry 2023; 29:e202203478. [PMID: 36694013 DOI: 10.1002/chem.202203478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Self-healable and stretchable elastomeric material is essential for the development of flexible electronics devices to ensure their stable performance. In this study, a strain sensor (PIH2 T1 -tri/CNT-3) composed of self-repairable crosslinked elastomer substrate (PIH2 T1 -tri, containing multiple reversible repairing sites such as disulfide, imine, and hydrogen bonds) and conductive layer (carbon nanotube, CNT) was prepared. The PIH2 T1 -tri elastomer had excellent self-healing ability (healing efficiency=91 %). It exhibited good mechanical integrity in terms of elongation at break (672 %), tensile strength (1.41 MPa). The Young's modulus (0.39 MPa) was close to that of human skin. The PIH2 T1 -tri/CNT-3 sensor also demonstrated an effective self-healing function for electrical conduction and sensing property. Meanwhile, it had high sensitivity (gauge factor (GF)=24.1), short response time (120 ms), and long-term durability (4000 cycles). This study offers a novel self-healable elastomer platform with carbon based conductive components to develop flexible strain sensors towards high performance soft electronics.
Collapse
Affiliation(s)
- Wangyi Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Longjiang Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Guang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
11
|
Wang Y, Cui TR, Gou GY, Li XS, Qiao YC, Li D, Xu JD, Guo YZ, Tian H, Yang Y, Ren TL. An Ultra-Sensitive and Multifunctional Electronic Skin with Synergetic Network of Graphene and CNT. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:179. [PMID: 36616089 PMCID: PMC9823652 DOI: 10.3390/nano13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Electronic skin (e-skin) has attracted tremendous interest due to its diverse potential applications, including in physiological signal detection, health monitoring, and artificial throats. However, the major drawbacks of traditional e-skin are the weak adhesion of substrates, incompatibility between sensitivity and stretchability, and its single function. These shortcomings limit the application of e-skin and increase the complexity of its multifunctional integration. Herein, the synergistic network of crosslinked SWCNTs within and between multilayered graphene layers was directly drip coated onto the PU thin film with self-adhesion to fabricate versatile e-skin. The excellent mechanical properties of prepared e-skin arise from the sufficient conductive paths guaranteed by SWCNTs in small and large deformation under various strains. The prepared e-skin exhibits a low detection limit, as small as 0.5% strain, and compatibility between sensitivity and stretchability with a gauge factor (GF) of 964 at a strain of 0-30%, and 2743 at a strain of 30-60%. In physiological signals detection application, the e-skin demonstrates the detection of subtle motions, such as artery pulse and blinking, as well as large body motions, such as knee joint bending, elbow movement, and neck movement. In artificial throat application, the e-skin integrates sound recognition and sound emitting and shows clear and distinct responses between different throat muscle movements and different words for sound signal acquisition and recognition, in conjunction with superior sound emission performance with a sound spectrum response of 71 dB (f = 12.5 kHz). Overall, the presented comprehensive study of novel materials, structures, properties, and mechanisms offers promising potential in physiological signals detection and artificial throat applications.
Collapse
Affiliation(s)
- Yu Wang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Rui Cui
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Guang-Yang Gou
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiao-Shi Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yan-Cong Qiao
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Ding Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jian-Dong Xu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi-Zhe Guo
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Kumar A, Rakesh Kumar RK, Shaikh MO, Lu CH, Yang JY, Chang HL, Chuang CH. Ultrasensitive Strain Sensor Utilizing a AgF-AgNW Hybrid Nanocomposite for Breath Monitoring and Pulmonary Function Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55402-55413. [PMID: 36485002 DOI: 10.1021/acsami.2c17756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Breath monitoring and pulmonary function analysis have been the prime focus of wearable smart sensors owing to the COVID-19 outbreak. Currently used lung function meters in hospitals are prone to spread the virus and can result in the transmission of the disease. Herein, we have reported the first-ever wearable patch-type strain sensor for enabling real-time lung function measurements (such as forced volume capacity (FVC) and forced expiratory volume (FEV) along with breath monitoring), which can avoid the spread of the virus. The noninvasive and highly sensitive strain sensor utilizes the synergistic effect of two-dimensional (2D) silver flakes (AgFs) and one-dimensional (1D) silver nanowires (AgNWs), where AgFs create multiple electron transmission paths and AgNWs generate percolation networks in the nanocomposite. The nanocomposite-based strain sensor possesses a high optimized conductivity of 7721 Sm-1 (and a maximum conductivity of 83,836 Sm-1), excellent stretchability (>1000%), and ultrasensitivity (GFs of 35 and 87 when stretched 0-20 and 20-50%, respectively), thus enabling reliable detection of small strains produced by the body during breathing and other motions. The sensor patching site was optimized to accurately discriminate between normal breathing, quick breathing, and deep breathing and analyze numerous pulmonary functions, including the respiratory rate, peak flow, FVC, and FEV. Finally, the observed measurements for different pulmonary functions were compared with a commercial peak flow meter and a spirometer, and a high correlation was observed, which highlights the practical feasibility of continuous respiratory monitoring and pulmonary function analysis.
Collapse
Affiliation(s)
- Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - R K Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Engineering Program, Tunghai University, Taichung407224, Taiwan
| | - Cheng-Huan Lu
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Jia-Yu Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Hsu-Liang Chang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung80145, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| |
Collapse
|
13
|
Rong J, Zhou J, Zhou Y, Hu C, Li L, Guo W. 3D Single-Layer-Dominated Graphene Foam for High-Resolution Strain Sensing and Self-Monitoring Shape Memory Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205301. [PMID: 36319465 DOI: 10.1002/smll.202205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Flexible intelligent materials are desired to effectively regulate their own deformation and accurately sense their immediate morphology at the same time. Graphene foam is an attractive material for strain sensing and electrical/thermal performance control due to its outstanding mechanical, electrical, and thermal properties. However, graphene-foam-based materials with both strain sensing and deformation control capabilities are rarely reported. Here, a multiscale design of graphene foam with a single-layer-graphene-dominated microstructure and resilient 3D network architecture, which leads to exceptional strain sensing performance as well as modulation ability of the electrical and thermal conductivity for shape memory polymers, is reported. The graphene foams exhibit a strain detection limit of 0.033%, a rapid response of 53 ms, long-term stability over 10 000 cycles, significant thermoacoustic effect, and great heat-generation and heat-diffusion ability. By combining these advantages, an electro-activated shape-memory composite that is capable of monitoring its own shape state during its morphing process, is demonstrated.
Collapse
Affiliation(s)
- Jiasheng Rong
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jianxin Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yucheng Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Cong Hu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Luxian Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
14
|
Li Q, Liu Y, Chen D, Miao J, Zhang C, Cui D. High-Sensitive Wearable Strain Sensors Based on the Carbon Nanotubes@Porous Soft Silicone Elastomer with Excellent Stretchability, Durability, and Biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51373-51383. [PMID: 36326601 DOI: 10.1021/acsami.2c15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wearable strain sensors can transfer human physical motions into digital features and connect the real world to the virtual world. However, there is still a huge challenge to prepare breathable strain sensors with good sensitivity, stretchability, softness, durability, and biocompatibility, simultaneously. Herein, we employ the soft silicone elastomer as a highly stretchable substrate and propose a new strain sensor based on the carbon nanotubes@porous soft silicone elastomer (CNTs@PSSE) by salt-template-assisted and dip-coating methods. The CNTs (conductive fillers) are firmly embedded in the PSSE. The obtained sensors exhibit excellent sensitivity up to 2845.1 and a large sensing strain range of 186%. Notably, the CNTs@PSSE sensors also possess strong robustness, which can resist ultrasonic deterioration and carry out more than 10,000 high-frequency stretch-relax cycles in the presence of an obvious notch caused by the scissor. Moreover, the excellent biocompatibility indicates that the sensors can be safely attached to human skin for precisely detecting full-range human motions and being configured on smart wireless gloves for synchronous control of the bionic hand robot.
Collapse
Affiliation(s)
- Qichao Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Yamin Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Di Chen
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Jianmin Miao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Chunlei Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai200240, P. R. China
| |
Collapse
|
15
|
Zhou M, Yu Y, Zhou Y, Song L, Wang S, Na D. Graphene-based strain sensor with sandwich structure and its application in bowel sounds monitoring. RSC Adv 2022; 12:29103-29112. [PMID: 36320767 PMCID: PMC9555162 DOI: 10.1039/d2ra04402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Surgery is one of the primary treatment modalities for gastrointestinal tumors but can lead to postoperative ileus (POI), which can aggravate pain and increase costs. The incidence of POI can be effectively reduced by monitoring bowel sounds to assist doctors in deciding the timing of transoral feeding. In this study, we prepared a flexible strain sensor based on a graphene composite material and tested the feasibility of sensor monitoring of bowel sounds using simultaneous stethoscope and sensor monitoring. We found that the time of hearing the bowel sounds (12.0–12.1 s) corresponded to the time of waveform change monitored by the sensor (12.036 s), and the sound tone magnitude corresponded to the waveform amplitude. This proves that the application of sensors to monitor bowel sounds is feasible, which opens up a new field for the application of graphene sensors and provides a new way for clinicians to judge the condition of the intestine. Combining medicine and materials science. First application of graphene strain sensors for monitoring bowel sounds![]()
Collapse
Affiliation(s)
- Min Zhou
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical UniversityChina
| | - Yin Yu
- College of Medicine and Bioinformatics Engineering, Northeastern UniversityShenyang 110819China
| | - Yi Zhou
- Dyson School of Design Engineering, Imperial College LondonLondon SW7 2DBUK
| | - Lihui Song
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical UniversityChina
| | - Siyi Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical UniversityChina
| | - Di Na
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical UniversityChina,Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical UniversityShenyang 110001Liaoning ProvinceChina
| |
Collapse
|
16
|
Lee G, Zarei M, Wei Q, Zhu Y, Lee SG. Surface Wrinkling for Flexible and Stretchable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203491. [PMID: 36047645 DOI: 10.1002/smll.202203491] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in nanolithography, miniaturization, and material science, along with developments in wearable electronics, are pushing the frontiers of sensor technology into the large-scale fabrication of highly sensitive, flexible, stretchable, and multimodal detection systems. Various strategies, including surface engineering, have been developed to control the electrical and mechanical characteristics of sensors. In particular, surface wrinkling provides an effective alternative for improving both the sensing performance and mechanical deformability of flexible and stretchable sensors by releasing interfacial stress, preventing electrical failure, and enlarging surface areas. In this study, recent developments in the fabrication strategies of wrinkling structures for sensor applications are discussed. The fundamental mechanics, geometry control strategies, and various fabricating methods for wrinkling patterns are summarized. Furthermore, the current state of wrinkling approaches and their impacts on the development of various types of sensors, including strain, pressure, temperature, chemical, photodetectors, and multimodal sensors, are reviewed. Finally, existing wrinkling approaches, designs, and sensing strategies are extrapolated into future applications.
Collapse
Affiliation(s)
- Giwon Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| |
Collapse
|
17
|
Flexible Conductive Ag-CNTs Sponge with Corrosion Resistance for Wet Condition Sensing and Human Motion Detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Gudkov MV, Stolyarova DY, Shiyanova KA, Mel’nikov VP. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Chen B, Zhang L, Li H, Lai X, Zeng X. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J Colloid Interface Sci 2022; 617:478-488. [DOI: 10.1016/j.jcis.2022.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/28/2023]
|
20
|
Zhang S, Li H, Yang Z, Chen B, Li K, Lai X, Zeng X. Degradable and stretchable bio-based strain sensor for human motion detection. J Colloid Interface Sci 2022; 626:554-563. [PMID: 35809444 DOI: 10.1016/j.jcis.2022.06.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 01/17/2023]
Abstract
In recent years, flexible strain sensors have attracted considerable attention for the great application potential in the emerging fields of wearable devices, electronic skin and health monitoring. However, most of flexible strain sensors are nondegradable, and the produced numerous electronic wastes after uselessness will seriously threaten environment and ecology. Herein, we propose a new strategy to fabricate degradable and stretchable bio-based strain sensor using candle soot (CS) particles to construct conductive pathways and chitosan, potato starch (PS), and polyvinyl alcohol (PVA) to form stretchable matrix in the presence of Fe3+ ions. Owing to the formation of multiple hydrogen bonding constructed by chitosan, PS and PVA as well as coordination bonding by Fe3+ ions, the obtained strain sensor showed high elongation at break up to 200% and good fatigue resistance. Furthermore, the firm embedding of the CS particles into the surface of the stretchable matrix endowed the strain sensor with steady sensitivity (gauge factors of 1.49 at 0-60% strain and 2.71 at 60-100% strain), fast response (0.22 s) and good repeatability even after 1000 stretching-releasing cycles. In addition, the strain sensor was successfully applied to detect various human motions including finger and wrist bending, swallowing and pronunciation. Interestingly, after connecting to an Arduino microcontroller circuit with a Bluetooth module, the strain sensor was able to wirelessly detect real-time movements of index finger joints. Different from most previously reported sensors, the prepared strain sensor in this work was completely degraded in 2 wt% CH3COOH solution at 90 °C only within 10 min, thus effectively avoiding the production of electrical waste after the updating and upgrading of the sensors. The findings conceivably stand out as a new methodology to prepare environmental-friendly sensors in the field of flexible electronics, which is very beneficial for the sustainable development of environment and society.
Collapse
Affiliation(s)
- Shifeng Zhang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Zhipeng Yang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Baodeng Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
21
|
Xu J, Zhang L, Lai X, Zeng X, Li H. Wearable RGO/MXene Piezoresistive Pressure Sensors with Hierarchical Microspines for Detecting Human Motion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27262-27273. [PMID: 35652498 DOI: 10.1021/acsami.2c06574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible piezoresistive pressure sensors may exhibit excellent sensing performances to be applied in wearable electronics, medical diagnosis, and electronic skin. Herein, we report a multi-layer and phased-responsive reduced graphene oxide/MXene-based piezoresistive pressure sensor with hierarchical microspines constructed by sandpaper as the template. Thanks to the multi-level and multi-layer structure, the obtained sensor realized phased response and showed wide detection range (up to 70 kPa), fast response (response/recovery time of 40/80 ms), and excellent working stability (1000 fatigue cycles). Furthermore, the sensor was successfully applied for detecting various human motions including pulse beats, cheek bulging, nodding, finger bending, speech recognition, handwriting, and other pressure signals. Besides, a 6 × 6 sensing matrix integrated by the sensors was able to sensitively perceive the distribution of plane pressure. The findings in this work conceivably stand out as a new strategy to fabricate high-performance piezoresistive pressure sensors in the fields of intelligent healthcare and medical diagnosis, wearable electronic devices, electronic skin, and human-machine interaction.
Collapse
Affiliation(s)
- Junhuang Xu
- School of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Lin Zhang
- School of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Yang J, Wang C, Liu L, Zhang H, Ma J. Water-Tolerant MXene Epidermal Sensors with High Sensitivity and Reliability for Healthcare Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21253-21262. [PMID: 35485944 DOI: 10.1021/acsami.2c03731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flexible and wearable pressure sensors have gained great popularity in consumer electronics due to their potential applications in human healthcare, E-skin, and artificial intelligence interactions. MXene is regarded as one of the most ideal candidate sensing materials due to its high electrical conductivity and controllable interlayer space. However, the easy-to-oxidize characteristic of MXene materials greatly restricts the sensitivity and reliability of sensor devices, especially in wet climates. Herein, a highly sensitive and waterproof flexible pressure sensor using a free-standing hydrophobic bacterial cellulose/Ti3C2Tx MXene (HBT) hybrid film as a sensing layer is fabricated by facile and effective nanocellulose intercalation and fluorine modification strategies. The obtained pressure sensor delivers high sensitivity (65.5 kPa-1), fast response (50 ms), wide linear sensing range (0.002-30 kPa) with a low detection limit of 0.57 Pa, and excellent repeatability over 50,000 cycles. Meanwhile, owing to the highly hydrophobic surface of the HTB film, the outstanding sensing features could be well retained, although immersed in water several times. Benefiting from the excellent sensing properties and water resistance, the HBT sensor serves as a wearable force sensor to monitor the full-range human physiological motions regardless of whether the conditions are normal or wet. This work provides a new pathway to design the MXene pressure sensor with high reliability and demonstrates the promising usage of HBT sensors in portable biomedical electronics.
Collapse
Affiliation(s)
- Jie Yang
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Chen Wang
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Liyuan Liu
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Jianhua Ma
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| |
Collapse
|
23
|
Ismail Z, W Idris WF, Abdullah AH. Graphene-based temperature, humidity, and strain sensor: A review on progress, characterization, and potential applications during Covid-19 pandemic. SENSORS INTERNATIONAL 2022; 3:100183. [PMID: 35633818 PMCID: PMC9126002 DOI: 10.1016/j.sintl.2022.100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Graphene's potential as material for wearable, highly sensitive and robust sensor in various fields of technology has been widely investigated until now in order to capitalize on its unique intrinsic physical and chemical properties. In the wake of Covid-19 pandemic, it has been noticed that there are various potentials roles that can be fulfilled by graphene-based temperature, humidity and strain sensor, whose roles has not been widely explored to date. This paper takes the liberty to mainly highlight the progress layout and characterization technique for graphene-based sensor while including a brief discussion on the possible strategy of sensing data analysis that can be employed to minimize and prevent the risk of Covid-19 infection within a living community. While majority of the reported sensor is still in the in-progress status, its highlighted role in this work may provide a brief idea on how the ongoing research in graphene-based sensor may lead to the future implementation of the device for routine healthcare check-up and diagnostic point-care during and post-pandemic era. On the other hand, the sensitivity and response time data against working temperature, humidity and strain range that are provided could serve as a reference for benchmarking purpose, which certainly would help enthusiast in the development of a graphene-based sensor with a better performance for the future.
Collapse
|
24
|
Wang Y, Zhou Z, Chen J, Li S, Zheng H, Lu J, Wang S, Zhang J, Lin K, Wang K, Wang Y. Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation. MEMBRANES 2022; 12:membranes12040405. [PMID: 35448375 PMCID: PMC9030009 DOI: 10.3390/membranes12040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023]
Abstract
The hybrid composite of silver nanowires (AgNWs) and reduced graphene oxide (RGO) was synthesized in situ by an improved polyol–thermal method. The AgNWs-RGO with mass contents of 5–37 wt% was added into the thermo-reversible Diels–Alder reaction polyurethane (DA-PU) matrix with the AgNWs as the main conductor and the RGO as the auxiliary conductor to prepare self-healing composite conductive films. Further, the electrical conductivity, thermal conductivity, mechanical properties, infrared thermal response, and self-healing property of the composite film under infrared light irradiation were studied. The experimental results demonstrate that the AgNWs-RGO endows the composite film with good electrical and thermal conductivity and infrared thermal response ability, while the mechanical properties of the composite film decrease as the AgNWs-RGO mass content increases. The self-healing efficiency of the composite film is higher than that of the pure DA-PU under infrared light irradiation due to the good infrared photothermal response ability of the AgNWs-RGO. When the mass content of AgNWs-RGO in the composite film was 25 wt%, the AgNWs-RGO showed good dispersion in composite films, and the resistivity, thermal conductivity, and tensile strength of the composite film were 0.544 Ω·m, 0.3039 W·m−1·K−1, and 9.05 MPa, respectively. The infrared photothermal conversion temperature of the composite film is 158.5 °C (3450 lux for 1 min), and the infrared photothermal self-healing efficiency is 118% (3450 lux for 600 s). The AgNWs-RGO also improves the multiple self-healing ability of the composite film. The use of a high mass content of AgNWs-RGO in the composite film is beneficial in obtaining high multiple self-healing efficiencies. The first and the fifth infrared thermal self-healing efficiencies of the composite film with AgNWs-RGO of 35 wt% are 105% and 86%, respectively, and the resistivity of the composite film changes little and still maintains good conductivity.
Collapse
|
25
|
Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Smart Textile Based on 3D Stretchable Silver Nanowires/MXene Conductive Networks for Personal Healthcare and Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56607-56619. [PMID: 34786929 DOI: 10.1021/acsami.1c18828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable electronics have enriched daily lives by providing smart functions as well as monitoring body health conditions. However, the realization of wearable electronics with personal healthcare and thermal comfort management of the human body is still a great challenge. Furthermore, manufacturing such on-skin wearable electronics on traditional thin-film substrates results in limited gas permeability and inflammation. Herein, we proposed a personal healthcare and thermal management smart textile with a three-dimensional (3D) interconnected conductive network, formed by silver nanowires (AgNWs) bridging lamellar structured transition-metal carbide/carbonitride (MXene) nanosheets deposited on nonwoven fabrics. Benefiting from the interconnected conductive network synergistic effect of one-dimensional (1D) AgNWs bridging two-dimensional (2D) MXene, the strain sensor exhibits excellent durability (>1500 stretching cycles) and high sensitivity (gauge factor (GF) = 1085) with a wide strain range limit (∼100%), and the details of human body activities can be accurately recognized and monitored. Moreover, thanks to the excellent Joule heating and photothermal effect endowed by AgNWs and MXene, the multifunctional smart textile with direct temperature visualization and solar-powered temperature regulation functions was successfully developed, after further combination of thermochromic and phase-change functional layers, respectively. The smart textiles with a stretchable AgNW-MXene 3D conductive network hold great promise for next-generation personal healthcare and thermal management wearable systems.
Collapse
Affiliation(s)
- Xuhua Liu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jinlei Miao
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Qiang Fan
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Wenxiao Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xingwei Zuo
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Shifeng Zhu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
26
|
Ni Y, Huang J, Li S, Dong X, Zhu T, Cai W, Chen Z, Lai Y. Robust Superhydrophobic rGO/PPy/PDMS Coatings on a Polyurethane Sponge for Underwater Pressure and Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53271-53281. [PMID: 34723475 DOI: 10.1021/acsami.1c17165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible wearable pressure sensors have attracted great interest from researchers in recent years because of their important applications in human-machine interaction, human behavior detection, medical diagnosis, and other fields. At present, integrating multiple functions such as pressure and temperature sensing and self-cleaning into a single material remains a challenging task. Here, by in situ reduction of graphene oxide (GO) grown on a sponge surface and deposition of polypyrrole (PPy) nanoparticles, we have built a highly sensitive, stable, and multifunctional rGO/PPy/poly(dimethylsiloxane) (PDMS) polyurethane (PU) sponge (GPPS) sensor for the detection of pressure, water level, and temperature. This multifunctional sensor shows excellent pressure-sensing performance, ultrasensitive loading sensing of a leaf (98 mg), and outstanding reproducibility over 5000 cycles. Due to the stability of the superhydrophobic surface water contact angle (WCA) = 153.3°, our sensor can work in an underwater environment, which can sense water levels from 1 cm (∼98 Pa) to 40 cm and also a variety of underwater behaviors (knock, ultrasonication, blow, etc.) with high stability. In addition, the sensor can be integrated into a circuit for the water level and pressure detection. The sensor can also be used as a smart underwater-temperature sensor; it shows a linear temperature coefficient of resistance (TCR) of 0.48% °C-1 in a temperature range of 35-80 °C. This multifunctional sensor shows potential application prospects in wearable electronic devices for sensing.
Collapse
Affiliation(s)
- Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiuli Dong
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
27
|
Tough, adhesive, self-healing, fully physical crosslinked κ-CG-K+/pHEAA double-network ionic conductive hydrogels for wearable sensors. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Zhu G, Ren P, Hu J, Yang J, Jia Y, Chen Z, Ren F, Gao J. Flexible and Anisotropic Strain Sensors with the Asymmetrical Cross-Conducting Network for Versatile Bio-Mechanical Signal Recognition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44925-44934. [PMID: 34496570 DOI: 10.1021/acsami.1c13079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible strain sensors with high performance are actively and widely investigated for wearable electronic devices. However, the conventional sensors often suffer from a lack of detection of complex multidimensional strain, which severely limits their wide applications. To overcome this critical challenge, we propose a pattern design by screen printing to construct an asymmetrical cross-conductive network in the piezoresistive strain sensor, which can enhance the response to external stimuli in different directions. The unique network endows the prepared sensors with the excellent ability of instantaneous detection and accurate identification of multidimensional strains. Moreover, the sensor also demonstrates high sensitivity, fast response, an ultra-wide sensing range, and excellent stability and durability. Benefiting from the outstanding comprehensive performance of the prepared sensor, a full range of human actions (wink, smile, swallowing, and joint bending) and subtle bio-signals (pulse and breathing) are easily and accurately monitored. A wireless wearable device assembled by the sensor shows great potential applications in practical real-time physiological monitoring and intelligent mobile diagnosis for humans. This work provides an innovative and effective strategy for manufacturing flexible and multifunctional strain sensors to fully satisfy versatile applications of new-generation wearable electronic devices.
Collapse
Affiliation(s)
- Guanjun Zhu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Penggang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Jie Hu
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Junjun Yang
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Yangpeng Jia
- Faculty of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Zhengyan Chen
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Fang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
29
|
Li J, Xin M, Ma Z, Shi Y, Pan L. Nanomaterials and their applications on bio-inspired wearable electronics. NANOTECHNOLOGY 2021; 32:472002. [PMID: 33592596 DOI: 10.1088/1361-6528/abe6c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Wearable electronics featuring conformal attachment, sensitive perception and intellectual signal processing have made significant progress in recent years. However, when compared with living organisms, artificial sensory devices showed undeniable bulky shape, poor adaptability, and large energy consumption. To make up for the deficiencies, biological examples provide inspirations of novel designs and practical applications. In the field of biomimetics, nanomaterials from nanoparticles to layered two-dimensional materials are actively involved due to their outstanding physicochemical properties and nanoscale configurability. This review focuses on nanomaterials related to wearable electronics through bioinspired approaches on three different levels, interfacial packaging, sensory structure, and signal processing, which comprehensively guided recent progress of wearable devices in leveraging both nanomaterial superiorities and biorealistic functionalities. In addition, opinions on potential development trend are proposed aiming at implementing bioinspired electronics in multifunctional portable sensors, health monitoring, and intelligent prosthetics.
Collapse
Affiliation(s)
- Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ming Xin
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
30
|
Zhang L, Song T, Shi L, Wen N, Wu Z, Sun C, Jiang D, Guo Z. Recent progress for silver nanowires conducting film for flexible electronics. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 11:323-341. [PMID: 34367531 PMCID: PMC8325546 DOI: 10.1007/s40097-021-00436-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 05/26/2023]
Abstract
Silver nanowires (AgNWs), as one-dimensional nanometallic materials, have attracted wide attention due to the excellent electrical conductivity, transparency and flexibility, especially in flexible and stretchable electronics. However, the microscopic discontinuities require AgNWs be attached to some carrier for practical applications. Relative to the preparation method, how to integrate AgNWs into the flexible matrix is particularly important. In recent years, plenty of papers have been published on the preparation of conductors based on AgNWs, including printing techniques, coating techniques, vacuum filtration techniques, template-assisted assembly techniques, electrospinning techniques and gelating techniques. The aim of this review is to discuss different assembly method of AgNW-based conducting film and their advantages. GRAPHIC ABSTRACT Conducting films based on silver nanowires (AgNWs) have been reviewed with a focus on their assembly and their advantages.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Tingting Song
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Lianxu Shi
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Nan Wen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150040 China
- Dept Chem Engn, Integrated Composites Lab ICL, University of Tennessee System University of Tennessee Knoxville Univ Tennessee, Knoxville, TN 37996 USA
| | - Zijian Wu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150040 China
| | - Caiying Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Dawei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Zhanhu Guo
- Dept Chem Engn, Integrated Composites Lab ICL, University of Tennessee System University of Tennessee Knoxville Univ Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
31
|
Jing X, Ma Z, Antwi-Afari MF, Wang L, Li H, Mi HY, Feng PY, Liu Y. Synthesis and Fabrication of Supramolecular Polydimethylsiloxane-Based Nanocomposite Elastomer for Versatile and Intelligent Sensing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhenping Ma
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Maxwell Fordjour Antwi-Afari
- Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, U.K
| | - Lin Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Heng Li
- Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong 518000, China
| | - Hao-Yang Mi
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China
| | - Pei-Yong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
32
|
Nie J, Fan J, Gong Z, Xu C, Chen Y. Frame-structured and self-healing ENR-based nanocomposites for strain sensors. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Wang H, Zhou R, Li D, Zhang L, Ren G, Wang L, Liu J, Wang D, Tang Z, Lu G, Sun G, Yu HD, Huang W. High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti 3C 2T x MXene for the Monitoring of Human Activities. ACS NANO 2021; 15:9690-9700. [PMID: 34086439 DOI: 10.1021/acsnano.1c00259] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The flexible strain sensor is of significant importance in wearable electronics, since it can help monitor the physical signals from the human body. Among various strain sensors, the foam-shaped ones have received widespread attention owing to their light weight and gas permeability. However, the working range of these sensors is still not large enough, and the sensitivity needs to be further improved. In this work, we develop a high-performance foam-shaped strain sensor composed of Ti3C2Tx MXene, multiwalled carbon nanotubes (MWCNTs), and thermoplastic polyurethane (TPU). MXene sheets are adsorbed on the surface of a composite foam of MWCNTs and TPU (referred to as TPU/MWCNTs foam), which is prefabricated by using a salt-templating method. The obtained TPU/MWCNTs@MXene foam works effectively as a lightweight, easily processable, and sensitive strain sensor. The TPU/MWCNTs@MXene device can deliver a wide working strain range of ∼100% and an outstanding sensitivity as high as 363 simultaneously, superior to the state-of-the-art foam-shaped strain sensors. Moreover, the composite foam shows an excellent gas permeability and suitable elastic modulus close to those of skin, indicating its being highly comfortable as a wearable sensor. Owing to these advantages, the sensor works effectively in detecting both subtle and large human movements, such as joint motion, finger motion, and vocal cord vibration. In addition, the sensor can be used for gesture recognition, demonstrating its perspective in human-machine interaction. Because of the high sensitivity, wide working range, gas permeability, and suitable modulus, our foam-shaped composite strain sensor may have great potential in the field of flexible and wearable electronics in the near future.
Collapse
Affiliation(s)
- Hongchen Wang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Ruicong Zhou
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Donghai Li
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Linrong Zhang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Guozhang Ren
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Li Wang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinhua Liu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Deyang Wang
- College of Aerospace Engineering, Chongqing University, 174 Shazhengjie Road, Chongqing 400044, P. R. China
| | - Zhenhua Tang
- College of Aerospace Engineering, Chongqing University, 174 Shazhengjie Road, Chongqing 400044, P. R. China
| | - Gang Lu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| |
Collapse
|
34
|
Han F, Li M, Ye H, Zhang G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1220. [PMID: 34063165 PMCID: PMC8148098 DOI: 10.3390/nano11051220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
With the recent great progress made in flexible and wearable electronic materials, the upcoming next generation of skin-mountable and implantable smart devices holds extensive potential applications for the lifestyle modifying, including personalized health monitoring, human-machine interfaces, soft robots, and implantable biomedical devices. As a core member within the wearable electronics family, flexible strain sensors play an essential role in the structure design and functional optimization. To further enhance the stretchability, flexibility, sensitivity, and electricity performances of the flexible strain sensors, enormous efforts have been done covering the materials design, manufacturing approaches and various applications. Thus, this review summarizes the latest advances in flexible strain sensors over recent years from the material, application, and manufacturing strategies. Firstly, the critical parameters measuring the performances of flexible strain sensors and materials development contains different flexible substrates, new nano- and hybrid- materials are introduced. Then, the developed working mechanisms, theoretical analysis, and computational simulation are presented. Next, based on different material design, diverse applications including human motion detection and health monitoring, soft robotics and human-machine interface, implantable devices, and biomedical applications are highlighted. Finally, synthesis consideration of the massive production industry of flexible strain sensors in the future; different fabrication approaches that are fully expected are classified and discussed.
Collapse
Affiliation(s)
- Fei Han
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| | - Min Li
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
| | - Huaiyu Ye
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| | - Guoqi Zhang
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| |
Collapse
|
35
|
Sun P, Wu D, Liu C. High-sensitivity tactile sensor based on Ti 2C-PDMS sponge for wireless human-computer interaction. NANOTECHNOLOGY 2021; 32:295506. [PMID: 33827054 DOI: 10.1088/1361-6528/abf59e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Tremendous attention has been paid to high-performance flexible tactile sensors owing to their potential applications in bionic skin, wearable electronics, the Internet of Things, etc.However, the majority of pressure sensors require an intricately designed nanostructure requiring a high-cost complex manufacturing process. Therefore, the high-throughput and low-cost technology to produce high-sensitivity, flexible, pressure-sensitive materials with a large responding range is urgently needed. Herein, a novel flexible piezoresistive tactile sensor is fabricated based on the Ti2C-PDMS sponge as the conductive elastomer. The sensor exhibits a high sensitivity of 279 kPa-1in a wide pressure range (0-34.4 kPa). The response time is as fast as 0.45 s with excellent durability over 4,000 cycles. Moreover, a 16-pixel wireless sensor system is fabricated and a series of applications have been demonstrated, including real-time force perception and pressure morphology feedback, which promote the potential applications in the visualizing of pressure distribution, human-machine communication and wearable devices.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Chaoran Liu
- Ministry of Education Key Lab. of RF Circuits and Systems, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
36
|
Luo X, Wu Y, Guo M, Yang X, Xie L, Lai J, Li Z, Zhou H. Multi‐functional polyurethane composites with self‐healing and shape memory properties enhanced by graphene oxide. J Appl Polym Sci 2021. [DOI: 10.1002/app.50827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Luo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Yuanpeng Wu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field Southwest Petroleum University Chengdu China
| | - Meiling Guo
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Xi Yang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Lingyun Xie
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Jingjuan Lai
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field Southwest Petroleum University Chengdu China
| | - Zhenyu Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field Southwest Petroleum University Chengdu China
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering Xi'an Technological University Xi'an China
| |
Collapse
|
37
|
Yu T, Shan Y, Li Z, Wang X, Cui H, Yang K, Cui Y. Application of a super-stretched self-healing elastomer based on methyl vinyl silicone rubber for wearable electronic sensors. Polym Chem 2021. [DOI: 10.1039/d1py01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A super-stretched self-healing elastomer for flexible electronic devices by introducing quadruple hydrogen bonds.
Collapse
Affiliation(s)
- Tianwen Yu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yifei Shan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhixi Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaoxiao Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Huanan Cui
- China Academy of Space Technology, Beijing 100094, PR China
| | - Kun Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, PR China
| | - Yongyan Cui
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|