1
|
Chu JQ, Song R, Han YJ, Wei Q, Han ZB. Silver(I)-Functionalized COF-LZU1 for High-Performance CO 2/CH 4 Separation. Inorg Chem 2025; 64:9907-9911. [PMID: 40328466 DOI: 10.1021/acs.inorgchem.5c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Using porous materials for CO2/CH4 separation is an ecofriendly and energy-efficient method. Covalent organic frameworks are crystalline porous frameworks linked by covalent bonds with precisely adjustable pore size and pore chemistry and are considered potential porous adsorbent materials. At present, various methods/materials for the purification and separation of industrial mixtures have been widely studied. In this study, silver ions (Ag+) were successfully anchored to a classical COF: COF-LZU1. This modification utilized the π-complexation interaction between Ag+ and CO2 to enhance the adsorption and separation efficiency for CO2. The resulting composite, designated as Ag@COF-LZU1 (1.5 equiv, containing 1.5 equiv of Ag+), exhibited the highest CO2 uptake of 34.1 cm3/g and demonstrated a remarkable CO2/CH4 selectivity factor of 32.1 at 298 K and 1 atm. Breakthrough experiments indicated that the modified COF-LZU1 displayed a prolonged retention time. Furthermore, the stability of COF-LZU1 after Ag+ anchoring was confirmed through three consecutive breakthrough experiments, which revealed no significant variation in the penetration time. The selective adsorption mechanisms of COF-LZU1, both prior to and following the anchoring of Ag+, were elucidated by using density functional theory calculations. This study presents a novel approach for developing adsorbents targeting the capture of CO2 in practical industrial applications.
Collapse
Affiliation(s)
- Jia-Qi Chu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Rui Song
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Yue-Jiang Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Qi Wei
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
2
|
Sun MY, Cheung SC, Wang XZ, Jin JK, Guo J, Li D, He J. Structural Reassignment of Covalent Organic Framework-Supported Palladium Species: Heterogenized Palladacycles as Efficient Catalysts for Sustainable C-H Activation. ACS CENTRAL SCIENCE 2024; 10:1848-1860. [PMID: 39463833 PMCID: PMC11503496 DOI: 10.1021/acscentsci.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
Recent decades have witnessed remarkable progress in ligand-promoted C-H activation with palladium catalysts. While a number of transformations have been achieved with a fairly broad substrate scope, the general requirements for high palladium loadings and enormous challenges in catalyst recycling severely limit the practical applications of C-H activation methodologies in organic synthesis. Herein, we incorporate N,C-ligand-chelated palladacycles into rigid, porous, and crystalline covalent organic frameworks for the C-H arylation of indole and pyrrole derivatives. These heterogeneous palladium catalysts exhibit superior stability and recyclability compared to their homogeneous counterparts. We not only produce several highly reactive palladacycles embedded on new framework supports to facilitate C-H activation/C-C bond-forming reactions but also reassign heterogenized palladium species on frameworks containing a benzaldehyde-derived imine moiety as imine-based palladacycles via comprehensive characterization. Our findings provide guidance for the rational design of framework-supported metallacycles in the development of heterogeneous transition-metal catalysis.
Collapse
Affiliation(s)
- Meng-Ying Sun
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Sheung Chit Cheung
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Xue-Zhi Wang
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Ji-Kang Jin
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jun Guo
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Dan Li
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jian He
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
3
|
Li S, Wei W, Chi K, Ferguson CTJ, Zhao Y, Zhang KAI. Promoting Photocatalytic Direct C-H Difluoromethylation of Heterocycles using Synergistic Dual-Active-Centered Covalent Organic Frameworks. J Am Chem Soc 2024; 146:12386-12394. [PMID: 38500309 PMCID: PMC11082899 DOI: 10.1021/jacs.3c12880] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Difluoromethylation reactions are increasingly important for the creation of fluorine-containing heterocycles, which are core groups in a diverse range of biologically and pharmacologically active ingredients. Ideally, this typically challenging reaction could be performed photocatalytically under mild conditions. To achieve this separation of redox processes would be required for the efficient generation of difluoromethyl radicals and the reduction of oxygen. A covalent organic framework photocatalytic material was, therefore, designed with dual reactive centers. Here, anthracene was used as a reduction site and benzothiadiazole was used as an oxidation site, distributed in a tristyryl triazine framework. Efficient charge separation was ensured by the superior electron-donating and -accepting abilities of the dual centers, creating long-lived photogenerated electron-hole pairs. Photocatalytic difluoromethylation of 16 compounds with high yields and remarkable functional group tolerance was demonstrated; compounds included bioactive molecules such as xanthine and uracil. The structure-function relationship of the dual-active-center photocatalyst was investigated through electron spin resonance, femtosecond transient absorption spectroscopy, and density functional theory calculations.
Collapse
Affiliation(s)
- Sizhe Li
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Wenxin Wei
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai Chi
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Calum T. J. Ferguson
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- School
of Chemistry, University of Birmingham, University Road W, Birmingham B15 2TT, United Kingdom
| | - Yan Zhao
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai A. I. Zhang
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
4
|
Tan L, Cai W, Wang F, Li J, Wu D, Kong Y. Postsynthetic Modification Strategy for Constructing Electrochemiluminescence-Active Chiral Covalent Organic Frameworks Performing Efficient Enantioselective Sensing. Anal Chem 2024; 96:3942-3950. [PMID: 38394220 DOI: 10.1021/acs.analchem.3c05887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Electrochemiluminescence (ECL), integrating the characteristics of electrochemistry and fluorescence, has the advantages of high sensitivity and low background. However, only a few studies have been reported for enantioselective sensing based on the ECL-active platform because of the huge challenges in constructing tunable chiral ECL luminophores. Here, we developed a facile strategy to design and prepare ECL-active chiral covalent organic frameworks (COFs) Ph-triPy+-(R)-Ru(II) for enantioselective sensing. In such an artificial structure, the ionic skeleton of COFs was beneficial to the electron transfer on the working electrode surface and the chiral Ru-ligand was used as the chiral ECL-active luminophore. It was found that Ph-triPy+-(R)-Ru(II) coupled with sodium persulfate (Na2S2O8) as the coreactant exhibited obvious ECL signals. More importantly, a clear difference toward l- and d-enantiomers was observed in the response of the ECL intensity, resulting in a uniform recognition law. That is, for amino alcohols, d-enantiomers (1 mM) measured by Ph-triPy+-(R)-Ru(II) showed a higher ECL intensity compared with l-enantiomers. Differently, amino acids (1 mM) gave an inverse recognition phenomenon. The ECL intensity ratios between l- and d-enantiomers (1 mM) are in the range of 1.25-1.94 for serine, aspartic acid, glutamic acid, valine, leucine, leucinol, and valinol. What is more interesting is that the ECL intensity was closely related to the concentration of l-amino alcohols and d-amino acids, whereas their inverse configurations remained unchanged. In a word, the present concept demonstrates a feasible direction toward chiral ECL-active COFs and their potential for efficient enantioselective sensing.
Collapse
Affiliation(s)
- Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Yuan Y, Chen B, Song L, An X, Zhang Q, Lu H, Li CM, Guo C. Magnetic two-dimensional nanocomposites for multimodal antitumor therapy: a recent review. J Mater Chem B 2024; 12:1404-1428. [PMID: 38251275 DOI: 10.1039/d3tb02333h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Magnetic two-dimensional nanocomposites (M2D NCs) that synergistically combine magnetic nanomedicine and 2D nanomaterials have emerged in multimodal antitumor therapy, attracting great interest in materials science and biomedical engineering. This review provides a summary of the recent advances of M2D NCs and their multimodal antitumor applications. We first introduce the design and fabrication of M2D NCs, followed by discussing new types of M2D NCs that have been recently reported. Then, a detailed analysis and discussions about the different types of M2D NCs are presented based on the structural categories of 2D NMs, including 2D graphene, transition metal dichalcogenides (TMDs), transition metal carbides/nitrides/carbonitrides (MXenes), black phosphorus (BP), layered double hydroxides (LDHs), metal organic frameworks (MOFs), covalent organic frameworks (COFs) and other 2D nanomaterials. In particular, we focus on the synthesis strategies, magnetic or optical responsive performance, and the versatile antitumor applications, which include magnetic hyperthermia therapy (MHT), photothermal therapy (PTT), photodynamic therapy (PDT), drug delivery, immunotherapy and multimodal imaging. We conclude the review by proposing future developments with an emphasis on the mass production and biodegradation mechanism of the M2D NCs. This work is expected to provide a comprehensive overview to researchers and engineers who are interested in such a research field and promote the clinical translation of M2D NCs in practical applications.
Collapse
Affiliation(s)
- Ying Yuan
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Luping Song
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Xingxing An
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Qinrui Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Hao Lu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| |
Collapse
|
6
|
Gong Y, Huang S, Lei Z, Wayment L, Chen H, Zhang W. Double-Walled Covalent Organic Frameworks with High Stability. Chemistry 2023; 29:e202302135. [PMID: 37556201 DOI: 10.1002/chem.202302135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Double-walled covalent organic frameworks, consisting of two same building blocks parallel to each other forming ladder-shape linkers, could enhance the stability of the frameworks and increase the density of functional sites, thus making them suitable for various applications. In this study, two double-walled covalent organic frameworks, namely DW-COF-1 and DW-COF-2, were successfully synthesized via imine condensation. The resulting DW-COFs exhibited a honeycomb topology, high crystallinity and stability. Particularly, DW-COF-2 showed excellent resistance toward boiling water, strong acid, and strong base, due to its double-walled structure, which limits the exposure of labile imine bonds to external chemical environments. The DW-COFs showed high porosity near 900 m2 /g, making them suitable for gas storage/separation. The selective gas adsorption experiments showed that at 273 K and 1 atm pressure, DW-COF-1 and DW-COF-2 exhibited a good IAST selectivity towards CO2 /N2 (15/85) adsorption, with selectivity values of 121.3 and 56.4 for CO2 over N2 , respectively.
Collapse
Affiliation(s)
- Yu Gong
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Lacey Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
7
|
Wang YX, Wang Y, Li J, Yu Y, Huang SL, Yang GY. Ru(N^N) 3-docked cationic covalent organic frameworks for enhanced sulfide and amine photooxidation. Dalton Trans 2023; 52:14100-14109. [PMID: 37743792 DOI: 10.1039/d3dt02345a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as significant candidates for visible-light photocatalysis due to their ability to regulate performance which is achieved through the careful selection of building modules, framework conjugation, and post-modification. This report focused on the efficient transformation of an imine-linked I-COF into a π-conjugated quinoline-based Q-COF, which enhanced both the chemical stability and conjugation of the network. By methylating the pyridyl groups in the Q-COF, an N+-COF was obtained. Subsequently, the Ru(N^N)3-photosensitizer ([Ru(dcbpy)3]4-) was incorporated into the channels of the cationic N+-COF through electrostatic interactions, resulting in the formation of [Ru(dcbpy)3]4-⊂N+-COF. This composite exhibited exceptional photocatalytic activity, demonstrating high yields and selectivity in the oxidation of sulfides or amines to their respective products.
Collapse
Affiliation(s)
- Yan-Xia Wang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ying Wang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Yu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
8
|
Hao M, Xie Y, Liu X, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Modulating Uranium Extraction Performance of Multivariate Covalent Organic Frameworks through Donor-Acceptor Linkers and Amidoxime Nanotraps. JACS AU 2023; 3:239-251. [PMID: 36711090 PMCID: PMC9875373 DOI: 10.1021/jacsau.2c00614] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Covalent organic frameworks (COFs) can be designed to allow uranium extraction from seawater by incorporating photocatalytic linkers. However, often sacrificial reagents are required for separating photogenerated charges which limits their practical applications. Herein, we present a COF-based adsorption-photocatalysis strategy for selective removal of uranyl from seawater in the absence of sacrificial reagents. A series of ternary and quaternary COFs were synthesized containing the electron-rich linker 2,4,6-triformylphloroglucinol as the electron donor, the electron-deficient linker 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)dibenzaldehyde as the acceptor, and amidoxime nanotraps for selective uranyl capture (with the quaternary COFs incorporating [2,2'-bipyridine-5,5'-diamine-Ru(Bp)2]Cl2 as a secondary photosensitizer). The ordered porous structure of the quaternary COFs ensured efficient mass transfer during the adsorption-photocatalysis capture of uranium from seawater samples, with photocatalytically generated electrons resulting in the reduction of adsorbed U(VI) to U(IV) in the form of UO2. A quaternary COF, denoted as COF 2-Ru-AO, possessed a high uranium uptake capacity of 2.45 mg/g/day in natural seawater and good anti-biofouling abilities, surpassing most adsorbents thus far. This work shows that multivariate COF adsorption-photocatalysts can be rationally engineered to work efficiently and stably without sacrificial electron donors, thus opening the pathway for the economic and efficient extraction of uranium from the earth's oceans.
Collapse
Affiliation(s)
- Mengjie Hao
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Yinghui Xie
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiaolu Liu
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhongshan Chen
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Hui Yang
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Geoffrey I. N. Waterhouse
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, School of Chemical
Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shengqian Ma
- Department
of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Xiangke Wang
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
9
|
Hao M, Xie Y, Liu X, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Modulating Uranium Extraction Performance of Multivariate Covalent Organic Frameworks through Donor–Acceptor Linkers and Amidoxime Nanotraps. JACS AU 2023; 3:239-251. [DOI: doi.org/10.1021/jacsau.2c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Mengjie Hao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Geoffrey I. N. Waterhouse
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
10
|
Guan X, Chen F, Qiu S, Fang Q. Three-Dimensional Covalent Organic Frameworks: From Synthesis to Applications. Angew Chem Int Ed Engl 2023; 62:e202213203. [PMID: 36253336 DOI: 10.1002/anie.202213203] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 12/05/2022]
Abstract
Three-dimensional covalent organic frameworks (3D COFs) with spatially periodic networks demonstrate significant advantages over their 2D counterparts, including enhanced specific surface areas, interconnected channels, and more sufficiently exposed active sites. Nevertheless, research on these materials has met an impasse due to serious problems in crystallization and stability, which must be solved for practical applications. In this Minireview, we first summarize some strategies for preparing functional 3D COFs, including crystallization techniques and functionalization methods. Hereafter, applications of these functional materials are presented, covering adsorption, separation, catalysis, fluorescence, sensing, and batteries. Finally, the future challenges and perspectives for the development of 3D COFs are discussed.
Collapse
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
11
|
Functionalized 3D Covalent Organic Frameworks for High‐Performance CO
2
Capture and Separation over N
2. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Bu R, Lu Y, Zhang B. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
14
|
Singh M, Neogi S. Selective and Multicyclic CO 2 Adsorption with Visible Light-Driven Photodegradation of Organic Dyes in a Robust Metal-Organic Framework Embracing Heteroatom-Affixed Pores. Inorg Chem 2022; 61:10731-10742. [PMID: 35796254 DOI: 10.1021/acs.inorgchem.2c00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pore environment modulation with polarizing groups is one of the essential prerequisites for selective carbon dioxide (CO2) adsorption in metal-organic frameworks (MOFs), wherein judicious installation of the photocatalytic feature can promise visible light-triggered degradation of toxic organic dye molecules. However, astute amalgamation of both these attributes over a single MOF is rather rare, yet much anticipated in view of sustainable applications. Pore engineering is effectively harnessed in a Zn(II)-based three-dimensional (3D) MOF, CSMCRI-16 (CSMCRI = Central Salt and Marine Chemicals Research Institute), through mixed-ligand assembly of a N-rich linker (L), 4,4'-oxybis(benzoic acid) (H2oba) ligand, and [Zn2(CO2)4N2] paddle-wheel secondary building units (SBUs). The noninterpenetrated structure contains unbound nitrogen and accessible oxygen atom-decorated porous channels and exhibits admirable stability in diverse organic solvents, open air, and at elevated temperatures. The heteroatom-decorated porous channels facilitated excellent CO2 uptake in the activated MOF (16a) with high selectivity over N2 (CO2/N2: 155.3) at 273 K. The framework further exhibits reasonable CO2 affinity and multicyclic CO2 sorption recurrence without a significant loss in the uptake capacity. Benefitting from the presence of the [Zn2(CO2)4N2] cluster in conjugation with π-conjugated organic ligands, the extended 3D network revealed an optical band gap energy of 2.55 eV, which makes the MOF an efficient photocatalyst toward the degradation of the cationic dyes crystal violet (CV) and methylene blue (MB) in the presence of a simple 40 W visible light lamp without any assistance of external oxidants. The catalyst exhibits multicyclic performance and short reaction time in addition to the fact that catalytic efficiencies (CV: 97.2%, MB: 97.8%) are comparable to those of contemporary materials.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Singh M, Borkhatariya N, Pramanik P, Dutta S, Ghosh SK, Maiti P, Neogi S, Maiti S. Microporous carbon derived from cotton stalk crop-residue across diverse geographical locations as efficient and regenerable CO2 adsorbent with selectivity. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Zhang X, Li T, Cao QL, Wang YJ, Hou WL, Wei J, Tian GH, Hu H, Sheng J, Geng L, Zhang DS, Zhang YZ, Li Q. Constructing [Co6(μ3-OH)6]-based pillar-layered MOF with open metal sites via steric-hindrance effect on ligand for CO2 adsorption and fixation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Kumar A, Sahoo SC, Mehta SK, Soni P, Sharma V, Kataria R. A luminescent Zn-MOF for the detection of explosives and development of fingerprints. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:700-707. [PMID: 35099486 DOI: 10.1039/d1ay01977e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A luminescent 3D metal-organic framework [Zn(NDA)(AMP)] = PUC1 (where, NDA = naphthalene-2,6-dicarboxylic acid and AMP = 4-aminomethyl pyridine) was synthesized under solvothermal conditions. The synthesized 3D framework was fully characterized with the help of different analytical techniques such as SCXRD, FTIR, TGA, PXRD, SEM, BET, etc. PUC1 exhibited a strong emission peak at 371 nm when excited at 290 nm and the resulting emission was efficiently quenched in the presence of various organic explosive substances like pentaerythritol tetranitrate (PETN), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX). PUC1 revealed highly sensitive and selective detection of PETN and Tetryl with high quenching constant values of 0.1 × 106 and 0.12 × 105 M-1 and low detection limits of 0.315 and 0.404 μM respectively. The strong luminescent properties of PUC1 lead to its successful application in the development of latent fingermarks on different non-porous surfaces using the powder dusting method. The accuracy and applicability of the synthesized material were determined by developing fingerprints by using secretions from eccrine and apocrine glands on a glass slide and various other surfaces, followed by dusting the surfaces. The results so obtained were found to be very accurate and promising.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | | | | | - Parmod Soni
- Department of Chemistry, Terminal Ballistics Research Laboratory (TBRL), Defence Research and Development Organisation, Chandigarh 160003, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India.
| | - Ramesh Kataria
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
18
|
|
19
|
Song Q, Xu D, David Wang W, Fang J, Sun X, Li F, Li B, Kou J, Zhu H, Dong Z. Ru clusters confined in Hydrogen-bonded organic frameworks for homogeneous catalytic hydrogenation of N-heterocyclic compounds with heterogeneous recyclability. J Catal 2022. [DOI: 10.1016/j.jcat.2021.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Singh M, Neogi S. Urea-engineering mediated hydrogen-bond donating Friedel−Crafts alkylation of indoles and nitroalkenes in dual-functionalized and microporous metal-organic framework with high recyclability and pore-fitting-induced size-selectivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00206j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an effective alternative to Lewis acid activation, hydrogen-bond donating (HBD) organo-catalysis denotes a powerful construction tool to important classes of carbon–carbon bonds, wherein metal-organic frameworks (MOFs) alleviate issues like...
Collapse
|
21
|
Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, Alemán J, Luque R, Garcia H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem Soc Rev 2022; 51:7810-7882. [DOI: 10.1039/d1cs00976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review summarizes the state-of-the-art of C–H active transformations over crystalline and amorphous porous materials as new emerging heterogeneous (photo)catalysts.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Yong Peng
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, EdificioMarie Curie (C-3), CtraNnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
22
|
Li C, Li H, Li C, Ren X, Yang Q. One-pot synthesis of mesosilica/nano covalent organic polymer composites and their synergistic effect in photocatalysis. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63812-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Seal N, Palakkal AS, Singh M, Goswami R, Pillai RS, Neogi S. Chemically Robust and Bifunctional Co(II)-Framework for Trace Detection of Assorted Organo-toxins and Highly Cooperative Deacetalization-Knoevenagel Condensation with Pore-Fitting-Induced Size-Selectivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28378-28389. [PMID: 34100579 DOI: 10.1021/acsami.1c07273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acute detection of assorted classes of organo-toxins in a practical environment is an important sustainable agenda, whereas cooperative and recyclable catalysis can mitigate hazards by minimizing energy requirements and reducing waste generation. We constructed an acid-/base-stable Co(II)-framework with a unique network topology, wherein unidirectional porous channels are decorated by anionic [Co2(μ2-OH)(COO)4(H2O)3] secondary building units and neutral [CoN2(COO)2] nodes. An intense luminescent signature of the hydrolytically robust framework is harnessed for the selective, fast-responsive, and regenerable detection of two detrimental organo-aromatics, 4-aminophenol (4-AP) and 2,4,6-trinitrophenol (TNP). Alongside remarkable quenching, their nanomolar detection limits (4-AP: 99.5 nM; TNP: 67.2 nM) rank among the lowest reported values in water and corroborate their ultra-sensitivity. Density functional theory (DFT) calculations verify the electron-transfer route of sensing through portraying redistribution of energy levels of molecular orbitals in a three-dimensional network by each analyte and further envisages non-covalent host-guest interactions. Benefiting from the concurrent existence of an open-metal site and a triphenylamine-moiety-functionalized ligand, the activated framework acts as an outstandingly cooperative heterogeneous catalyst in deacetalization-Knoevenagel condensation under mild conditions. The acid-base dual catalysis is detailed for the first time from combined inputs of control experiments and DFT validations. To the best of tandem reaction, larger-sized substrate exhibits insignificant conversion, and certifies rarest pore-fitting induced size-selectivity.
Collapse
Affiliation(s)
- Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Athulya S Palakkal
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Manpreet Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Ranadip Goswami
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Renjith S Pillai
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
24
|
Li X, Wei Y, Ma C, Jiang H, Gao M, Zhang S, Liu W, Huo P, Wang H, Wang L. Multichannel Electron Transmission and Fluorescence Resonance Energy Transfer in In 2S 3/Au/rGO Composite for CO 2 Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11755-11764. [PMID: 33683093 DOI: 10.1021/acsami.0c18809] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient electron transmission is an important step in the process of CO2 photoreduction. In this paper, a multi-interface-contacted In2S3/Au/reduced graphene oxide (rGO) photocatalyst with the fluorescence resonance energy transfer (FRET) mechanism has been successfully prepared by the solvothermal, self-assembly, and hydrothermal reduction processes. Photocatalytic CO2 reduction experiments showed that the In2S3/Au/rGO (IAr-3) composite exhibited excellent photoreduction performance and photocatalytic stability. The yields of CO and CH4 obtained after the photoreduction process with IAr-3 as the catalyst were around 4 and 6 times higher than those of pure In2S3, respectively. Photoelectrochemical analysis showed that the multi-interface contact and FRET mechanism greatly improved the generation, transmission, and separation efficiency of carriers photogenerated within the photocatalyst. In situ FTIR test was applied to analyze the photocatalytic CO2 reduction process. 13C isotope tracer test confirmed that the carbon source of CO and CH4 was the CO2 molecules in the photoreduction process rather than the decomposition of catalyst or TEOA. A potential enhanced photocatalytic mechanism has been discussed in total.
Collapse
Affiliation(s)
- Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanan Wei
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Changchang Ma
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Haopeng Jiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ming Gao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Simin Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenkai Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huiqin Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lili Wang
- College of Science, Changchun University, Changchun 130022, China
| |
Collapse
|
25
|
Juneja N, Zahid E, Unruh DK, Hutchins KM. Solid-state behaviors of imines: colossal biaxial positive thermal expansion, motion capability, and phase transitions. CrystEngComm 2021. [DOI: 10.1039/d1ce00706h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The torsional flexibility of imines affects solid-state packing and properties. Behaviors including colossal thermal expansion, pedal motion, and phase transitions in imine-containing solids are described.
Collapse
Affiliation(s)
- Navkiran Juneja
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Ethan Zahid
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Daniel K. Unruh
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | | |
Collapse
|
26
|
Mallakpour S, Azadi E, Hussain CM. Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00609f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the advancement of COF hybrid-based materials for diverse industrial applications.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|