1
|
Wang Y, Zhang Q, Nickle C, Zhang Z, Leoncini A, Qi DC, Borrini A, Han Y, Del Barco E, Thompson D, Nijhuis CA. Molecular-scale in-operando reconfigurable electronic hardware. NANOSCALE HORIZONS 2025; 10:349-358. [PMID: 39641761 PMCID: PMC11623307 DOI: 10.1039/d4nh00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
It is challenging to reconfigure devices at molecular length scales. Here we report molecular junctions based on molecular switches that toggle stably and reliably between multiple operations to reconfigure electronic devices at molecular length scales. Rather than static on/off switches that always revert to the same state, our voltage-driven molecular device dynamically switches between high and low conduction states during six consecutive proton-coupled electron transfer steps. By changing the applied voltage, different states are accessed resulting in in operando reconfigurable electronic functionalities of variable resistor, diode, memory, and NDR (negative differential conductance). The switching behavior is voltage driven but also has time-dependent features making it possible to access different memory states. This multi-functional switch represents molecular scale hardware operable in solid-state devices (in the form of electrode-monolayer-electrode junctions) that are interesting for areas of research where it is important to have access to time-dependent changes such as brain-inspired (or neuromorphic) electronics.
Collapse
Affiliation(s)
- Yulong Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qian Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Cameron Nickle
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Ziyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Andrea Leoncini
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Dong-Chen Qi
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Alessandro Borrini
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.
| | - Yingmei Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Christian A Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
2
|
Wang M, Zhou Q, Xu Z, Zhang GP. Azaindole: A Candidate Anchor for Regulating Charge Polarity and Inducing Resonance Transmission at the Fermi Level via Dehydrogenation. J Phys Chem A 2024; 128:9861-9868. [PMID: 39540284 DOI: 10.1021/acs.jpca.4c05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tuning the polarity of charge carriers is essential for designing molecular logic devices in molecular electronics. In this study, the electrical transport properties of a family of azaindole-anchored single-molecule junctions have been investigated using density functional theory combined with the nonequilibrium Green's function method. The obtained results reveal that dehydrogenation is an effective method for reversing the polarity of charge carriers. The molecular junctions based on the entire azaindole unit are n-type and contain electrons as the principal charge carriers, whereas the dehydrogenated junctions are p-type and contain holes as the main carriers. Furthermore, the azaindole anchors undergo a transition from an electron-rich to an electron-deficient state due to dehydrogenation, which is the original cause of the charge carrier polarity conversion. Dehydrogenated molecular junctions also exhibit the Fermi pinning effect and a sharp highest occupied molecular orbital (HOMO) resonance peak at the Fermi level. In addition, using Pt electrodes instead of Au electrodes is a means of producing a HOMO resonance peak a for azaindole-based molecular junctions. This work demonstrates the enormous potential of utilizing azaindole-anchored molecular junctions for the implementation of molecular logic and multifunctional molecular devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Qi Zhou
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Zirui Xu
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
3
|
Zinelli R, Soni S, Cornelissen JJLM, Michel-Souzy S, Nijhuis CA. Charge Transport across Proteins inside Proteins: Tunneling across Encapsulin Protein Cages and the Effect of Cargo Proteins. Biomolecules 2023; 13:174. [PMID: 36671559 PMCID: PMC9855946 DOI: 10.3390/biom13010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Charge transport across proteins can be surprisingly efficient over long distances-so-called long-range tunneling-but it is still unclear as to why and under which conditions (e.g., presence of co-factors, type of cargo) the long-range tunneling regime can be accessed. This paper describes molecular tunneling junctions based on an encapsulin (Enc), which is a large protein cage with a diameter of 24 nm that can be loaded with various types of (small) proteins, also referred to as "cargo". We demonstrate with dynamic light scattering, transmission electron microscopy, and atomic force microscopy that Enc, with and without cargo, can be made stable in solution and immobilized on metal electrodes without aggregation. We investigated the electronic properties of Enc in EGaIn-based tunnel junctions (EGaIn = eutectic alloy of Ga and In that is widely used to contact (bio)molecular monolayers) by measuring the current density for a large range of applied bias of ±2.5 V. The encapsulated cargo has an important effect on the electrical properties of the junctions. The measured current densities are higher for junctions with Enc loaded with redox-active cargo (ferritin-like protein) than those junctions without cargo or redox-inactive cargo (green fluorescent protein). These findings open the door to charge transport studies across complex biomolecular hierarchical structures.
Collapse
Affiliation(s)
- Riccardo Zinelli
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Saurabh Soni
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Sandra Michel-Souzy
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Christian A. Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| |
Collapse
|
4
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
5
|
Nguyen QV, Thi HL, Truong GL. Chemical Conformation Induced Transport Carrier Switching in Molecular Junction based on Carboxylic-Terminated Thiol Molecules. NANO LETTERS 2022; 22:10147-10153. [PMID: 36475760 DOI: 10.1021/acs.nanolett.2c04031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The paper demonstrates the effect of the chemical conformation of the -COOH group on the transport characteristic including conductance, rectification, and length effect in molecular junctions (MJs) formed by self-assembled monolayers of carboxylic-terminated thiol molecules. For an alkyl chain shorter than C11, the transport mechanism was attributed to a direct off-resonant tunneling of a hole carrier, located at the Au-S interface, whereas a hopping mechanism was assigned to the alkyl chain longer than the C11 chain located at the -COOH group. The hopping mechanism may be operated by electron transport associated with the breaking of the -OH bonding likely driven by a voltage. Importantly, at the C11 alkyl chain, we observed that the transport carrier operating in MJs could change from a hole carrier into an electron carrier. The result strongly proves that the chemical conformation should be considered in analyzing molecular electronics and provides a basis for the rational design of molecular electronic devices.
Collapse
Affiliation(s)
- Quyen Van Nguyen
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Huong Le Thi
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Giang Le Truong
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| |
Collapse
|
6
|
Huez C, Guérin D, Lenfant S, Volatron F, Calame M, Perrin ML, Proust A, Vuillaume D. Redox-controlled conductance of polyoxometalate molecular junctions. NANOSCALE 2022; 14:13790-13800. [PMID: 36102689 DOI: 10.1039/d2nr03457c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate the reversible in situ photoreduction of molecular junctions of a phosphomolybdate [PMo12O40]3- monolayer self-assembled on flat gold electrodes, connected by the tip of a conductive atomic force microscope. The conductance of the one electron reduced [PMo12O40]4- molecular junction is increased by ∼10, and this open-shell state is stable in the junction in air at room temperature. The analysis of a large current-voltage dataset by unsupervised machine learning and clustering algorithms reveals that the electron transport in the pristine phosphomolybdate junctions leads to symmetric current-voltage curves, controlled by the lowest unoccupied molecular orbital (LUMO) at 0.6-0.7 eV above the Fermi energy with ∼25% of the junctions having a better electronic coupling to the electrodes than the main part of the dataset. This analysis also shows that a small fraction (∼18% of the dataset) of the molecules is already reduced. The UV light in situ photoreduced phosphomolybdate junctions systematically feature slightly asymmetric current-voltage behaviors, which is ascribed to the electron transport mediated by the single occupied molecular orbital (SOMO) nearly at resonance with the Fermi energy of the electrodes and by a closely located single unoccupied molecular orbital (SUMO) at ∼0.3 eV above the SOMO with a weak electronic coupling to the electrodes (∼50% of the dataset) or at ∼0.4 eV but with a better electrode coupling (∼50% of the dataset). These results shed light on the electronic properties of reversible switchable redox polyoxometalates, a key point for potential applications in nanoelectronic devices.
Collapse
Affiliation(s)
- Cécile Huez
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - David Guérin
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Stéphane Lenfant
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Florence Volatron
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Michel Calame
- EMPA, Transport at the Nanoscale Laboratory, 8600 Dübendorf, Switzerland
- Dept. of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Mickael L Perrin
- EMPA, Transport at the Nanoscale Laboratory, 8600 Dübendorf, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Anna Proust
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Dominique Vuillaume
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| |
Collapse
|
7
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
8
|
Carlotti M, Soni S, Kovalchuk A, Kumar S, Hofmann S, Chiechi RC. Empirical Parameter to Compare Molecule-Electrode Interfaces in Large-Area Molecular Junctions. ACS PHYSICAL CHEMISTRY AU 2022; 2:179-190. [PMID: 35637782 PMCID: PMC9136952 DOI: 10.1021/acsphyschemau.1c00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022]
Abstract
![]()
This paper describes
a simple model for comparing the degree of
electronic coupling between molecules and electrodes across different
large-area molecular junctions. The resulting coupling parameter can
be obtained directly from current–voltage data or extracted
from published data without fitting. We demonstrate the generalizability
of this model by comparing over 40 different junctions comprising
different molecules and measured by different laboratories. The results
agree with existing models, reflect differences in mechanisms of charge
transport and rectification, and are predictive in cases where experimental
limitations preclude more sophisticated modeling. We also synthesized
a series of conjugated molecular wires, in which embedded dipoles
are varied systematically and at both molecule–electrode interfaces.
The resulting current–voltage characteristics vary in nonintuitive
ways that are not captured by existing models, but which produce trends
using our simple model, providing insights that are otherwise difficult
or impossible to explain. The utility of our model is its demonstrative
generalizability, which is why simple observables like tunneling decay
coefficients remain so widely used in molecular electronics despite
the existence of much more sophisticated models. Our model is complementary,
giving insights into molecule–electrode coupling across series
of molecules that can guide synthetic chemists in the design of new
molecular motifs, particularly in the context of devices comprising
large-area molecular junctions.
Collapse
Affiliation(s)
- Marco Carlotti
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saurabh Soni
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andrii Kovalchuk
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sumit Kumar
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Stephan Hofmann
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Kong GD, Byeon SE, Jang J, Kim JW, Yoon HJ. Electronic Mechanism of In Situ Inversion of Rectification Polarity in Supramolecular Engineered Monolayer. J Am Chem Soc 2022; 144:7966-7971. [PMID: 35500106 DOI: 10.1021/jacs.2c02391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This Communication describes polarity inversion in molecular rectification and the related mechanism. Using a supramolecular engineered, ultrastable, binary-mixed self-assembled monolayer (SAM) composed of an organic molecular diode (SC11BIPY) and an inert reinforcement molecule (SC8), we probed a rectification ratio (r)-voltage relationship over an unprecedentedly wide voltage range (up to |3.5 V|) with statistical significance. We observed positive polarity in rectification at |1.0 V| (r = 107), followed by disappearance of rectification at ∼|2.25 V|, and then eventual emergence of new rectification with the opposite polarity at ∼|3.5 V| (r = 0.006; 1/r = 162). The polarity inversion occurred with a span over 4 orders of magnitude in r. Low-temperature experiments, electronic structure analysis, and theoretical calculations revealed that the unusually wide voltage range permits access to molecular orbital energy levels that are inaccessible in the traditional narrow voltage regime, inducing the unprecedented in situ inversion of polarity.
Collapse
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seo Eun Byeon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jeong Won Kim
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
10
|
Tian L, Martine E, Yu X, Hu W. Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12223-12233. [PMID: 34606290 DOI: 10.1021/acs.langmuir.1c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We studied the structure and transport properties of aromatic amine self-assembled monolayers (NH2-SAMs) on an Au surface. The oligophenylene and oligoacene amines with variable lengths can form a densely packed and uniform monolayer under proper assembly conditions. Molecular junctions incorporating an eutectic Ga-In (EGaIn) top electrode were used to characterize the charge transport properties of the amine monolayer. The current density J of the junction decreases exponentially with the molecular length (d), as J = J0 exp(-βd), which is a sign of tunneling transport, with indistinguishable values of J0 and β for NH2-SAMs of oligophenylene and oligoacene, indicating a similar molecule-electrode contact and tunneling barrier for two groups of molecules. Compared with the oligophenylene and oligoacene molecules with thiol (SH) as the anchor group, a similar β value (∼0.35 Å-1) of the aromatic NH2-SAM suggests a similar tunneling barrier, while a lower (by 2 orders of magnitude) injection current J0 is attributed to lower electronic coupling Γ of the amine group with the electrode. These observations are further supported by single-level tunneling model fitting. Our study here demonstrates the NH2-SAMs can work as an effective active layer for molecular junctions, and provide key physical parameters for the charge transport, paving the road for their applications in functional devices.
Collapse
Affiliation(s)
- Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Esther Martine
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
11
|
Xie Z, Bâldea I, Nguyen QV, Frisbie CD. Quantitative analysis of weak current rectification in molecular tunnel junctions subject to mechanical deformation reveals two different rectification mechanisms for oligophenylene thiols versus alkane thiols. NANOSCALE 2021; 13:16755-16768. [PMID: 34604892 DOI: 10.1039/d1nr04410a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-molecule-metal junctions based on alkane thiol (CnT) and oligophenylene thiol (OPTn) self-assembled monolayers (SAMs) and Au electrodes are expected to exhibit similar electrical asymmetry, as both junctions have one chemisorbed Au-S contact and one physisorbed, van der Waals contact. Asymmetry is quantified by the current rectification ratio RR apparent in the current-voltage (I-V) characteristics. Here we show that RR < 1 for CnT and RR > 1 for OPTn junctions, in contrast to expectation, and further, that RR behaves very differently for CnT and OPTn junctions under mechanical extension using the conducting probe atomic force microscopy (CP-AFM) testbed. The analysis presented in this paper, which leverages results from the previously validated single level model and ab initio quantum chemical calculations, allows us to explain the puzzling experimental findings for CnT and OPTn in terms of different current rectification mechanisms. Specifically, in CnT-based junctions the Stark effect creates the HOMO level shifting necessary for rectification, while for OPTn junctions the level shift arises from position-dependent coupling of the HOMO wavefunction with the junction electrostatic potential profile. On the basis of these mechanisms, our quantum chemical calculations allow quantitative description of the impact of mechanical deformation on the measured current rectification. Additionally, our analysis, matched to experiment, facilitates direct estimation of the impact of intramolecular electrostatic screening on the junction potential profile. Overall, our examination of current rectification in benchmark molecular tunnel junctions illuminates key physical mechanisms at play in single step tunneling through molecules, and demonstrates the quantitative agreement that can be obtained between experiment and theory in these systems.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | - Quyen Van Nguyen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
12
|
Li S, Jiang Y, Wang Y, Sanvito S, Hou S. In Situ Tuning of the Charge-Carrier Polarity in Imidazole-Linked Single-Molecule Junctions. J Phys Chem Lett 2021; 12:7596-7604. [PMID: 34347489 DOI: 10.1021/acs.jpclett.1c01996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Manipulating the nature of the charge carriers at the single-molecule level is one of the major challenges of molecular electronics. Using first-principles quantum transport calculations, we have investigated the electronic transport properties of imidazole-linked single-molecule junctions and identified the hydrogen atom bonded to the pyrrole-like nitrogen in imidazole as a switch to tune the polarity of the charge carriers. Our calculations show that the chemical nature of the imidazole anchors is dramatically altered by dehydrogenation, which changes the dominant charge carriers from electrons to holes. It is also revealed that upon dehydrogenation the interfacial Au-N bonds are modified from donor-acceptor-like to covalent, along with a significant promotion of the low-bias conductance and the junction stability. At variance with other traditional methods that always require drastic modifications of the junction structure, our findings provide a promising approach to tailor in situ the polarity of charge carriers in molecular electronic devices.
Collapse
Affiliation(s)
- Shi Li
- Center for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Yuxuan Jiang
- Center for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Yongfeng Wang
- Center for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Stefano Sanvito
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Shimin Hou
- Center for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Han Y, Nickle C, Maglione MS, Karuppannan SK, Casado‐Montenegro J, Qi D, Chen X, Tadich A, Cowie B, Mas‐Torrent M, Rovira C, Cornil J, Veciana J, del Barco E, Nijhuis CA. Bias-Polarity-Dependent Direct and Inverted Marcus Charge Transport Affecting Rectification in a Redox-Active Molecular Junction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100055. [PMID: 34145786 PMCID: PMC8292891 DOI: 10.1002/advs.202100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/25/2021] [Indexed: 05/11/2023]
Abstract
This paper describes the transition from the normal to inverted Marcus region in solid-state tunnel junctions consisting of self-assembled monolayers of benzotetrathiafulvalene (BTTF), and how this transition determines the performance of a molecular diode. Temperature-dependent normalized differential conductance analyses indicate the participation of the HOMO (highest occupied molecular orbital) at large negative bias, which follows typical thermally activated hopping behavior associated with the normal Marcus regime. In contrast, hopping involving the HOMO dominates the mechanism of charge transport at positive bias, yet it is nearly activationless indicating the junction operates in the inverted Marcus region. Thus, within the same junction it is possible to switch between Marcus and inverted Marcus regimes by changing the bias polarity. Consequently, the current only decreases with decreasing temperature at negative bias when hopping is "frozen out," but not at positive bias resulting in a 30-fold increase in the molecular rectification efficiency. These results indicate that the charge transport in the inverted Marcus region is readily accessible in junctions with redox molecules in the weak coupling regime and control over different hopping regimes can be used to improve junction performance.
Collapse
Affiliation(s)
- Yingmei Han
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Cameron Nickle
- Department of PhysicsUniversity of Central FloridaOrlandoFL32816USA
| | - Maria Serena Maglione
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC)/CIBER‐BBNCampus de la UABBellaterra08193Spain
| | | | - Javier Casado‐Montenegro
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC)/CIBER‐BBNCampus de la UABBellaterra08193Spain
| | - Dong‐Chen Qi
- Centre for Materials ScienceSchool of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Xiaoping Chen
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Anton Tadich
- Australian Synchrotron ClaytonVictoria3168Australia
| | - Bruce Cowie
- Australian Synchrotron ClaytonVictoria3168Australia
| | - Marta Mas‐Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC)/CIBER‐BBNCampus de la UABBellaterra08193Spain
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC)/CIBER‐BBNCampus de la UABBellaterra08193Spain
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsPlace du Parc 20MonsB‐7000Belgium
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC)/CIBER‐BBNCampus de la UABBellaterra08193Spain
| | | | - Christian A. Nijhuis
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
- Centre for Advanced 2D Materials and Graphene Research CenterNational University of Singapore6 Science Drive 2Singapore117546Singapore
- Hybrid Materials for Opto‐Electronics GroupDepartment of Molecules and MaterialsMESA+ Institute for Nanotechnology and Center for Brain‐Inspired Nano SystemsFaculty of Science and TechnologyUniversity of TwenteP.O. Box 217EnschedeAE 7500The Netherlands
| |
Collapse
|
14
|
Lapham P, Vilà-Nadal L, Cronin L, Georgiev VP. Influence of the Contact Geometry and Counterions on the Current Flow and Charge Transfer in Polyoxometalate Molecular Junctions: A Density Functional Theory Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:3599-3610. [PMID: 33633816 PMCID: PMC7899180 DOI: 10.1021/acs.jpcc.0c11038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Indexed: 05/08/2023]
Abstract
Polyoxometalates (POMs) are promising candidates for molecular electronic applications because (1) they are inorganic molecules, which have better CMOS compatibility compared to organic molecules; (2) they are easily synthesized in a one-pot reaction from metal oxides (MO x ) (where the metal M can be, e.g., W, V, or Mo, and x is an integer between 4 and 7); (3) POMs can self-assemble to form various shapes and configurations, and thus the chemical synthesis can be tailored for specific device performance; and (4) they are redox-active with multiple states that have a very low voltage switching between polarized states. However, a deep understanding is required if we are to make commercial molecular devices a reality. Simulation and modeling are the most time efficient and cost-effective methods to evaluate a potential device performance. Here, we use density functional theory in combination with nonequilibrium Green's function to study the transport properties of [W18O54(SO3)2]4-, a POM cluster, in a variety of molecular junction configurations. Our calculations reveal that the transport profile not only is linked to the electronic structure of the molecule but also is influenced by contact geometry and presence of ions. More specifically, the contact geometry and the number of bonds between the POM and the electrodes determine the current flow. Hence, strong and reproducible contact between the leads and the molecule is mandatory to establish a reliable fabrication process. Moreover, although often ignored, our simulations show that the charge balancing counterions activate the conductance channels intrinsic to the molecule, leading to a dramatic increase in the computed current at low bias. Therefore, the role of these counterions cannot be ignored when molecular based devices are fabricated. In summary, this work shows that the current transport in POM junctions is determined by not only the contact geometry between the molecule and the electrode but also the presence of ions around the molecule. This significantly impacts the transport properties in such nanoscale molecular electronic devices.
Collapse
Affiliation(s)
- Paul Lapham
- Device Modelling Group, James Watt School of
Engineering, The University of Glasgow, G12 8QQ Glasgow,
U.K.
| | - Laia Vilà-Nadal
- School of Chemistry, The University of
Glasgow, G12 8QQ Glasgow, U.K.
| | - Leroy Cronin
- School of Chemistry, The University of
Glasgow, G12 8QQ Glasgow, U.K.
| | - Vihar P. Georgiev
- Device Modelling Group, James Watt School of
Engineering, The University of Glasgow, G12 8QQ Glasgow,
U.K.
- (V.P.G.)
| |
Collapse
|
15
|
Gupta NK, Schultz T, Karuppannan SK, Vilan A, Koch N, Nijhuis CA. The energy level alignment of the ferrocene-EGaIn interface studied with photoelectron spectroscopy. Phys Chem Chem Phys 2021; 23:13458-13467. [PMID: 34095913 DOI: 10.1039/d1cp01690c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The energy level alignment after the formation of a molecular tunnel junction is often poorly understood because spectroscopy inside junctions is not possible, which hampers the rational design of functional molecular junctions and complicates the interpretation of the data generated by molecular junctions. In molecular junction platforms where the top electrode-molecule interaction is weak; one may argue that the energy level alignment can be deduced from measurements with the molecules supported by the bottom electrode (sometimes referred to as "half junctions"). This approach, however, still relies on a series of assumptions, which are challenging to address experimentally due to difficulties in studying the molecule-top electrode interaction. Herein, we describe top electrode-molecule junctions with a liquid metal alloy top electrode of EGaIn (which stands for eutectic alloy of Ga and In) interacting with well-characterised ferrocene (Fc) moieties. We deposited a ferrocene derivative on films of EGaIn, coated with its native GaOx layer, and studied the energy level alignment with photoelectron spectroscopy. Our results reveal that the electronic interaction between the Fc and GaOx/EGaIn is very weak, resembling physisorption. Therefore, investigations of "half junctions" for this system can provide valuable information regarding the energy level alignment of complete EGaIn junctions. Our results help to improve our understanding of the energy landscape in weakly coupled molecular junctions and aid to the rational design of molecular electronic devices.
Collapse
Affiliation(s)
- Nipun Kumar Gupta
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Thorsten Schultz
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Senthil Kumar Karuppannan
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ayelet Vilan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Norbert Koch
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Christian A Nijhuis
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore and Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|