1
|
Zhang W, Chen W, Li Y, Song Y, Sun H, Liang K, Liu S. Optimization of Si doping in GaN nanowires for high-performance photoelectrochemical photodetectors. OPTICS LETTERS 2025; 50:3034-3037. [PMID: 40310829 DOI: 10.1364/ol.561985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Photoelectrochemical-type photodetectors (PEC PDs) have received extensive attention owing to their low cost, simple fabrication process, and high photoresponse adjustability. Here, we fabricated GaN nanowires with different Si-doping concentrations by changing the temperature of the silicon cell in plasma-assisted molecular beam epitaxy. The influence of Si-doping concentration on the PEC PD performance of GaN-based nanowire photoelectrodes was studied. The experimental results show that the photoresponse performance of the PEC PD can be significantly improved by adjusting the Si-doping concentration of GaN nanowire. When Tsi = 1120°C, the doped GaN nanowires photoelectrode exhibited the maximum photoresponse, which was 20 times greater than that of undoped GaN nanowire photoelectrode.
Collapse
|
2
|
Tang X, Jiang H, Lin Z, Wang X, Wang W, Li G. Wafer-Scale Vertical 1D GaN Nanorods/2D MoS 2/PEDOT:PSS for Piezophototronic Effect-Enhanced Self-Powered Flexible Photodetectors. NANO-MICRO LETTERS 2024; 17:56. [PMID: 39497008 PMCID: PMC11534966 DOI: 10.1007/s40820-024-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/29/2024] [Indexed: 11/06/2024]
Abstract
van der Waals (vdW) heterostructures constructed by low-dimensional (0D, 1D, and 2D) materials are emerging as one of the most appealing systems in next-generation flexible photodetection. Currently, hand-stacked vdW-type photodetectors are not compatible with large-area-array fabrication and show unimpressive performance in self-powered mode. Herein, vertical 1D GaN nanorods arrays (NRAs)/2D MoS2/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly. The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W-1 and a high detectivity of 1.2 × 1011 Jones, as well as a fast response speed of 54/71 µs, thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction. Notably, the strain-tunable photodetection performances of device have been demonstrated. Impressively, the device at - 0.78% strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W-1, a detectivity of 2.6 × 1011 Jones, and response times of 40/45 µs, which are superior to the state-of-the-art self-powered flexible photodetectors. This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection, which performs well in flexible sensors.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Hongsheng Jiang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Zhengliang Lin
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xuan Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
3
|
Dai S, Gu Y, Guo J, Xie F, Liu Y, Yang X, Zhang X, Zhang X, Qian W, Yang G. Metal-semiconductor-metal solar-blind ultraviolet photodetector based on Al 0.55Ga 0.45N/Al 0.4Ga 0.6N/Al 0.65Ga 0.35N heterostructures. OPTICS EXPRESS 2023; 31:30495-30504. [PMID: 37710590 DOI: 10.1364/oe.500589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
We have designed a metal-semiconductor-metal (MSM) solar-blind ultraviolet (UV) photodetector (PD) by utilizing Al0.55Ga0.45N/Al0.4Ga0.6N/Al0.65Ga0.35N heterostructures. The interdigital Ni/Au metal stack is deposited on the Al0.55Ga0.45N layer to form Schottky contacts. The AlGaN hetero-epilayers with varying Al content contribute to the formation of a two-dimensional electron gas (2DEG) conduction channel and the enhancement of the built-in electric field in the Al0.4Ga0.6N absorption layer. This strong electric field facilitates the efficient separation of photogenerated electron-hole pairs. Consequently, the fabricated PD exhibits an ultra-low dark current of 1.6 × 10-11 A and a broad spectral response ranging from 220 to 280 nm, with a peak responsivity of 14.08 A/W at -20 V. Besides, the PD demonstrates an ultrahigh detectivity of 2.28 × 1013 Jones at -5 V. Furthermore, to investigate the underlying physical mechanism of the designed solar-blind UV PD, we have conducted comprehensive two-dimensional device simulations.
Collapse
|
4
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
5
|
Xu T, Yang L, Zhang X, Lu G, Bai Z. A highly sensitive electrochemical sensor by growing Ag nanoparticles on the surface of PPy@PEDOT:PSS film for detecting sodium hydroxymethanesulfinate molecules. Food Chem X 2023; 18:100701. [PMID: 37397227 PMCID: PMC10314181 DOI: 10.1016/j.fochx.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 07/04/2023] Open
Abstract
A high-sensitivity electrochemical sensor was fabricated via in situ growth of Ag nanoparticles (AgNPs) on the surface of a polypyrrole@poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PPy@PEDOT:PSS) film for detecting sodium hydroxymethanesulfinate (SHF) molecules in milk and rice flour samples. The sensor fabrication process involved randomly decorating Ag seed points on the porous PPy@PEDOT:PSS film via a chemical reduction process using a AgNO3 solution. Next, AgNPs were anchored on the PPy@PEDOT:PSS film surface using an electrochemical deposition method to prepare a sensor electrode. Under optimal conditions, the sensor exhibits a good linear relation within a range of 1-130 ng/mL for real milk and rice flour samples and its limit-of-detection values were up to 0.58 and 0.29 ng/mL, respectively. Additionally, Raman spectroscopy was used to identify the byproducts of the chemical reaction, such as formaldehyde. This AgNP/PPy@PEDOT:PSS film-based electrochemical sensor offers a simple and rapid method for detecting SHF molecules in food products.
Collapse
Affiliation(s)
- Tianwen Xu
- College of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Li Yang
- College of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Xin Zhang
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Guo Lu
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Zhongchen Bai
- College of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City 550025, China
| |
Collapse
|
6
|
One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction. Catalysts 2023. [DOI: 10.3390/catal13030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Precise regulation and control solar-light-driven charges photoexcited on photocatalysts for separation-transfer and target redox reactions is an attractive and challenging pathway toward sustainability. Herein, 0D/2D-3D Pt/In2S3 Schottky junction was fabricated for simultaneous selective phenylcarbinol conversion into value-added aldehydes and production of clean energy H2 by directly utilizing photoexcited holes and electrons in one reaction system under mild reaction conditions. In contrast to pure water splitting and pure In2S3, the reaction thermodynamics and kinetics of H2 evolution on the Pt/In2S3 were significantly enhanced. The optimized 0.3% Pt/In2S3 exhibited the highest and most stable photocatalytic activity with 22.1 mmol g−1 h−1 of H2 production rate and almost 100% selectivity of benzaldehyde production. Notably, this dual-function photocatalysis also exhibited superiority in contrast to sacrificial-agent H2 evolution reactions such as lactic acid, Na2S, methanol and triethanolamine. The turnover frequency (TOF) could reach up to ~2394 h−1. The Pt clusters anchored at the electron location and strong metal-support interactions (SMSI) between Pt and In2S3 synergistically improved the spatial charge separation and directional transportation (~90.1% of the charge transport efficiency could be achieved over the Pt/In2S3 hybrid), and thus result in significant enhancement of photocatalytic H2 evolution with simultaneous benzaldehyde production.
Collapse
|
7
|
Yuan D, Wan L, Zhang H, Jiang J, Liu B, Li Y, Su Z, Zhai J. An Internal-Electrostatic-Field-Boosted Self-Powered Ultraviolet Photodetector. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3200. [PMID: 36144988 PMCID: PMC9503600 DOI: 10.3390/nano12183200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Self-powered photodetectors are of significance for the development of low-energy-consumption and environment-friendly Internet of Things. The performance of semiconductor-based self-powered photodetectors is limited by the low quality of junctions. Here, a novel strategy was proposed for developing high-performance self-powered photodetectors with boosted electrostatic potential. The proposed self-powered ultraviolet (UV) photodetector consisted of an indium tin oxide and titanium dioxide (ITO/TiO2) heterojunction and an electret film (poly tetra fluoroethylene, PTFE). The PTFE layer introduces a built-in electrostatic field to highly enhance the photovoltaic effect, and its high internal resistance greatly reduces the dark current, and thus remarkable performances were achieved. The self-powered UV photodetector with PTFE demonstrated an extremely high on-off ratio of 2.49 × 105, a responsivity of 76.87 mA/W, a response rise time of 7.44 ms, and a decay time of 3.75 ms. Furthermore, the device exhibited exceptional stability from room temperature to 70 °C. Compared with the conventional ITO/TiO2 heterojunction without the PTFE layer, the photoresponse of the detector improved by 442-fold, and the light-dark ratio was increased by 8.40 × 105 times. In addition, the detector is simple, easy to fabricate, and low cost. Therefore, it can be used on a large scale. The electrostatic modulation effect is universal for various types of semiconductor junctions and is expected to inspire more innovative applications in optoelectronic and microelectronic devices.
Collapse
Affiliation(s)
- Dingcheng Yuan
- Center on Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Lingyu Wan
- Center on Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Haiming Zhang
- Center on Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiang Jiang
- Center on Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Boxun Liu
- Center on Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongsheng Li
- Center on Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zihan Su
- Center on Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Junyi Zhai
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
8
|
Kadir A, Jamal R, Abdiryim T, Liu X, Zhang H, Serkjan N, Zou D, Liu YJ. Ultraviolet Photodetector Based on Poly(3,4-Ethylenedioxyselenophene)/ZnO Core-Shell Nanorods p-n Heterojunction. NANOSCALE RESEARCH LETTERS 2022; 17:67. [PMID: 35876971 PMCID: PMC9314489 DOI: 10.1186/s11671-022-03705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 05/08/2023]
Abstract
In this work, we successfully assembled an organic-inorganic core-shell hybrid p-n heterojunction ultraviolet photodetector by the electropolymerization deposition of poly(3,4-ethylenedioxyselenophene) (PEDOS) on the surface of zinc oxide nanoarrays (ZnO NRs). The structures of composite were confirmed by FTIR, UV-Vis, XRD and XPS. Mott-Schottky analysis was used to study the p-n heterojunction structure. The photodetection properties of ZnO NRs/PEDOS heterojunction ultraviolet photodetector were systematically investigated current-voltage (I-V) and current-time (I-t) analysis under different bias voltages. The results showed that PEDOS films uniformly grew on ZnO NRs surface and core-shell structure was formed. The p-n heterojunction structure was formed with strong built-in electric field between ZnO NRs and PEDOS. Under the irradiation of UV light, the device showed a good rectification behavior. The responsivity, detection rate and the external quantum efficiency of the ultraviolet photodetector reached to 247.7 A/W, 3.41 × 1012 Jones and 84,000% at 2 V bias, respectively. The rise time (τr) and fall time (τf) of ZnO NRs/PEDOS UV photodetector were obviously shortened compared to ZnO UV photodetector. The results show that the introduction of PEDOS effectively improves the performance of the UV photodetector.
Collapse
Affiliation(s)
- Aygul Kadir
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Petroleum and Gas Fine Chemicals, Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Petroleum and Gas Fine Chemicals, Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China.
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Hujun Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Nawrzhan Serkjan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Dongna Zou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Ya Jun Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| |
Collapse
|
9
|
Zhang Y, Jiang Y, Duan Z, Wu Y, Zhao Q, Liu B, Huang Q, Yuan Z, Li X, Tai H. Edge-enriched MoS 2 nanosheets modified porous nanosheet-assembled hierarchical In 2O 3 microflowers for room temperature detection of NO 2 with ultrahigh sensitivity and selectivity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128836. [PMID: 35421674 DOI: 10.1016/j.jhazmat.2022.128836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09-5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors.
Collapse
Affiliation(s)
- Yajie Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yingwei Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Qiuni Zhao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Bohao Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Qi Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Xian Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China.
| |
Collapse
|
10
|
Lee DH, Park T, Yoo H. Biodegradable Polymer Composites for Electrophysiological Signal Sensing. Polymers (Basel) 2022; 14:polym14142875. [PMID: 35890650 PMCID: PMC9323782 DOI: 10.3390/polym14142875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/23/2022] Open
Abstract
Electrophysiological signals are collected to characterize human health and applied in various fields, such as medicine, engineering, and pharmaceuticals. Studies of electrophysiological signals have focused on accurate signal acquisition, real-time monitoring, and signal interpretation. Furthermore, the development of electronic devices consisting of biodegradable and biocompatible materials has been attracting attention over the last decade. In this regard, this review presents a timely overview of electrophysiological signals collected with biodegradable polymer electrodes. Candidate polymers that can constitute biodegradable polymer electrodes are systemically classified by their essential properties for collecting electrophysiological signals. Moreover, electrophysiological signals, such as electrocardiograms, electromyograms, and electroencephalograms subdivided with human organs, are discussed. In addition, the evaluation of the biodegradability of various electrodes with an electrophysiology signal collection purpose is comprehensively revisited.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
| | - Taehyun Park
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
- Correspondence:
| |
Collapse
|
11
|
Zheng Z, Wang W, Wu F, Wang Z, Shan M, Zhao Y, Liu W, Jian P, Dai J, Lu H, Chen C. Flexible assembly of the PEDOT: PSS/ exfoliated β-Ga 2O 3 microwire hybrid heterojunction for high-performance self-powered solar-blind photodetector. OPTICS EXPRESS 2022; 30:21822-21832. [PMID: 36224894 DOI: 10.1364/oe.461342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/22/2022] [Indexed: 06/16/2023]
Abstract
Motivated by the goals of fabricating highly reliable, high performance, and cost-efficient self-powered photodetector (PD) for numerous scientific research and civil fields, an organic-inorganic hybrid solar-blind ultraviolet (UV) PD based on PEDOT: PSS/exfoliated β-Ga2O3 microwire heterojunction was fabricated by a flexible and cost-effective assembly method. Benefiting from the heterojunction constructed by the highly crystalline β-Ga2O3 and the excellent hole transport layer PEDOT: PSS, the device presents a high responsivity of 39.8 mA/W at 250 nm and a sharp cut-off edge at 280 nm without any power supply. Additionally, the ultra-high normalized photo-to-dark current ratio (> 104 mW-1cm2) under reverse bias and the superior detectivity of 2.4×1012 Jones at zero bias demonstrate the excellent detection capabilities. Furthermore, the hybrid PD exhibits a rapid rise time (several milliseconds) and high rejection ratio (R250/R365: 5.8 × 103), which further highlights its good spectral selectivity for solar-blind UV. The prominent performance is mainly ascribed to the efficient separation of the photogenerated carriers by the large built-in electric field of the advanced heterojunction. This flexible assembly strategy for solar-blind UV PD combines the advantages of high efficiency, low cost and high performance, providing more potential for PD investigation and application in the future.
Collapse
|
12
|
Pasupuleti KS, Reddeppa M, Chougule SS, Bak NH, Nam DJ, Jung N, Cho HD, Kim SG, Kim MD. High performance langasite based SAW NO 2 gas sensor using 2D g-C 3N 4@TiO 2 hybrid nanocomposite. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128174. [PMID: 34995998 DOI: 10.1016/j.jhazmat.2021.128174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen dioxide (NO2) gas has emerged as a severe air pollutant that causes damages to the environment, human life and global ecosystems etc. However, the currently available NO2 gas sensors suffers from insufficient selectivity, sensitivity and long response times that impeding their practical applicability for room temperature (RT) gas sensing. Herein, we report a high performance langasite (LGS) based surface acoustic wave (SAW) RT NO2 gas sensor using 2-dimensional (2D) g-C3N4@TiO2 nanoplates (NP) with {001} facets hybrid nanocomposite as a chemical interface. The g-C3N4@TiO2 NP/LGS SAW device showed a significant negative frequency shift (∆f) of ~19.8 kHz which is 2.4 fold higher than that of the pristine TiO2 NP/LGS SAW sensor toward 100 ppm of NO2 at RT. In addition, the hybrid SAW device fascinatingly exhibited a fast response/recovery time with a low detection limit, high selectivity, and an effective long term stability toward NO2 gas. It also exhibited an enhanced and robust negative frequency shifts under various relative humidity conditions ranging from 20% to 80% for 100 ppm of NO2 gas. The high performance of the g-C3N4 @TiO2 NP/LGS SAW gas sensor can be attributed to the enhanced mass loading effect which was assisted by the large surface area, oxygen vacancies, OH and amine functional groups of the n-n hybrid heterojunction of g-C3N4@TiO2 NP that provide abundant active sites for the adsorption and diffusion of NO2 gas molecules. These results emphasize the significance of the integration of 2D materials with metal oxides for SAW based RT gas sensing technology holds great promise in environmental protection.
Collapse
Affiliation(s)
| | - Maddaka Reddeppa
- Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - S S Chougule
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Na-Hyun Bak
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Dong-Jin Nam
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hak Dong Cho
- Department of Physics, Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715, Republic of Korea
| | - Song-Gang Kim
- Department of Information and Communications, Joongbu University, 305 Donghen-ro, Goyang, Kyunggi-do 10279, Republic of Korea
| | - Moon-Deock Kim
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
13
|
Beisenbayev AR, Sadirkhanov ZT, Yerlanuly Y, Kaikanov MI, Jumabekov AN. Self-Powered Organometal Halide Perovskite Photodetector with Embedded Silver Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1034. [PMID: 35407152 PMCID: PMC9000456 DOI: 10.3390/nano12071034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 12/15/2022]
Abstract
Metal-semiconductor-metal (MSM) configuration of perovskite photodetectors (PPDs) suggests easy and low-cost manufacturing. However, the basic structures of MSM PPDs include vertical and lateral configurations, which require the use of expensive materials such as transparent conductive oxides or/and sophisticated fabrication techniques such as lithography. Integrating metallic nanowire-based electrodes into the perovskite photo-absorber layer to form one-half of the MSM PPD structure could potentially resolve the key issues of both configurations. Here, a manufacturing of solution-processed and self-powered MSM PPDs with embedded silver nanowire electrodes is demonstrated. The embedding of silver nanowire electrode into the perovskite layer is achieved by treating the silver nanowire/perovskite double layer with a methylamine gas vapor. The evaporated gold layer is used as the second electrode to form MSM PPDs. The prepared MSM PPDs show a photoresponsivity of 4 × 10-5 AW-1 in the UV region and 2 × 10-5 AW-1 in the visible region. On average, the devices exhibit a photocurrent of 1.1 × 10-6 A under white light (75 mW cm-2) illumination with an ON/OFF ratio of 83.4. The results presented in this work open up a new method for development and fabrication of simple, solution-processable MSM self-powered PPDs.
Collapse
Affiliation(s)
- Almaz R. Beisenbayev
- Department of Chemical Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Zhandos T. Sadirkhanov
- Department of Physics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (Y.Y.); (M.I.K.)
| | - Yerassyl Yerlanuly
- Department of Physics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (Y.Y.); (M.I.K.)
| | - Marat I. Kaikanov
- Department of Physics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (Y.Y.); (M.I.K.)
| | - Askhat N. Jumabekov
- Department of Physics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (Y.Y.); (M.I.K.)
| |
Collapse
|
14
|
Lin S, Kulkarni R, Mandavkar R, Habib MA, Burse S, Kunwar S, Lee J. Surmounting the interband threshold limit by the hot electron excitation of multi-metallic plasmonic AgAuCu NPs for UV photodetector application. CrystEngComm 2022. [DOI: 10.1039/d2ce00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sharply improved photoresponse characteristics are demonstrated by the multi-metallic AgCu, AuCu and AgAuCu NP based UV-PDs through the superior photo carrier injection by the strong elemental composition-dependent hot electrons and localized surface plasmon resonance (LSPR).
Collapse
Affiliation(s)
- Shusen Lin
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Rakesh Kulkarni
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Rutuja Mandavkar
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Md Ahasan Habib
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Shalmali Burse
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| | - Sundar Kunwar
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea
| |
Collapse
|
15
|
Yan Z, Li S, Yue J, Liu Z, Ji X, Yang Y, Li P, Wu Z, Guo Y, Tang W. A Spiro-MeOTAD/Ga 2O 3/Si p-i-n Junction Featuring Enhanced Self-Powered Solar-Blind Sensing via Balancing Absorption of Photons and Separation of Photogenerated Carriers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57619-57628. [PMID: 34806380 DOI: 10.1021/acsami.1c18229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar blind ultraviolet (SBUV) self-powered photodetectors (PDs) have a great number of applications in civil and military exploration. Ga2O3 is a prospective candidate for SBUV detection owing to its reasonable bandgap corresponding to the SBUV waveband. Nevertheless, the previously reported Ga2O3 photovoltaic devices had low photoresponse performance and were still far from the demands of practical application. Herein, we propose an idea of using spiro-MeOTAD (spiro) as the SBUV transparent conductive layer to construct p-i-n PDs (p-spiro/Ga2O3/n-Si). With the aid of double built-in electric fields, the designed p-i-n PDs could operate without any external power source. Furtherly, the influence of spiro thickness on improving the photoelectric performance of devices is investigated in detail and the optimum device is achieved, translating to a peak responsivity of 192 mA/W upon a weak 254 nm light illumination of 2 μW/cm2 at zero bias. In addition, the I-t curve of our PD shows binary response characteristics and a four-stage current response behavior under a small forward bias, and also, its underlying working mechanism is analyzed. In sum, this newly developed device presents great potential for booming the high energy-efficient optoelectronic devices in the short run.
Collapse
Affiliation(s)
- Zuyong Yan
- Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Shan Li
- Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jianying Yue
- Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Zeng Liu
- College of Electronic and Optical Engineering & College of Microelectronics, National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueqiang Ji
- Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yongtao Yang
- Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Peigang Li
- Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Zhenping Wu
- Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yufeng Guo
- College of Electronic and Optical Engineering & College of Microelectronics, National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Weihua Tang
- Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- College of Electronic and Optical Engineering & College of Microelectronics, National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
16
|
Study of Normally-Off AlGaN/GaN HEMT with Microfield Plate for Improvement of Breakdown Voltage. MICROMACHINES 2021; 12:mi12111318. [PMID: 34832730 PMCID: PMC8623632 DOI: 10.3390/mi12111318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022]
Abstract
In this paper, we introduce a new type of AlGaN/GaN high electron mobility transistor (HEMT) with microfield plate (FP). We use Silvaco-ATLAS two-dimensional numerical simulation to calculate the performance of conventional HEMT and HEMT with micro-FP and analyze its principle. By studying a new charge balance method provided by HEMTs and micro-FPs, the physical mechanism of FP adjusting the HEMT potential distribution and channel electric field distribution is analyzed. The new FP structure consists of a drain field plate (D-FP), a source field plate (S-FP) and several micro-gate field plates (G-FP) to improve the output characteristics of HEMTs. By adjusting the distribution of potential and channel electric field, a wider and more uniform channel electric field can be obtained, and the breakdown voltage can be increased to 1278 V. Although the on-resistance of the HEMT is slightly increased to 5.24 Ω mm, it is still lower than other reference values. These results may open up a new and effective method for manufacturing high-power devices for power electronics applications.
Collapse
|
17
|
Plasmon-Enhanced Photoresponse of Self-Powered Si Nanoholes Photodetector by Metal Nanowires. NANOMATERIALS 2021; 11:nano11092460. [PMID: 34578780 PMCID: PMC8471470 DOI: 10.3390/nano11092460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs’ surface using the solution processing method. The effectiveness of the proposed architectures is evidenced through extensive experimental and simulation analysis. The AgNWs/SiNHs device showed the highest photo-to-dark current ratio of 2.1 × 10−4, responsivity of 30 mA/W and detectivity of 2 × 1011 Jones along with the lowest noise equivalent power (NEP) parameter of 2.4 × 10−12 WHz−1/2 in the blue light region. Compared to the bare SiNHs device, the AuNWs/SiNHs device had significantly enhanced responsivity up to 15 mA/W, especially in the red and near-infrared spectral region. Intensity-modulated photovoltage spectroscopy (IMVS) measurements revealed that the AgNWs/SiNHs device generated the longest charge carrier lifetime at 470 nm, whereas the AuNWs/SiNHs showed the slowest recombination rate at 627 nm. Furthermore, numerical simulation confirmed the local field enhancement effects at the MeNWs and SiNHs interface. The study demonstrates a cost-efficient and scalable strategy to combine the superior light harvesting properties of SiNHs with the plasmonic absorption of metallic nanowires (MeNWs) towards enhanced sensitivity and spectral-selective photodetection induced by the local surface plasmon resonance effects.
Collapse
|