1
|
Hernández-Contreras M, Cruz J, Gurrola M, Pamplona Solis B, Vega-Azamar R. Application of nanosilica in the construction industry: A bibliometric analysis using Methodi Ordinatio. MethodsX 2024; 12:102642. [PMID: 38660026 PMCID: PMC11041844 DOI: 10.1016/j.mex.2024.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024] Open
Abstract
The number of publications related to the implementation of nanotechnology in the construction industry, and specifically to the application of nanosilica (SiO2), has had a constant increase in recent years. Based on this, in the present work, an analysis was carried out using bibliometric techniques, with the aim at characterizing the development of specialized literature and identifying the largest areas of growth in the field, maintaining hydrophobic nanosilica as the research guideline. This analysis acquired information from the Scopus and Web of Science (WoS) databases to compare bibliometric indicators of the publications. It should be noted that, even though bibliometric analysis is useful to identify the study areas of greatest interest, to complement this work, the implementation of a method that helped in the research process to obtain the most important bibliography was required. This study implemented Methodi Ordinatio, which helped to take a new direction. Therefore, based on this method, a list of articles cataloged and ranked is obtained, which is the basis for integrating the final bibliographic portfolio. •The study applies the Methodi Ordinatio to obtain a portfolio of the most relevant articles to guide the researchers' work.•Insightful information can be obtained using VOSviewer to analyze and visualize metadata of the bibliographic portfolio.•The study demonstrates how the alpha value in the InOrdinatio formula modifies the resulting portfolio.
Collapse
Affiliation(s)
- M. Hernández-Contreras
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - J.C. Cruz
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - M.P. Gurrola
- IxM-CONAHCYT-Tecnológico Nacional de México/I.T. Chetumal, Insurgentes 330, Chetumal, QR 77013, Mexico
| | - B. Pamplona Solis
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - R.E. Vega-Azamar
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| |
Collapse
|
2
|
Bo W, Xueqin Z, Bingkun L, Yijie L, Chenguang Y, Yujun G, Song X, Wenfu W, Guoqiang G, Guangning W. Advances in superhydrophobic material research: from preparation to electrified railway protection. RSC Adv 2024; 14:12204-12217. [PMID: 38628488 PMCID: PMC11019352 DOI: 10.1039/d3ra08180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Freezing is a serious problem that affects the power, transport, and transmission industries and is a major concern for the national economy and safety. Currently, several engineering de-icing methods, such as thermal, mechanical, and chemical de-icing, have shown problems related to energy consumption, efficiency, and the environment. Superhydrophobic materials have high droplet contact and roll angles, which can reduce the droplet residence and ice adhesion on their surfaces and have unique advantages in the self-cleaning and anti-icing fields. This paper introduces the development of infiltration theory and superhydrophobic materials and their principles of anti-icing and de-icing. Herein, the preparation and coating methods of superhydrophobic materials in applications are summarised, the performance and lifetime issues of superhydrophobic materials in applications are clarified, and the research progress on superhydrophobic materials in different fields is reviewed. Prospects for the application of superhydrophobic materials in electrified railways are also presented. A feasibility study was conducted to solve some of the existing problems of electrified railways, providing a theoretical basis for the development of electrified railways.
Collapse
Affiliation(s)
- Wang Bo
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Zhang Xueqin
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Li Bingkun
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Liu Yijie
- School of Materials Engineering, Shanghai Jiaotong University Shanghai China
| | - Yang Chenguang
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Guo Yujun
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Xiao Song
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Wei Wenfu
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Gao Guoqiang
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Wu Guangning
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| |
Collapse
|
3
|
Lin Z, Zhang D, Liu Y, Zhang Z, Zhao Z, Shao B, Wu R, Fang R, Yao J. CO 2/CH 4 separation performance of SiO 2/PES composite membrane prepared by gas phase hydrolysis and grafting coating in gas-liquid membrane contactor: A comparative study. Heliyon 2023; 9:e18760. [PMID: 37560639 PMCID: PMC10407752 DOI: 10.1016/j.heliyon.2023.e18760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The gas-liquid membrane contactor (GLMC) is a new and promising kind of gas separation technique, but still exhibits limitations, especially in membrane performance. In order to solve the above problems, we fabricated and characterized novel OH/SiO2/PES composite membranes using gas phase hydrolysis and graft coating methods, respectively. In the preparation process, whether to use alkali to pretreat the membrane was used as an evaluation index. The CO2/CH4 separation performance was tested using the modified OH/SiO2/PES hollow fiber membrane as the membrane contactor in GLMC. In the experiment, we conducted a single factor experiment with diethanolamine (DEA) as the adsorbent to analyze the effect of the flow rate and concentration of DEA on the separation of CO2/CH4. The collected gas had a CH4 content of 99.92% and a CO2 flux of 10.1059 × 10-3 mol m-2 s-1 while DEA at a concentration of 1 mol/L was flowing at a rate of 16 L/h. The highest separation factor occurred at this moment, which was 833.67. Overall, the CO2/CH4 separation performance in GLMC was enhanced with the use of the fluorinated OH/SiO2/PES composite membrane.
Collapse
Affiliation(s)
- Zhengda Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dandan Zhang
- Harbin Institute of Technology Hospital, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yijun Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhongming Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiying Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bo Shao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Rui Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, PR China
| | - Rui Fang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co.,Ltd., No.73, Huanghe Road, Nangang Dist, Harbin, 150090, PR China
| | - Jie Yao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co.,Ltd., No.73, Huanghe Road, Nangang Dist, Harbin, 150090, PR China
| |
Collapse
|
4
|
Zhang Q, Li K, Li Y, Li Y, Zhang X, Du Y, Tian D. Gradient monolayered porous membrane for liquid manipulation: from fabrication to application. NANOSCALE ADVANCES 2022; 4:3495-3503. [PMID: 36134360 PMCID: PMC9400516 DOI: 10.1039/d2na00421f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
The controlled transport of liquid on a smart material surface has important applications in the fields of microreactors, mass and heat transfer, water collection, microfluidic devices and so on. Porous membranes with special wettability have attracted extensive attention due to their unique unidirectional transport behavior, that is, liquid can easily penetrate in one direction while reverse transport is prevented, which shows great potential in functional textiles, fog collection, oil/water separation, sensors, etc. However, many porous membranes are synthesized from multilayer structural materials with poor mechanical properties and are currently prone to delamination, which limits their stability. While a monolayered porous membrane, especially for gradient structure, is an efficient, stable and durable material owing to its good durability and difficult stratification. Therefore, it is of great significance to fabricate a monolayered porous membrane for controllable liquid manipulation. In this minireview, we briefly introduce the classification and fabrication of typical monolayered porous membranes. And the applications of monolayered porous membranes in unidirectional penetration, selective separation and intelligent response are further emphasized and discussed. Finally, the controllable preparation and potential applications of porous membranes are featured and their prospects discussed on the basis of their current development.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing Beijing 100083 P. R. China
| | - Yi Du
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China
| |
Collapse
|
5
|
Xu P, Kong X, Chen X, Fu K, Qiu M, Fan Y. Suitable membrane absorption mode for diluted gas absorption - hydrophobic or hydrophilic. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
A comprehensive review of electrospray technique for membrane development: Current status, challenges, and opportunities. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Zhao F, Yao X, Liu C, Ran X, Wang C, Lu B. Mercapto-functionalized ordered mesoporous silica-modified PVDF membrane for efficiently scavenging Cd 2+ from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114103. [PMID: 34798586 DOI: 10.1016/j.jenvman.2021.114103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, (3-mercaptopropyl) triethoxysilane (MPTMS)-modified ordered mesoporous silica (OMS) materials were prepared using a post-grifting method, with MPTMS as the organic functionalized reagent. The OMS materials were analyzed by FT-IR spectra, N2 sorption, and small angle X-ray scattering to evaluate their potential for scavenging Cd2+ from water. Moreover, a (3-mercaptopropyl) triethoxysilane-functionalized ordered mesoporous silica modified polyvinylidene fluoride (MPTMS-OMS/PVDF) membrane was synthesized using the solvent phase inversion method to remediate wastewater containing heavy metal ions. The MPTMS-OMS was characterized by a maximum specific surface area of 422 m2/g, high surface hydrophilicity, and high pure water flux. The MPTMS-OMS/PVDF exhibited a dynamic adsorption capacity for Cd2+ in water. At an MPTMS-OMS content of 5 wt%, the Cd2+ removal efficiency was 90%, whereas the pure PVDF showed no Cd2+ adsorption capacity. These results highlight the potential of the MPTMS-OMS/PVDF membrane to eliminate Cd2+ during the decontamination of aqueous streams containing low-concentrations of contaminants.
Collapse
Affiliation(s)
- Fengbin Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinyun Yao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 20037, China
| | - Chang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xianqiang Ran
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|