1
|
Zhu M, Zhao L, Lu X. Direct Labeling of Gold Nanoparticles with Iodine-131 for Tumor Radionuclide Therapy. Int J Nanomedicine 2024; 19:11805-11818. [PMID: 39553458 PMCID: PMC11569709 DOI: 10.2147/ijn.s484976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Gold nanoparticles (Au NPs) are widely used as versatile templates to develop multifunctional nanosystems for disease diagnosis and treatment. Iodine can bind to gold via chemisorption, making this a simple method for labeling Au NPs with radioactive iodine. However, the evaluation of tumor radionuclide therapy is insufficient. In this study, we investigated the feasibility of 131I-adsorbed Au NPs as novel nanoprobes for tumor radionuclide therapy. Materials and Methods Radiolabeling was performed by mixing Au NPs and 131I, and the radiochemical purity (RCP) and in vitro stability of 131I-adsorbed Au NPs were analyzed under different conditions, including various temperatures, pH values, and 131I concentrations. The tumor accumulation and therapeutic potential of 131I-adsorbed Au NPs were assessed using a subcutaneous tumor model after intratumoral injection. Results The data showed that the chemisorption of the Au NPs onto 131I was instant, specific, and quantitative. The 131I-adsorbed Au NPs exhibited high in vitro stability in different media, distinct inhibitory effects on tumor cells in vitro, good retention ability, and therapeutic effects after intratumoral injection into tumor-bearing mice in vivo. Conclusion Our work demonstrates that chemisorption of Au NPs and radioiodine has great potential as a strategy for constructing various nanosystems for theranostic applications.
Collapse
Affiliation(s)
- Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Xia Lu
- Department of Nuclear Medicine, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| |
Collapse
|
2
|
Wang R, Liu H, Antal B, Wolterbeek HT, Denkova AG. Ultrasmall Gold Nanoparticles Radiolabeled with Iodine-125 as Potential New Radiopharmaceutical. ACS APPLIED BIO MATERIALS 2024; 7:1240-1249. [PMID: 38323544 PMCID: PMC10880057 DOI: 10.1021/acsabm.3c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
The relatively high linear energy transfer of Auger electrons, which can cause clustered DNA damage and hence efficient cell death, makes Auger emitters excellent candidates for attacking metastasized tumors. Moreover, gammas or positrons are usually emitted along with the Auger electrons, providing the possibility of theragnostic applications. Despite the promising properties of Auger electrons, only a few radiopharmaceuticals employing Auger emitters have been developed so far. This is most likely explained by the short ranges of these electrons, requiring the delivery of the Auger emitters to crucial cell parts such as the cell nucleus. In this work, we combined the Auger emitter 125I and ultrasmall gold nanoparticles to prepare a novel radiopharmaceutical. The 125I labeled gold nanoparticles were shown to accumulate at the cell nucleus, leading to a high tumor-killing efficiency in both 2D and 3D tumor cell models. The results from this work indicate that ultrasmall nanoparticles, which passively accumulate at the cell nucleus, have the potential to be applied in targeted radionuclide therapy. Even better tumor-killing efficiency can be expected if tumor-targeting moieties are conjugated to the nanoparticles.
Collapse
Affiliation(s)
- Runze Wang
- Applied
Radiation and Isotopes, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Huanhuan Liu
- Department
of Medical Imaging, Henan Provincial People’s
Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Bas Antal
- Applied
Radiation and Isotopes, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Hubert Th. Wolterbeek
- Applied
Radiation and Isotopes, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Antonia G. Denkova
- Applied
Radiation and Isotopes, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| |
Collapse
|
3
|
Colilla M, Vallet-Regí M. Organically Modified Mesoporous Silica Nanoparticles against Bacterial Resistance. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8788-8805. [PMID: 38027542 PMCID: PMC10653088 DOI: 10.1021/acs.chemmater.3c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Bacterial antimicrobial resistance is posed to become a major hazard to global health in the 21st century. An aggravating issue is the stalled antibiotic research pipeline, which requires the development of new therapeutic strategies to combat antibiotic-resistant infections. Nanotechnology has entered into this scenario bringing up the opportunity to use nanocarriers capable of transporting and delivering antimicrobials to the target site, overcoming bacterial resistant barriers. Among them, mesoporous silica nanoparticles (MSNs) are receiving growing attention due to their unique features, including large drug loading capacity, biocompatibility, tunable pore sizes and volumes, and functionalizable silanol-rich surface. This perspective article outlines the recent research advances in the design and development of organically modified MSNs to fight bacterial infections. First, a brief introduction to the different mechanisms of bacterial resistance is presented. Then, we review the recent scientific approaches to engineer multifunctional MSNs conceived as an assembly of inorganic and organic building blocks, against bacterial resistance. These elements include specific ligands to target planktonic bacteria, intracellular bacteria, or bacterial biofilm; stimuli-responsive entities to prevent antimicrobial cargo release before arriving at the target; imaging agents for diagnosis; additional constituents for synergistic combination antimicrobial therapies; and aims to improve the therapeutic outcomes. Finally, this manuscript addresses the current challenges and future perspectives on this hot research area.
Collapse
Affiliation(s)
- Montserrat Colilla
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - María Vallet-Regí
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
4
|
Aizarna-Lopetegui U, García-Astrain C, Renero-Lecuna C, González-Callejo P, Villaluenga I, Del Pozo MA, Sánchez-Álvarez M, Henriksen-Lacey M, Jimenez de Aberasturi D. Remodeling arteries: studying the mechanical properties of 3D-bioprinted hybrid photoresponsive materials. J Mater Chem B 2023; 11:9431-9442. [PMID: 37655486 DOI: 10.1039/d3tb01480k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
3D-printed cell models are currently in the spotlight of medical research. Whilst significant advances have been made, there are still aspects that require attention to achieve more realistic models which faithfully represent the in vivo environment. In this work we describe the production of an artery model with cyclic expansive properties, capable of mimicking the different physical forces and stress factors that cells experience in physiological conditions. The artery wall components are reproduced using 3D printing of thermoresponsive polymers with inorganic nanoparticles (NPs) representing the outer tunica adventitia, smooth muscle cells embedded in extracellular matrix representing the tunica media, and finally a monolayer of endothelial cells as the tunica intima. Cyclic expansion can be induced thanks to the inclusion of photo-responsive plasmonic NPs embedded within the thermoresponsive ink composition, resulting in changes in the thermoresponsive polymer hydration state and hence volume, in a stimulated on-off manner. By changing the thermoresponsive polymer composition, the transition temperature and pulsatility can be efficiently tuned. We show the direct effect of cyclic expansion and contraction on the overlying cell layers by analyzing transcriptional changes in mechanoresponsive mesenchymal genes associated with such microenvironmental physical cues. The technique described herein involving stimuli-responsive 3D printed tissue constructs, also described as four- dimensional (4D) printing, offers a novel approach for the production of dynamic biomodels.
Collapse
Affiliation(s)
- Uxue Aizarna-Lopetegui
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, 20014 Donostia-San Sebastián, Gipuzkoa, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Clara García-Astrain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, 20014 Donostia-San Sebastián, Gipuzkoa, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Carlos Renero-Lecuna
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, 20014 Donostia-San Sebastián, Gipuzkoa, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Patricia González-Callejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, 20014 Donostia-San Sebastián, Gipuzkoa, Spain.
| | - Irune Villaluenga
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Gipuzkoa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolar Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolar Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Department of Metabolic and Immunity Diseases, Instituto de Investigaciones Biomédicas "Alberto Sols", 28029 Madrid, Spain
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, 20014 Donostia-San Sebastián, Gipuzkoa, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, 20014 Donostia-San Sebastián, Gipuzkoa, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Gipuzkoa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Marforio TD, Carboni A, Calvaresi M. In Vivo Application of Carboranes for Boron Neutron Capture Therapy (BNCT): Structure, Formulation and Analytical Methods for Detection. Cancers (Basel) 2023; 15:4944. [PMID: 37894311 PMCID: PMC10605826 DOI: 10.3390/cancers15204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
Collapse
Affiliation(s)
| | - Andrea Carboni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
6
|
Pazderová L, Tüzün EZ, Bavol D, Litecká M, Fojt L, Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1 -) Ion and Recent Progress in Boron Substitution. Molecules 2023; 28:6971. [PMID: 37836814 PMCID: PMC10574808 DOI: 10.3390/molecules28196971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
Collapse
Affiliation(s)
- Lucia Pazderová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
- Department of Inorganic Chemistry, Faculty of Natural Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| |
Collapse
|
7
|
Luo T, Huang W, Chu F, Zhu T, Feng B, Huang S, Hou J, Zhu L, Zhu S, Zeng W. The Dawn of a New Era: Tumor-Targeting Boron Agents for Neutron Capture Therapy. Mol Pharm 2023; 20:4942-4970. [PMID: 37728998 DOI: 10.1021/acs.molpharmaceut.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cancer is widely recognized as one of the most devastating diseases, necessitating the development of intelligent diagnostic techniques, targeted treatments, and early prognosis evaluation to ensure effective and personalized therapy. Conventional treatments, unfortunately, suffer from limitations and an increased risk of severe complications. In light of these challenges, boron neutron capture therapy (BNCT) has emerged as a promising approach for cancer treatment with unprecedented precision to selectively eliminate tumor cells. The distinctive and promising characteristics of BNCT hold the potential to revolutionize the field of oncology. However, the clinical application and advancement of BNCT technology face significant hindrance due to the inherent flaws and limited availability of current clinical drugs, which pose substantial obstacles to the practical implementation and continued progress of BNCT. Consequently, there is an urgent need to develop efficient boron agents with higher boron content and specific tumor-targeting properties. Researchers aim to address this need by integrating tumor-targeting strategies with BNCT, with the ultimate goal of establishing BNCT as an effective, readily available, and cutting-edge treatment modality for cancer. This review delves into the recent advancements in integrating tumor-targeting strategies with BNCT, focusing on the progress made in developing boron agents specifically designed for BNCT. By exploring the current state of BNCT and emphasizing the prospects of tumor-targeting boron agents, this review provides a comprehensive overview of the advancements in BNCT and highlights its potential as a transformative treatment option for cancer.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jing Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Liyong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shaihong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Monti Hughes A, Hu N. Optimizing Boron Neutron Capture Therapy (BNCT) to Treat Cancer: An Updated Review on the Latest Developments on Boron Compounds and Strategies. Cancers (Basel) 2023; 15:4091. [PMID: 37627119 PMCID: PMC10452654 DOI: 10.3390/cancers15164091] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy. It combines preferential boron accumulation in tumors and neutron irradiation. The recent initiation of BNCT clinical trials employing hospital-based accelerators rather than nuclear reactors as the neutron source will conceivably pave the way for new and more numerous clinical trials, leading up to much-needed randomized trials. In this context, it would be interesting to consider the implementation of new boron compounds and strategies that will significantly optimize BNCT. With this aim in mind, we analyzed, in this review, those articles published between 2020 and 2023 reporting new boron compounds and strategies that were proved therapeutically useful in in vitro and/or in vivo radiobiological studies, a critical step for translation to a clinical setting. We also explored new pathologies that could potentially be treated with BNCT and newly developed theranostic boron agents. All these radiobiological advances intend to solve those limitations and questions that arise during patient treatment in the clinical field, with BNCT and other therapies. In this sense, active communication between clinicians, radiobiologists, and all disciplines will improve BNCT for cancer patients, in a cost- and time-effective way.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Radiation Pathology Division, Department Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires B1650KNA, Argentina
- National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| |
Collapse
|
9
|
Fromain A, Perez JE, Van de Walle A, Lalatonne Y, Wilhelm C. Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation. Nat Commun 2023; 14:4637. [PMID: 37532698 PMCID: PMC10397343 DOI: 10.1038/s41467-023-40258-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe2+ release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.
Collapse
Affiliation(s)
- Alexandre Fromain
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Jose Efrain Perez
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Aurore Van de Walle
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F‑ 93017, Bobigny, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F‑ 93009, Bobigny, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
10
|
Oloo SO, Smith KM, Vicente MDGH. Multi-Functional Boron-Delivery Agents for Boron Neutron Capture Therapy of Cancers. Cancers (Basel) 2023; 15:3277. [PMID: 37444386 DOI: 10.3390/cancers15133277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary cancer treatment that involves the irradiation of 10B-containing tumors with low-energy neutrons (thermal or epithermal). The alpha particles and recoiling Li nuclei that are produced in the 10B-capture nuclear reaction are high-linear-energy transfer particles that destroy boron-loaded tumor cells; therefore, BNCT has the potential to be a localized therapeutic modality. Two boron-delivery agents have been used in clinical trials of BNCT in patients with malignant brain tumors, cutaneous melanoma, or recurrent tumors of the head and neck region, demonstrating the potential of BNCT in the treatment of difficult cancers. A variety of potentially highly effective boron-delivery agents have been synthesized in the past four decades and tested in cells and animal models. These include boron-containing nucleosides, peptides, proteins, polyamines, porphyrins, liposomes, monoclonal antibodies, and nanoparticles of various types. The most promising agents are multi-functional boronated molecules and nanoparticles functionalized with tumor cell-targeting moieties that increase their tumor selectivity and contain a radiolabel or fluorophore to allow quantification of 10B-biodistribution and treatment planning. This review discusses multi-functional boron agents reported in the last decade, but their full potential can only be ascertained after their evaluation in BNCT clinical trials.
Collapse
Affiliation(s)
- Sebastian O Oloo
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
11
|
Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
13
|
Llenas M, Cuenca L, Santos C, Bdikin I, Gonçalves G, Tobías-Rossell G. Sustainable Synthesis of Highly Biocompatible 2D Boron Nitride Nanosheets. Biomedicines 2022; 10:3238. [PMID: 36551994 PMCID: PMC9775030 DOI: 10.3390/biomedicines10123238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
2D ultrafine nanomaterials today represent an emerging class of materials with very promising properties for a wide variety of applications. Biomedical fields have experienced important new achievements with technological breakthroughs obtained from 2D materials with singular properties. Boron nitride nanosheets are a novel 2D layered material comprised of a hexagonal boron nitride network (BN) with interesting intrinsic properties, including resistance to oxidation, extreme mechanical hardness, good thermal conductivity, photoluminescence, and chemical inertness. Here, we investigated different methodologies for the exfoliation of BN nanosheets (BNNs), using ball milling and ultrasound processing, the latter using both an ultrasound bath and tip sonication. The best results are obtained using tip sonication, which leads to the formation of few-layered nanosheets with a narrow size distribution. Importantly, it was observed that with the addition of pluronic acid F127 to the medium, there was a significant improvement in the BN nanosheets (BNNs) production yield. Moreover, the resultant BNNs present improved stability in an aqueous solution. Cytotoxicity studies performed with HeLa cells showed the importance of taking into account the possible interferences of the nanomaterial with the selected assay. The prepared BNNs coated with pluronic presented improved cytotoxicity at concentrations up to 200 μg mL-1 with more than 90% viability after 24 h of incubation. Confocal microscopy also showed high cell internalization of the nanomaterials and their preferential biodistribution in the cell cytoplasm.
Collapse
Affiliation(s)
- Marina Llenas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Lorenzo Cuenca
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| | - Carla Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CQE—Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Igor Bdikin
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), 3810-193 Aveiro, Portugal
| | - Gil Gonçalves
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), 3810-193 Aveiro, Portugal
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Wang Y, Reina G, Kang HG, Chen X, Zou Y, Ishikawa Y, Suzuki M, Komatsu N. Polyglycerol Functionalized 10 B Enriched Boron Carbide Nanoparticle as an Effective Bimodal Anticancer Nanosensitizer for Boron Neutron Capture and Photothermal Therapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204044. [PMID: 35983628 DOI: 10.1002/smll.202204044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Boron neutron capture therapy (BNCT) is a non-invasive cancer treatment with little adverse effect utilizing nuclear fission of 10 B upon neutron irradiation. While neutron source has been developed from a nuclear reactor to a compact accelerator, only two kinds of drugs, boronophenylalanine and sodium borocaptate, have been clinically used for decades despite their low tumor specificity and/or retentivity. To overcome these challenges, various boron-containing nanomaterials, or "nanosensitizers", have been designed based on micelles, (bio)polymers and inorganic nanoparticles. Among them, inorganic nanoparticles such as boron carbide can include a much higher 10 B content, but successful in vivo applications are very limited. Additionally, recent reports on the photothermal effect of boron carbide are motivating for the addition of another modality of photothermal therapy. In this study, 10 B enriched boron carbide (10 B4 C) nanoparticle is functionalized with polyglycerol (PG), giving 10 B4 C-PG with enough dispersibility in a physiological environment. Pharmacokinetic experiments show that 10 B4 C-PG fulfills the following three requirements for BNCT; 1) low intrinsic toxicity, 2) 10 B in tumor/tumor tissue (wt/wt) ≥ 20 ppm, and 3) 10 B concentrations in tumor/blood ≥ 3. In vivo study reveals that neutron irradiation after intravenous administration of 10 B4 C-PG suppresses cancer growth significantly and eradicates cancer with the help of near-infrared light irradiation.
Collapse
Affiliation(s)
- Yuquan Wang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Giacomo Reina
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Xiaoxiao Chen
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yajuan Zou
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshie Ishikawa
- National Institute of Advanced Industrial Science and Technology, Research Institute for Advanced Electronics and Photonics, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
15
|
Roy I, Krishnan S, Kabashin AV, Zavestovskaya IN, Prasad PN. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS NANO 2022; 16:5036-5061. [PMID: 35294165 DOI: 10.1021/acsnano.1c10550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.
Collapse
Affiliation(s)
- Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Andrei V Kabashin
- Aix Marseille University, CNRS, LP3, Campus de Luminy - Case 917, 13288 Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
| | - Irina N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Nuclear Physics and Astrophysics Department, LPI of RAS, 119991 Moscow, Russia
| | - Paras N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Department of Chemistry and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
16
|
Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1606. [PMID: 35208145 PMCID: PMC8878601 DOI: 10.3390/ma15041606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Cancer remains one of the leading causes of death in the world. For a number of neoplasms, the efficiency of conventional chemo- and radiation therapies is insufficient because of drug resistance and marked toxicity. Plasmonic photothermal therapy (PPT) using local hyperthermia induced by gold nanoparticles (AuNPs) has recently been extensively explored in tumor treatment. However, despite attractive promises, the current PPT status is limited by laboratory experiments, academic papers, and only a few preclinical studies. Unfortunately, most nanoformulations still share a similar fate: great laboratory promises and fair preclinical trials. This review discusses the current challenges and prospects of plasmonic nanomedicine based on PPT and photodynamic therapy (PDT). We start with consideration of the fundamental principles underlying plasmonic properties of AuNPs to tune their plasmon resonance for the desired NIR-I, NIR-2, and SWIR optical windows. The basic principles for simulation of optical cross-sections and plasmonic heating under CW and pulsed irradiation are discussed. Then, we consider the state-of-the-art methods for wet chemical synthesis of the most popular PPPT AuNPs such as silica/gold nanoshells, Au nanostars, nanorods, and nanocages. The photothermal efficiencies of these nanoparticles are compared, and their applications to current nanomedicine are shortly discussed. In a separate section, we discuss the fabrication of gold and other nanoparticles by the pulsed laser ablation in liquid method. The second part of the review is devoted to our recent experimental results on laser-activated interaction of AuNPs with tumor and healthy tissues and current achievements of other research groups in this application area. The unresolved issues of PPT are the significant accumulation of AuNPs in the organs of the mononuclear phagocyte system, causing potential toxic effects of nanoparticles, and the possibility of tumor recurrence due to the presence of survived tumor cells. The prospective ways of solving these problems are discussed, including developing combined antitumor therapy based on combined PPT and PDT. In the conclusion section, we summarize the most urgent needs of current PPT-based nanomedicine.
Collapse
Affiliation(s)
- Alla B. Bucharskaya
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Nikolai G. Khlebtsov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Boris N. Khlebtsov
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Galina N. Maslyakova
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Nikita A. Navolokin
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Vadim D. Genin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Elina A. Genina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
| |
Collapse
|
17
|
Akhter F, Manrique-Bedoya S, Moreau C, Smith AL, Feng Y, Mayer KM, Hood RL. Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo. Pharmaceutics 2021; 13:2133. [PMID: 34959414 PMCID: PMC8703536 DOI: 10.3390/pharmaceutics13122133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles. The effects of laser wavelengths (808 vs. 1064 nm), irradiances (20-50 mW·mm-2), and gold nanorod (GNR) concentrations (0.1-3 nM) on tissue temperature profiles were evaluated to assess and control hyperthermic generation. The GNRs had a peak absorbance at ~800 nm. Results showed that, at 808 nm, photon absorption and subsequent heat generation within tissue without GNRs was 65% less than 1064 nm. The combination of GNRs and 808 nm resulted in a 200% higher temperature rise than the 1064 nm under similar conditions. A computational model was developed to predict the temperature shift and was validated against experimental results with a deviation of <5%. These results show promise for both a predictive model and spatially selective, tunable treatment modality for pancreatic cancer.
Collapse
Affiliation(s)
- Forhad Akhter
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA; (F.A.); (S.M.-B.); (A.L.S.); (Y.F.)
| | - Santiago Manrique-Bedoya
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA; (F.A.); (S.M.-B.); (A.L.S.); (Y.F.)
| | - Chris Moreau
- Gastroenterology and Transplant, UT Health San Antonio, San Antonio, TX 78229, USA;
| | - Andrea Lynn Smith
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA; (F.A.); (S.M.-B.); (A.L.S.); (Y.F.)
| | - Yusheng Feng
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA; (F.A.); (S.M.-B.); (A.L.S.); (Y.F.)
| | - Kathryn M. Mayer
- Department of Physics & Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - R. Lyle Hood
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA; (F.A.); (S.M.-B.); (A.L.S.); (Y.F.)
- Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|