1
|
Chen W, Lin J, Ye Z, Wang X, Shen J, Wang B. Customized surface adhesive and wettability properties of conformal electronic devices. MATERIALS HORIZONS 2024; 11:6289-6325. [PMID: 39315507 DOI: 10.1039/d4mh00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformal and body-adaptive electronics have revolutionized the way we interact with technology, ushering in a new era of wearable devices that can seamlessly integrate with our daily lives. However, the inherent mismatch between artificially synthesized materials and biological tissues (caused by irregular skin fold, skin hair, sweat, and skin grease) needs to be addressed, which can be realized using body-adaptive electronics by rational design of their surface adhesive and wettability properties. Over the past few decades, various approaches have been developed to enhance the conformability and adaptability of bioelectronics by (i) increasing flexibility and reducing device thickness, (ii) improving the adhesion and wettability between bioelectronics and biological interfaces, and (iii) refining the integration process with biological systems. Successful development of a conformal and body-adaptive electronic device requires comprehensive consideration of all three aspects. This review starts with the design strategies of conformal electronics with different surface adhesive and wettability properties. A series of conformal and body-adaptive electronics used in the human body under both dry and wet conditions are systematically discussed. Finally, the current challenges and critical perspectives are summarized, focusing on promising directions such as telemedicine, mobile health, point-of-care diagnostics, and human-machine interface applications.
Collapse
Affiliation(s)
- Wenfu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Junzhu Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Xiangyu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| |
Collapse
|
2
|
Liu Y, Li X, Jiang P, Wang Z, Guo J, Luo C, Wei Y, Chen Z, Liu C, Ren W, Zhang W, Qu J, Zhang Z. Image-Based Auto-Focus Microscope System with Visual Servo Control for Micro-Stereolithography. MICROMACHINES 2024; 15:1250. [PMID: 39459124 PMCID: PMC11509336 DOI: 10.3390/mi15101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Micro-stereolithography (μSL) is an advanced additive manufacturing technique that enables the fabrication of highly precise microstructures with fine feature resolution. One of the primary challenges in μSL is achieving and maintaining precise focus throughout the fabrication process. For the successful application of μSL, it is essential to maintain the sample surface within a focal depth of several microns. Despite the growing interest in auto-focus devices, limited attention has been directed towards auto-focus systems in image-based auto-focus microscope systems for precision μSL. To address this challenge, we propose an image-based auto-focus microscope system incorporating visual servo control. In the optical design, a transflective beam splitter is employed, allowing the laser beam to pass through for fabrication while reflecting the focused beam on the sample surface to the microscope and camera. Utilizing captured spot images and the Foucault knife-edge test, a deep learning-based laser spot image processing algorithm is developed to determine the focus position based on spot size and the number of spot pixels on both sides. Experimental results demonstrate that the proposed auto-focus system effectively determines the relative position of the focal point using the laser spot image and achieves auto-focusing through visual servo control.
Collapse
Affiliation(s)
- Yijie Liu
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Xuexuan Li
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China
| | - Pengfei Jiang
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Ziyue Wang
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Jichang Guo
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Chao Luo
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Yaozhong Wei
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Zhiliang Chen
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Chang Liu
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Wang Ren
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Wei Zhang
- Coal Mining Research Institute, China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China; (Y.L.)
- CCTEG Intelligent Strata Control Technology (Tianjin) Co., Ltd., Tianjin 300392, China
- State Key Laboratory of Intelligent Mining and Strata Control, Beijing 100013, China
| | - Juntian Qu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Tsinghua University, Shenzhen 518055, China
| | - Zhen Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wei K, Tang C, Ma H, Fang X, Yang R. 3D-printed microrobots for biomedical applications. Biomater Sci 2024; 12:4301-4334. [PMID: 39041236 DOI: 10.1039/d4bm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineering, and sensors and actuators. Compared with traditional fabrication methods for microrobots, recent improvements in 3D printers enable them to print high-precision microrobots, breaking through the limitations of traditional micromanufacturing technologies that require high skills for operators and greatly shortening the design-to-production cycle. Here, this review first introduces typical 3D printing technologies used in microrobot manufacturing. Then, the structures of microrobots with different functions and application scenarios are discussed. Next, we summarize the materials (body materials, propulsion materials and intelligent materials) used in 3D microrobot manufacturing to complete body construction and realize biomedical applications (e.g., drug delivery, imaging and monitoring). Finally, the challenges and future prospects of 3D printed microrobots in biomedical applications are discussed in terms of materials, manufacturing and advancement.
Collapse
Affiliation(s)
- Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Chenlong Tang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Lin H, Zhang Z, Sun D, Ruan J, Zhang B, Song Q. 3-D Bowtie Microarray Terahertz Detector Enhanced by Laser Excitation. IEEE SENSORS JOURNAL 2024; 24:16040-16046. [DOI: 10.1109/jsen.2024.3385537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Affiliation(s)
- Hongyi Lin
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
| | - Zichen Zhang
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
| | - Dong Sun
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
| | - Jianjian Ruan
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| | - Qi Song
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
6
|
Liu J, Yin B, Liu X, Yang C, Zang S, Wu S. Enhancing electrochemical properties of a two-dimensional zeolitic imidazole framework by incorporating a conductive polymer for dopamine detection. Analyst 2023; 148:4525-4532. [PMID: 37581262 DOI: 10.1039/d3an00588g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The zeolitic imidazole framework with a leaf-shaped morphology (ZIF-L) has a wide range of promising applications in gas storage, battery materials, catalytic reactions, and optoelectronic devices due to its planar leaf-like structure and large surface area. However, the low conductivity, weak catalytic activity, and poor stability in the water dielectric medium of ZIF-L limit its further practical application. To solve these problems, we added the conductive polymer heterocyclic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to ZIF-L for the sensitive detection of dopamine (DA). The synthesized composite ZIF-L/PEDOT:PSS (ZIF-L/PEDOT) not only retained the surface morphology of ZIF-L but also exhibited excellent electrochemical properties. The higher electrical conductivity of ZIF-L/PEDOT than that of ZIF-L was due to the enhanced electron transfer at the interface between ZIF-L and PEDOT:PSS. As a result, we developed an electrochemical biosensor based on the ZIF-L/PEDOT composite, which has a limit of detection of 7 nM for DA and a wide linear range from 25 nM to 500 μM. Furthermore, the current drop was negligible after 28 days, proving that the biosensor has excellent stability. Based on the above-mentioned outstanding performance, the ZIF-L/PEDOT-based biosensor was successfully used to detect DA in human serum samples. These results demonstrated that ZIF-L/PEDOT is expected to play an essential role in disease detection.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Bing Yin
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Xiaobo Liu
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Cheng Yang
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Shiyu Zang
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Shuo Wu
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
7
|
Chen L, Liu P, Feng B, Shu Z, Liang H, Chen Y, Dong X, Xie J, Duan H. Dry-Transferable Photoresist Enabled Reliable Conformal Patterning for Ultrathin Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303513. [PMID: 37289041 DOI: 10.1002/adma.202303513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Photolithographic techniques, which are widely used in the silicon-based semiconductor industry, enable the manufacture of high-yield and high-resolution features at the micrometer and nanometer scales. However, conventional photolithographic processes cannot accommodate the micro/nanofabrication of flexible and stretchable electronics. In this study, a microfabrication approach that uses a synthesized, environmentally friendly, and dry-transferable photoresist to enable the reliable conformal manufacturing of thin-film electronics is reported, which is also compatible with the existing cleanroom processes. Photoresists with high-resolution, high-density, and multiscale patterns can be transferred onto various substrates in a defect-free and conformal-contact manner, thus enabling multiple wafer reuses. Theoretical studies are conducted to investigate the damage-free peel-off mechanism of the proposed approach. The in situ fabrication of various electrical components, including ultralight and ultrathin biopotential electrodes, has been demonstrated, which offer lower interfacial impedance, durability, and stability, and the components are applied to collect electromyography signals with superior signal-to-noise ratio (SNR) and quality. Additionally, an exemplary demonstration of a human-machine interface indicates the potential of these electrodes in many emerging applications, including healthcare, sensing, and artificial intelligence.
Collapse
Affiliation(s)
- Lei Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| | - Peng Liu
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Bo Feng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| | - Zhiwen Shu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| | - Huikang Liang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| | - Yiqin Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| | - Xiaoqian Dong
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, 410000, P. R. China
| | - Jianfei Xie
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, 410000, P. R. China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| |
Collapse
|
8
|
Song Q, Zhou Y, Chen R, Zhang M, Zhang B, Dong B. High Sensitivity Multiple Microcavity Enhanced 3-D Printed Micro-Stud Array Ultrafast Response Detector at 6G Frequency. IEEE SENSORS JOURNAL 2023; 23:14067-14073. [DOI: 10.1109/jsen.2023.3278690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Affiliation(s)
- Qi Song
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| | - Yu Zhou
- North China Institute of Computing Technology, Beijing, China
| | - Run Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Min Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| | - Bo Dong
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
9
|
Su R, Chen J, Zhang X, Wang W, Li Y, He R, Fang D. 3D-Printed Micro/Nano-Scaled Mechanical Metamaterials: Fundamentals, Technologies, Progress, Applications, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206391. [PMID: 37026433 DOI: 10.1002/smll.202206391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
Micro/nano-scaled mechanical metamaterials have attracted extensive attention in various fields attributed to their superior properties benefiting from their rationally designed micro/nano-structures. As one of the most advanced technologies in the 21st century, additive manufacturing (3D printing) opens an easier and faster path for fabricating micro/nano-scaled mechanical metamaterials with complex structures. Here, the size effect of metamaterials at micro/nano scales is introduced first. Then, the additive manufacturing technologies to fabricate mechanical metamaterials at micro/nano scales are introduced. The latest research progress on micro/nano-scaled mechanical metamaterials is also reviewed according to the type of materials. In addition, the structural and functional applications of micro/nano-scaled mechanical metamaterials are further summarized. Finally, the challenges, including advanced 3D printing technologies, novel material development, and innovative structural design, for micro/nano-scaled mechanical metamaterials are discussed, and future perspectives are provided. The review aims to provide insight into the research and development of 3D-printed micro/nano-scaled mechanical metamaterials.
Collapse
Affiliation(s)
- Ruyue Su
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jingyi Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xueqin Zhang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenqing Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rujie He
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Wang Y, Adam ML, Zhao Y, Zheng W, Gao L, Yin Z, Zhao H. Machine Learning-Enhanced Flexible Mechanical Sensing. NANO-MICRO LETTERS 2023; 15:55. [PMID: 36800133 PMCID: PMC9936950 DOI: 10.1007/s40820-023-01013-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/08/2023] [Indexed: 05/31/2023]
Abstract
To realize a hyperconnected smart society with high productivity, advances in flexible sensing technology are highly needed. Nowadays, flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device's software. Significant research efforts have been devoted to improving materials, sensing mechanism, and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology. Meanwhile, advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors. Machine learning (ML) as an important branch of artificial intelligence can efficiently handle such complex data, which can be multi-dimensional and multi-faceted, thus providing a powerful tool for easy interpretation of sensing data. In this review, the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented. Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated, which includes health monitoring, human-machine interfaces, object/surface recognition, pressure prediction, and human posture/motion identification. Finally, the advantages, challenges, and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed. These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.
Collapse
Affiliation(s)
- Yuejiao Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mukhtar Lawan Adam
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yunlong Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, Xi'an , 710071, People's Republic of China
| | - Libo Gao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
11
|
Wu H, Chen J, Duan K, Zhu M, Hou Y, Zhou J, Ren Y, Jiang H, Fan R, Lu Y. Three Dimensional Printing of Bioinspired Crossed-Lamellar Metamaterials with Superior Toughness for Syntactic Foam Substitution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42504-42512. [PMID: 36084147 DOI: 10.1021/acsami.2c12297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological materials such as conch shells with crossed-lamellar textures hold impressive mechanical properties due to their capability to realize effective crack control and energy dissipation through the structural synergy of interfacial modulus mismatch and lamellar orientation disparity. Integrating this mechanism with mechanical metamaterial design can not only avoid the catastrophic post-yield stress drop found in traditional architectural materials with uniform lattice structures but also effectively maintain the stress level and improve the energy absorption ability. Herein, a novel bioinspired design strategy that combines regional particularity and overall cyclicity is proposed to innovate the connotation of long-range periodicity inside the metamaterial, in which the node constraint gradient and crossed-lamellar struts corresponding to the core features of conch shells are able to guide the deformation sequence with a self-strengthening response during compression. Detailed in situ experiments and finite element analysis confirm that the rotated broad layer stacking can shorten and impede the shear bands, further transforming the deformation of bioinspired metamaterial into a progressive, hierarchical way, highlighted by the cross-layer hysteresis. Even based on a brittle polymeric resin, excellent specific energy absorption capacity [4544 kJ/kg] has been achieved in this architecture, which far exceeds the reported metal-based syntactic foams for two orders of magnitude. These results offer new opportunities for the bioinspired metamaterials to substitute the widespread syntactic foams in specific applications required for both lightweight and energy absorption.
Collapse
Affiliation(s)
- Hao Wu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Juzheng Chen
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Ke Duan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Mengya Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
12
|
Synthesis and Optimization of a Free-Radical/Cationic Hybrid Photosensitive UV Curable Resin Using Polyurethane Acrylate and Graphene Oxide. Polymers (Basel) 2022; 14:polym14101959. [PMID: 35631849 PMCID: PMC9145890 DOI: 10.3390/polym14101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Cost-effective, practical, and efficiently performing photosensitive resin composite materials are essential, as the current materials are expensive, lack better alternatives, and do not meet 3D printing standards. In this study, based on orthogonal experiments for photosensitive resin curing, we prepared a free-radical/cationic hybrid photosensitive UV cured resin (UVR) using acrylic ester and epoxy resin as the prepolymers, tripropylenediol diacrylate (TPGDA) as the active diluent, and triaryl sulfonium salt (I-160) and 2,2-dimethyl-α-hydroxy acetophenone (1173) as the photoinitiators, in the optimized formula of acrylic-ester:epoxy-resin:TPGDA:I-160:1173 = 37.5:37.5:20:2.5:2.5. Further, we investigated the effects of polyurethane acrylates (PUA) and Graphene oxide (GO) on the surface morphology, chemical structure, hydrophobicity, mechanical strength, and gelation rate of the hybrid resin. We observed that 20% PUA improved tensile strength to the maximum of 36.89 MPa from 16.42 MPa of the unmodified hybrid resin, whereas 1% GO reduced volume shrinkage to the minimum of 2.89% from 3.73% of the unmodified hybrid resin. These photosensitive resins with higher tensile strength and lower volume shrinkage can be used to synthesize high performance functional materials in the future.
Collapse
|