1
|
Zhou J, Qin J, Zhan H. Copper Current Collector: The Cornerstones of Practical Lithium Metal and Anode-Free Batteries. Chemphyschem 2024; 25:e202400007. [PMID: 38318964 DOI: 10.1002/cphc.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Comparing with the commercial Li-ion batteries, Li metal secondary batteries (LMB) exhibit unparalleled energy density. However, many issues have hindered the practical application. As an element in lithium metal and anode-free batteries, the role of current collector is critical. Comparing with the cathode current collector, more requirements have been imposed on anode current collector as the anode side is usually the starting point of thermal runaway and many other risks, additionally, the anode in Li metal battery very likely determines the cycling life of full cell. In the review, we first give a systematic introduction of copper current collector and the related issues and challenges, and then we summarize the main approaches that have been mentioned in the research, including Cu current collector with 3D architecture, lithophilic modification of the current collector, artificial SEI layer construction on Cu current collector and carbon or polymer decoration of Cu current collector. Finally, we give a prospective comment of the future development in this field.
Collapse
Affiliation(s)
- Jinyang Zhou
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, China
| | - Jian Qin
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, China
| | - Hui Zhan
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Xiao H, Li Y, Chen W, Xie T, Zhu H, Zheng W, He J, Huang S. Stabilize Sodium Metal Anode by Integrated Patterning of Laser-Induced Graphene with Regulated Na Deposition Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303959. [PMID: 37496085 DOI: 10.1002/smll.202303959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Metallic sodium is regarded as the most potential anode for sodium-ion batteries due to its high capacity and earth-abundancy. Nevertheless, uncontrolled Na dendrite growth and infinite volume change remain great challenges for developing high-performance sodium metal batteries. This work provides a simple and general approach to stabilize sodium metal anode (SMA) by constructing Sn nanoparticles-anchored laser-induced graphene on copper foil (Sn@LIG@Cu) consisting of Sn@LIG composite, polyimide (PI) columns, and Cu current collector. The Sn-based sodiophilic species effectively reduce the Na nucleation overpotential and regulate the dendrite Na-free deposition. While the flexible PI columns act as binder and buffer the volume variation of Na during cycling. Besides, the unique patterned structure provides continuous and rapid channels for ion transportation, promoting the Na+ transport kinetics. Therefore, the as-fabricated Sn@LIG@Cu electrode exhibits outstanding rate performance to 40 mA cm-2 and excellent cycling stability without dendrite growth, which is confirmed by in-situ optical microscopy observation. Moreover, the practical full cell based on such an anode displays a favorable rate capability of up to 10 C and cycling performance at 5 C for 600 cycles. This work thus demonstrates a facile, highly-efficient, and scalable approach to stabilize SMAs and can be extended to other battery systems.
Collapse
Affiliation(s)
- Hong Xiao
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yijuan Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weizhao Chen
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tangchao Xie
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hengji Zhu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weitao Zheng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jialang He
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Qian L, Zheng Y, Or T, Park HW, Gao R, Park M, Ma Q, Luo D, Yu A, Chen Z. Advanced Material Engineering to Tailor Nucleation and Growth towards Uniform Deposition for Anode-Less Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205233. [PMID: 36319473 DOI: 10.1002/smll.202205233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Anode-less lithium metal batteries (ALMBs), whether employing liquid or solid electrolytes, have significant advantages such as lowered costs and increased energy density over lithium metal batteries (LMBs). Among many issues, dendrite growth and non-uniform plating which results in poor coulombic efficiency are the key issues that viciously decrease the longevity of the ALMBs. As a result, lowering the nucleation barrier and facilitating lithium growth towards uniform plating is even more critical in ALMBs. While extensive reviews have focused to describe strategies to achieve high performance in LMBs and ALMBs, this review focuses on strategies designed to directly facilitate nucleation and growth of dendrite-free ALMBs. The review begins with a discussion of the primary components of ALMBs, followed by a brief theoretical analysis of the nucleation and growth mechanism for ALMBs. The review then emphasizes key examples for each strategy in order to highlight the mechanisms and rationale that facilitate lithium plating. By comparing the structure and mechanisms of key materials, the review discusses their benefits and drawbacks. Finally, major trends and key findings are summarized, as well as an outlook on the scientific and economic gaps in ALMBs.
Collapse
Affiliation(s)
- Lanting Qian
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yun Zheng
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Tyler Or
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Hey Woong Park
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Rui Gao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Moon Park
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Qianyi Ma
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
4
|
Chen J, Wang Y, Li S, Chen H, Qiao X, Zhao J, Ma Y, Alshareef HN. Porous Metal Current Collectors for Alkali Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205695. [PMID: 36437052 PMCID: PMC9811491 DOI: 10.1002/advs.202205695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Indexed: 05/05/2023]
Abstract
Alkali metals (i.e., Li, Na, and K) are promising anode materials for next-generation high-energy-density batteries due to their superior theoretical specific capacities and low electrochemical potentials. However, the uneven current and ion distribution on the anode surface probably induces undesirable dendrite growth, which leads to significant safety hazards and severely hinders the commercialization of alkali metal anodes. A smart and versatile strategy that can accommodate alkali metals into porous metal current collectors (PMCCs) has been well established to resolve the issues as well as to promote the practical applications of alkali metal anodes. Moreover, the proposal of PMCCs can meet the requirement of the dendrite-free battery fabrication industry, while the electrode material loading exactly needs the metal current collector component as well. Here, a systematic survey on advanced PMCCs for Li, Na, and K alkali metal anodes is presented, including their development timeline, categories, fabrication methods, and working mechanism. On this basis, some significant methodology advances to control pore structure, surface area, surface wettability, and mechanical properties are systematically summarized. Further, the existing issues and the development prospects of PMCCs to improve anode performance in alkali metal batteries are discussed.
Collapse
Affiliation(s)
- Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Yizhou Wang
- Materials Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Sijia Li
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Huanran Chen
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Xin Qiao
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
| | - Yanwen Ma
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210023China
- Suzhou Vocational Institute of Industrial Technology1 Zhineng AvenueSuzhou International Education ParkSuzhou215104China
| | - Husam N. Alshareef
- Materials Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
5
|
Fukami K, Sakurai A, Tsujimoto T, Yamagami M, Kitada A, Morimoto K, Nishioka K, Nakanishi S, Yoshikane Y, Nagao T, Katayama JI, Murase K. Macroscopically uniform and flat lithium thin film formed by electrodeposition using multicomponent additives. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|