1
|
Lan A, Zhu J, Zhang Z, Lv Y, Lu H, Zhao N, Do H, Chen ZK, Chen F. Asymmetric Non-Fullerene Acceptor Derivatives Incorporated Ternary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39657-39668. [PMID: 37578345 DOI: 10.1021/acsami.3c06981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Incorporating ITIC derivatives as guest acceptors into binary host systems is an effective strategy for constructing high-performance ternary organic solar cells (TOSCs). In this work, we introduced A-D-A type ITIC derivatives PTBTT-4F (asymmetric) and PTBTP-4F (symmetric) into the PM6:BTP-BO-4F (Y6-BO) binary blend and investigated the impacts of two guest acceptors on the performance of TOSCs. Differentiated device performance was observed, although PTBTT-4F and PTBTP-4F presented similar chemical structures and comparable absorptions. The PTBTT-4F ternary devices exhibited an improved power conversion efficiency (PCE) of 17.67% with increased open circuit (VOC) and current density (JSC), whereas the PTBTP-4F-based ternary devices yielded a relatively lower PCE of 16.34%. PTBTT-4F showed much better compatibility with the host acceptor BTP-BO-4F, so that they formed a well-mixed alloy phase state; more precise phase separation and increased crystallinity were thus induced in the ternary blends, leading to reduced molecular recombination and improved charge mobilities, which contributed to improved fill factors of the ternary devices. In addition, the optimized PTBTT-4F devices exhibited good performance tolerance of the photoactive layer thickness, as they even delivered a PCE of 15.25% when the active layer was as thick as up to ∼300 nm.
Collapse
Affiliation(s)
- Ai Lan
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jintao Zhu
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zhuohan Zhang
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yifan Lv
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hong Lu
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ningxin Zhao
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hainam Do
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zhi-Kuan Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315100, China
| | - Fei Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315100, China
| |
Collapse
|
2
|
Ge J, Xie L, Peng R, Ge Z. Organic Photovoltaics Utilizing Small-Molecule Donors and Y-Series Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206566. [PMID: 36482012 DOI: 10.1002/adma.202206566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Indexed: 05/19/2023]
Abstract
The emerging Y-series nonfullerene acceptors (Y-NFA) has prompted the rapid progress of power conversion efficiency (PCE) of all-small-molecule organic solar cells (ASM-OSCs) from around 12% to 17%. The excellent PCE improvement benefits from not only the outstanding properties of Y-series acceptors but also the successful development of small-molecule donors. The short-circuit current density, fill factor, and nonradiative recombination are all optimized to the unprecedented values, providing a scenery that is obviously different from the ITIC-series based ASM-OSCs. In this review, OSCs utilizing small-molecule donors and Y-NFA are summarized and classified in order to provide an up-to-date development overview and give an insight on structure-property correlation. Then, the characteristics of bulk-heterojunction (BHJ) formation of ASM-OSCs are discussed and compared with that of polymer-based OSCs. Finally, the challenges and outlook on designing ground-breaking small-molecule donor and forming an ideal BHJ morphology are discussed.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Gao X, Yu K, Zhao Y, Zhang T, Wen J, Liu Z, Liu Z, Ye G, Gao J, Ge Z, Liu Z. Effects of subtle change in side chains on the photovoltaic performance of small molecular donors for solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Lv M, Tang Y, Qiu D, Zou W, Zhou R, Liu L, Huang Z, Zhang J, Lu K, Wei Z. Single-bond-linked oligomeric donors for high performance organic solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Liu X, Liang Z, Du S, Niu X, Tong J, Yang C, Lu X, Bao X, Yan L, Li J, Xia Y. Two Compatible Acceptors as an Alloy Model with a Halogen-Free Solvent for Efficient Ternary Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9386-9397. [PMID: 35148049 DOI: 10.1021/acsami.1c23332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A ternary strategy of halogen-free solvent processing can open up a promising pathway for the preparation of polymer solar cells (PSCs) on a large scale and can effectively improve the power conversion efficiency with an appropriate third component. Herein, the green solvent o-xylene (o-XY) is used as the main solvent, and the non-fullerene acceptor Y6-DT-4F as the third component is introduced into the PBB-F:IT-4F binary system to broaden the spectral absorption and optimize the morphology to achieve efficient PSCs. The third component, Y6-DT-4F, is compatible with IT-4F and can form an "alloy acceptor", which can synergistically optimize the photon capture, carrier transport, and collection capabilities of the ternary device. Meanwhile, Y6-DT-4F has strong crystallinity, so when introduced into the binary system as the third component can enhance the crystallization, which is conducive to the charge transport. Consequently, the optimal ternary system based on PBB-F:IT-4F:Y6-DT-4F achieved an efficiency of 15.24%, which is higher than that of the binary device based on PBB-F:IT-4F (13.39%).
Collapse
Affiliation(s)
- Xingpeng Liu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sanshan Du
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xixi Niu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chunyan Yang
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xubin Lu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianfeng Li
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yangjun Xia
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
6
|
Yan L, Liang Z, Si J, Gong P, Wang Y, Liu X, Tong J, Li J, Hou X. Ultrafast Kinetics of Chlorinated Polymer Donors: A Faster Excitonic Dissociation Path. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6945-6957. [PMID: 35081710 DOI: 10.1021/acsami.1c24348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halogen-substituted donor/acceptor materials are widely regarded as a promising strategy toward improved power-conversion efficiencies (PCEs) in polymer solar cells (PSCs). A chlorinated polymer donor, PClBTA-PS, and its non-chlorinated analogue, PBTA-PS, are synthesized. The PClBTA-PS-based devices show significant enhancements in terms of open-circuit voltage (VOC = 0.82 V) and fill factor (FF = 76.20%). In addition, a PCE of 13.20% is obtained, which is significantly higher than that for the PBTA-PS-based devices (PCE = 7.63%). Grazing incident wide-angle X-ray scattering shows that the chlorinated polymer enables better π-π stacking in both pure and blend films. DFT and TD-DFT calculations as well as ultrafast photophysics measurements indicate that chlorinated PClBTA-PS has a smaller bonding energy and a longer spontaneous-emission lifetime. The results also reveal that the charge-transfer-state excitons in PClBTA-PS:IT4Cl blend films split into the charge-separated (CS) state via a faster dissociation path, which produces a higher yield of the CS state. Overall, this study provides a deeper understanding of how a halogen-substituted polymer can improve PSCs in the future.
Collapse
Affiliation(s)
- Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pingping Gong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yufei Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Zhang L, Zhu X, Deng D, Wang Z, Zhang Z, Li Y, Zhang J, Lv K, Liu L, Zhang X, Zhou H, Ade H, Wei Z. High Miscibility Compatible with Ordered Molecular Packing Enables an Excellent Efficiency of 16.2% in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106316. [PMID: 34773418 DOI: 10.1002/adma.202106316] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In all-small-molecule organic solar cells (ASM-OSCs), a high short-circuit current (Jsc ) usually needs a small phase separation, while a high fill factor (FF) is generally realized in a highly ordered packing system. However, small domain and ordered packing always conflicted each other in ASM-OSCs, leading to a mutually restricted Jsc and FF. In this study, alleviation of the previous dilemma by the strategy of obtaining simultaneous good miscibility and ordered packing through modulating homo- and heteromolecular interactions is proposed. By moving the alkyl-thiolation side chains from the para- to the meta-position in the small-molecule donor, the surface tension and molecular planarity are synchronously enhanced, resulting in compatible properties of good miscibility with acceptor BTP-eC9 and strong self-assembly ability. As a result, an optimized morphology with multi-length-scale domains and highly ordered packing is realized. The device exhibits a long carrier lifetime (39.8 μs) and fast charge collection (15.5 ns). A record efficiency of 16.2% with a high FF of 75.6% and a Jsc of 25.4 mA cm-2 in the ASM-OSCs is obtained. These results demonstrate that the strategy of simultaneously obtaining good miscibility with high crystallinity could be an efficient photovoltaic material design principle for high-performance ASM-OSCs.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangwei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen Wang
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Ziqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xuning Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
8
|
Li Y, Li Q, Wang X, Fu Q, Hu C, Qiu X, Li T, Wang F. Eliminating the Detrimental Effect of Secondary Doping on PEDOT : PSS Hole Transporting Material Performance. CHEMSUSCHEM 2021; 14:4802-4811. [PMID: 34472195 DOI: 10.1002/cssc.202101458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Secondary doping has a long history of use in conductivity enhancement in poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS). However, very little research has addressed its detrimental effect on application performance of PEDOT : PSS in organic solar cells. Herein, it was shown that the uneven drying of secondary dopant-water mixture results in a nonuniform/continuous film structure, causing severe damage to the device efficiencies (dropping about 8 and 23 % for poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) : 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC) and poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithio-phene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione))](PM6) : (3,9-bis(1-oxo-2-methylene-3-(1,1-dicyanomethylene)-5,6-difluoroindanone)-5,5,11,11-tetrakis(4-n-hexylphenyl)-dithieno[2,3d:2',3'd']-s-indaceno[1,2b:5,6b']dithiophene (IT-4F) cells, respectively) and thermal stabilities. Moreover, a simple yet robust dialysis treatment was proposed to solve the issue of noncontinuity and retain the secondary doping's advantages of quinoid structure simultaneously, thus demonstrating a significant enhancement in device performance. This study will be of great importance to the future exploration of the next generation of post-treatment strategy.
Collapse
Affiliation(s)
- Yuda Li
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Qi Li
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, P. R. China
| | - Qingyao Fu
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Ci Hu
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xianliang Qiu
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Tianjin Li
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Feng Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| |
Collapse
|
9
|
Liu KK, Huang H, Wang JL, Wan SS, Zhou X, Bai HR, Ma W, Zhang ZG, Li Y. Modulating Crystal Packing, Film Morphology, and Photovoltaic Performance of Selenophene-Containing Acceptors through a Combination of Skeleton Isomeric and Regioisomeric Strategies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50163-50175. [PMID: 34664507 DOI: 10.1021/acsami.1c12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report a series of acceptor-donor-acceptor (A-D-A) architecture isomeric acceptors (SeCT-IC, CSeT-IC, and CTSe-IC), which have an identical electron-deficient terminal A-group and three different central D-cores with the selenophene at the innermost, relatively outer, and outermost positions of the central core, respectively. From CSeT-IC to the atom regioisomer of CTSe-IC and to the conjugated skeleton isomer of SeCT-IC, the optical band gap of neat films continuously reduced and highest occupied molecular orbitals (HOMO) gradually upshifted with changing the selenophene from relatively outer position to the outermost position and to the innermost position of the central core. More importantly, the single-crystal structure and the GIWAXS measurements revealed that CTSe-IC presents the closest π-π stacking distance, the largest CCL, and the best molecular order and crystallinity, which led to the highest electron mobility in neat films. Furthermore, the J71:CTSe-IC blend film presents a more ordered film morphology with more proper phase separation domain size, more dominant face-on orientation, and relatively higher and more balanced electron-hole mobilities in comparison with that of J71:SeCT-IC and J71:CSeT-IC. Consequently, the J71:CTSe-IC-based organic solar cell gave a superior power conversion efficiency (PCE) of 11.59%, which was obviously higher than those for J71:SeCT-IC (10.89%) and J71:CSeT-IC (8.52%). Our results demonstrate that the acceptor with selenophene in the outermost position led to significantly enhance the PCE. More importantly, rational modulation of the central fused core in combination with the conjugated skeleton isomeric method and the atom regioisomeric method provides an effective way to understand the structure-crystallinity-photovoltaic property relationship of selenophene-based regioisomers.
Collapse
Affiliation(s)
- Kai-Kai Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - He Huang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shi-Sheng Wan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hai-Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi-Guo Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|