1
|
Aslam J, Waseem MA, Lu XM, Wu S, Sun W, Wang Y. Unveiling Covalent Triazine Frameworks for Lithium Metal Anodes: Recent Developments and Prospective Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408988. [PMID: 39629523 DOI: 10.1002/smll.202408988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Indexed: 01/23/2025]
Abstract
Lithium metal batteries (LMBs) are distinguished by their elevated energy densities which represent themselves as the formidable contenders for the forthcoming generation of energy storage technologies. Nonetheless, their cycling efficiency is hindered owing to unregulated growth of lithium dendrites and unstable solid electrolyte interphase (SEI). This raises serious safety concerns while rendering LMBs unfeasible for real-world implementation. Covalent Triazine Frameworks (CTFs) have emerged as a promising class of 2D nanomaterials due to their unique properties such as high surface area, chemical stability, tailorable properties, porosity and high N-containing groups. These groups serve as an efficient acceptor for Li. Consequently, the problem of lithium dendrite formation is significantly reduced. This review offers an extensive examination of CTF based anode materials utilized to address the challenges associated with lithium dendrites in LMBs. It is outline future prospects and provide recommendations for the design and engineering of lithium metal anodes (LMAs) and architectures that can make LMBs viable for practical use. This review also highlights promising strategies for surmounting challenges to ensure the safety and efficiency of LMBs.
Collapse
Affiliation(s)
- Junaid Aslam
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Muhammad Ahsan Waseem
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xiao-Meng Lu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Songling Wu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
2
|
Zhang M, Zhang X, Liu S, Hou W, Lu Y, Hou L, Luo Y, Liu Y, Yuan C. Versatile Separators Toward Advanced Lithium-Sulfur Batteries: Status, Recent Progress, Challenges and Perspective. CHEMSUSCHEM 2024; 17:e202400538. [PMID: 38763902 DOI: 10.1002/cssc.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/21/2024]
Abstract
Lithium-sulfur batteries (LSBs) have recently gained extensive attention due to their high energy density, low cost, and environmental friendliness. However, serious shuttle effect and uncontrolled growth of lithium dendrites restrict them from further commercial applications. As "the third electrode", functional separators are of equal significance as both anodes and cathodes in LSBs. The challenges mentioned above are effectively addressed with rational design and optimization in separators, thereby enhancing their reversible capacities and cycle stability. The review discusses the status/operation mechanism of functional separators, then primarily focuses on recent research progress in versatile separators with purposeful modifications for LSBs, and summarizes the methods and characteristics of separator modification, including heterojunction engineering, single atoms, quantum dots, and defect engineering. From the perspective of the anodes, distinct methods to inhibit the growth of lithium dendrites by modifying the separator are discussed. Modifying the separators with flame retardant materials or choosing a solid electrolyte is expected to improve the safety of LSBs. Besides, in-situ techniques and theoretical simulation calculations are proposed to advance LSBs. Finally, future challenges and prospects of separator modifications for next-generation LSBs are highlighted. We believe that the review will be enormously essential to the practical development of advanced LSBs.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xu Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Sen Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wenshuo Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yang Lu
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yongsong Luo
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Yang Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
3
|
Xue J, Sun Z, Sun B, Zhao C, Yang Y, Huo F, Cabot A, Liu HK, Dou S. Covalent Organic Framework-Based Materials for Advanced Lithium Metal Batteries. ACS NANO 2024; 18:17439-17468. [PMID: 38934250 DOI: 10.1021/acsnano.4c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lithium metal batteries (LMBs), with high energy densities, are strong contenders for the next generation of energy storage systems. Nevertheless, the unregulated growth of lithium dendrites and the unstable solid electrolyte interphase (SEI) significantly hamper their cycling efficiency and raise serious safety concerns, rendering LMBs unfeasible for real-world implementation. Covalent organic frameworks (COFs) and their derivatives have emerged as multifunctional materials with significant potential for addressing the inherent problems of the anode electrode of the lithium metal. This potential stems from their abundant metal-affine functional groups, internal channels, and widely tunable architecture. The original COFs, their derivatives, and COF-based composites can effectively guide the uniform deposition of lithium ions by enhancing conductivity, transport efficiency, and mechanical strength, thereby mitigating the issue of lithium dendrite growth. This review provides a comprehensive analysis of COF-based and derived materials employed for mitigating the challenges posed by lithium dendrites in LMB. Additionally, we present prospects and recommendations for the design and engineering of materials and architectures that can render LMBs feasible for practical applications.
Collapse
Affiliation(s)
- Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Feng Huo
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Henan University, Zhengzhou 450046, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IRECSant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREAPg, Lluís Companys 23, Barcelona 08010, Spain
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - ShiXue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
4
|
Wang Y, Yang X, Meng Y, Wen Z, Han R, Hu X, Sun B, Kang F, Li B, Zhou D, Wang C, Wang G. Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives. Chem Rev 2024; 124:3494-3589. [PMID: 38478597 DOI: 10.1021/acs.chemrev.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.
Collapse
Affiliation(s)
- Yao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xu Yang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yuefeng Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zuxin Wen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ran Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xia Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
5
|
Li M, Yu J, Xue Y, Wang K, Wang Q, Xie Z, Wang L, Yang Y, Wu J, Qiu X, Yu H. Preparation of Carborane-Tailored Covalent Organic Frameworks by a Postsynthetic Modification Strategy as a Barrier to Polysulfide in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2922-2932. [PMID: 36600549 DOI: 10.1021/acsami.2c18407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lithium-sulfur batteries (LSBs) have attracted much attention due to their high energy density and theoretical specific capacity. However, the "shuttle effect" of polysulfides limits their application. Herein, we propose a postsynthetic modification (PSM) strategy to synthesize a fibrous carborane-tailored covalent organic framework (PMCB-COF). Benefiting from its amphiphilicity, strong adsorption ability, high specific surface area, and accessible Li+ transport channels, PMCB-COF could serve as a barrier to polysulfide to inhibit the shuttle effect. The cell assembled with PMCB-COF exhibits a high initial capacity of 926 mAh g-1 at 1 C. A Coulombic efficiency of 98% and a fading rate of only 0.039% per cycle are exhibited even after 1500 cycles. So far as we know, PMCB-COF is one of the best materials as a separator of LSBs. This work provides a safe and efficient avenue for tailoring COFs with carborane and might help promote the development of secure, low-cost, and durable rechargeable batteries.
Collapse
Affiliation(s)
- Mingming Li
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Jun Yu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Yali Xue
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Kai Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Qimeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhiying Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lei Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Yu Yang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Jianping Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiaoyan Qiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Haizhou Yu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| |
Collapse
|
6
|
Yuan J, Xi B, Wang P, Zhang Z, Song N, An X, Liu J, Feng J, Xiong S. Multifunctional Atomic Molybdenum on Graphene with Distinctive Coordination to Solve Li and S Electrochemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203947. [PMID: 35980940 DOI: 10.1002/smll.202203947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The improvement of lithium-sulfur batteries is still impeded by notorious shuttling effect and sluggish kinetics on the S cathode, and rampant Li dendrite formation on the Li anode makes it worse. Herein, a type of single-atom dispersed Mo on nitrogen-doped graphene (Mo/NG) with a distinctive Mo-N2 O2 -C coordination structure first serving as a multifunctional material is designed by a structure-oriented strategy to solve Li and S electrochemistry. Mo/NG with superior intrinsic properties endowed by the unique coordination configuration adsorbs soluble polysulfides and promotes bidirectional conversion of LiPSs at the cathode side. Meanwhile, the suitable binding strength of Mo/NG with lithium ions endows it with an attractive lithiophilic feature. Specifically, Mo/NG is able to work as the adaptor to redistribute lithium ions on the interface of separator and homogenize the lithium ion flux. Due to the suitable binding ability with Li+ , it does not interfere with the diffusion of lithium ions across and provides tunnels exclusive to lithium ions to generate fast and homogeneous flux. Ascribed to such unique multifunctionality, Li-S batteries assembled with Mo/NG exhibit excellent electrochemical performance including long cycling stability over 1000 cycles and high areal capacities under high sulfur mass loading.
Collapse
Affiliation(s)
- Jia Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ning Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan, 610106, P. R. China
| | - Jie Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
7
|
Huang B, Hua H, Lai P, Shen X, Li R, He Z, Zhang P, Zhao J. Constructing Ion‐Selective Coating Layer with Lithium Ion Conductor LLZO and Binder Li‐Nafion for Separator Used in Lithium‐Sulfur Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Boyang Huang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Haiming Hua
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Pengbin Lai
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Xiu Shen
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Ruiyang Li
- Xiamen University College of Chemistry and Chemical Engineering TAIWAN
| | - Zheng He
- Xiamen University College of Energy CHINA
| | - Peng Zhang
- Xiamen University College of Energy CHINA
| | - Jinbao Zhao
- Xiamen University College of Chemistry and Chemical Engineering No. 422, Siming South Road 361005 Xiamen CHINA
| |
Collapse
|
8
|
Liu X, Ma H, Hu C, Liu N, Zhao Y. Tg-C 3N 4-coated functional separator as polysulfide barrier of high-performance lithium-sulfur batteries. NANOTECHNOLOGY 2021; 32:475401. [PMID: 34380117 DOI: 10.1088/1361-6528/ac1cbc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Lithium sulfur (Li-S) battery is considered as a promising alternative for the development of battery technologies. However, the shuttle effect seriously limits its practical use. Herein, hollow tubular graphene-like carbon nitride (Tg-C3N4) is synthesized and utilized as a functional interlayer to inhibit shuttling effect and promote catalytic kinetics. Both experiments and DFT calculations together suggest that N-doping enhances the electron transfers between Tg-C3N4and LiPSs, leading to improved chemical adsorptions and catalytic effects towards the redox conversions of the active sulfur species. Besides, Tg-C3N4delivers a unique hollow tubular architecture with massive ion transfer pathways and fully exposed active interfaces. In addition, the abundant C-N heteroatomic structures also impose strong chemical immobilization toward lithium polysulfides. Benefiting from these unique superiorities, the cell with the Tg-C3N4-modified separator exhibits a reversible capacity of 494 mAh g-1after 500 cycles at 1 C with a negligible capacity decay of 0.085% per cycle, indicating an efficient strategy toward high-performance modified separators.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Heng Ma
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Chenchen Hu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ning Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yan Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|