1
|
He H, Ma Z, Zhang S, Cai A, Ye H, Fan X, Peng W, Li Y. Boosting Suzuki coupling reaction via pore expanding and palladium-zinc alloying. J Colloid Interface Sci 2025; 679:152-160. [PMID: 39362140 DOI: 10.1016/j.jcis.2024.09.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
A palladium-zinc alloy nanoparticles decorated nitrogen-doped porous carbon catalyst (PdZn30-NC) was synthesized and utilized for Suzuki coupling reaction. The alloying palladium (Pd) with zinc (Zn) and pore expanding are realized simultaneously. Density functional theory (DFT) calculations and experimental studies reveal that the alloying Pd with Zn can lower the energy barrier in Suzuki coupling reaction. Nitrogen adsorption-desorption measurements uncover that pore expansion caused by the zinc nitrate hexahydrate assisted calcination gives rise to the multiplication of mesopore with a pore diameter of 6 nm, which facilitates mass transfer during the reaction. As a result, the alloying Pd with Zn and pore expanding together endow PdZn30-NC with excellent catalytic activity. PdZn30-NC demonstrates exceptional catalytic activity and stability in Suzuki coupling reaction. A high biphenyl yield of 97.7 % within 40 min and stable reusability of 93.3 % yield after five reuse cycles can be achieved. This work not only offers a viable method for Suzuki coupling reaction, but also provides insights for designing new catalysts toward Suzuki coupling reaction.
Collapse
Affiliation(s)
- Hongwei He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Zhoulin Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Shuya Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - An Cai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Huan Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China.
| |
Collapse
|
2
|
Liu F, Liu X. Amphiphilic Dendronized Copolymer-Encapsulated Au, Ag and Pd Nanoparticles for Catalysis in the 4-Nitrophenol Reduction and Suzuki-Miyaura Reactions. Polymers (Basel) 2024; 16:1080. [PMID: 38674999 PMCID: PMC11054709 DOI: 10.3390/polym16081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The branched structures of dendronized polymers can provide good steric stabilization for metal nanoparticle catalysts. In this work, an amphiphilic dendronized copolymer containing hydrophilic branched triethylene glycol moieties and hydrophobic branched ferrocenyl moieties is designed and prepared by one-pot ring-opening metathesis polymerization, and is used as the stabilizer for metal (Au, Ag and Pd) nanoparticles. These metal nanoparticles (Au nanoparticles: 3.5 ± 3.0 nm; Ag nanoparticles: 7.2 ± 4.0 nm; Pd nanoparticles: 2.5 ± 1.0 nm) are found to be highly active in both the 4-nitrophenol reduction and Suzuki-Miyaura reactions. In the 4-nitrophenol reduction, Pd nanoparticles have the highest catalytic ability (TOF: 2060 h-1). In addition, Pd nanoparticles are also an efficient catalyst for Suzuki-Miyaura reactions (TOF: 1980 h-1) and possess good applicability for diverse substrates. The amphiphilic dendronized copolymer will open a new door for the development of efficient metal nanoparticle catalysts.
Collapse
Affiliation(s)
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China;
| |
Collapse
|
3
|
Iyer K, Kavthe R, Hu Y, Lipshutz BH. Nanoparticles as Heterogeneous Catalysts for ppm Pd-Catalyzed Aminations in Water. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:1997-2008. [PMID: 38333203 PMCID: PMC10848299 DOI: 10.1021/acssuschemeng.3c06527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024]
Abstract
A general protocol employing heterogeneous catalysis has been developed that enables ppm of Pd-catalyzed C-N cross-coupling reactions under aqueous micellar catalysis. A new nanoparticle catalyst containing specifically ligated Pd, in combination with nanoreactors composed of the designer surfactant Savie, a biodegradable amphiphile, catalyzes C-N bond formations in recyclable water. A variety of coupling partners, ranging from highly functionalized pharmaceutically relevant APIs to educts from the Merck Informer Library, readily participate under these environmentally responsible, sustainable reaction conditions. Other key features associated with this report include the low levels of residual Pd found in the products, the recyclability of the aqueous reaction medium, the use of ocean water as an alternative source of reaction medium, options for the use of pseudohalides as alternative reaction partners, and associated low E factors. In addition, an unprecedented 5-step, one-pot sequence is presented, featuring several of the most widely used transformations in the pharmaceutical industry, suggesting potential industrial applications.
Collapse
Affiliation(s)
| | | | - Yuting Hu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Bruce H. Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Ma X, Zhang L, Liu R, Li X, Yan H, Zhao X, Yang Y, Zhu H, Kong X, Yin J, Zhou H, Li X, Kong L, Hao H, Zhong D, Dai F. A Multifunctional Co-Based Metal-Organic Framework as a Platform for Proton Conduction and Ni trophenols Reduction. Inorg Chem 2023. [PMID: 38015879 DOI: 10.1021/acs.inorgchem.3c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The design and development of proton conduction materials for clean energy-related applications is obviously important and highly desired but challenging. An ultrastable cobalt-based metal-organic framework Co-MOF, formulated as [Co2(btzip)2(μ2-OH2)] (namely, LCUH-103, H2btzip = 4, 6-bis(triazol-1-yl)-isophthalic acid) had been successfully synthesized via the hydrothermal method. LCUH-103 exhibits a three-dimensional framework and a one-dimensional microporous channel structure with scu topology based on the binuclear metallic cluster {Co2}. LCUH-103 indicated excellent chemical and thermal stability; peculiarly, it can retain its entire framework in acid and alkali solutions with different pH values for 24 h. The excellent stability is a prerequisite for studying its proton conductivity, and its proton conductivity σ can reach up to 1.25 × 10-3 S·cm-1 at 80 °C and 100% relative humidity (RH). In order to enhance its proton conductivity, the proton-conducting material Im@LCUH-103 had been prepared by encapsulating imidazole molecules into the channels of LCUH-103. Im@LCUH-103 indicated an excellent proton conductivity of 3.18 × 10-2 S·cm-1 at 80 °C and 100% RH, which is 1 order of magnitude higher than that of original LCUH-103. The proton conduction mechanism was systematically studied by various detection means and theoretical calculations. Meanwhile, LCUH-103 is also an excellent carrier for palladium nanoparticles (Pd NPs) via a wetness impregnation strategy, and the nitrophenols (4/3/2-NP) reduction in aqueous solution by Pd@LCUH-103 indicated an outstanding conversion efficiency, high rate constant (k), and exceptional cycling stability. Specifically, the k value of 4-NP reduction by Pd@LCUH-103 is superior to many other reported catalysts, and its k value is as high as 1.34 min-1 and the cycling stability can reach up to 6 cycles. Notably, its turnover frequency (TOF) value is nearly 196.88 times more than that of Pd/C (wt 5%) in the reaction, indicating its excellent stability and catalytic activity.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Yikai Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lingqian Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong266580, China
| |
Collapse
|
5
|
Yu Y, Liu C, Gu S, Wei Y, Li L, Qu Q. Upcycling spent palladium-based catalysts into high value-added catalysts via electronic regulation of Escherichia coli to high-efficiently reduce hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122660. [PMID: 37778189 DOI: 10.1016/j.envpol.2023.122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Upgrading and recycling Palladium (Pd) from spent catalysts may address Pd resource shortages and environmental problems. In this paper, Escherichia coli (E. coli) was used as an electron transfer intermediate to upcycle spent Pd-based catalysts into high-perform hexavalent chromium bio-catalysts. The results showed that Pd (0) nanoparticles (NPs) combined with the bacterial surface changed the electron transfer by enhancing the cell conductivity, thus promoting the removal rate of Pd(II). The recovery efficiency of Pd exceeded 98.6%. Notably, E. coli heightened the adsorption of H• and HCOO• via electron transfer of the Pd NPs electron-rich centre, resulting in a higher catalytic performance of the recycled spent catalysed the reduction of 20 ppm Cr(VI) under mild conditions within 18 min, in which maintained above 98% catalytic activity after recycling five times. This efficiency was found to be higher than that of the reported Pd-based catalysts. Hence, an electron transfer mechanism for E. coli recovery Pd-based catalyst under electron donor adjusting is proposed. These findings provide an important method for recovering Pd NPs from spent catalysts and are crucial to effectively reuse Pd resources.
Collapse
Affiliation(s)
- Yang Yu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Chang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Shaojia Gu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yuhui Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650504, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
6
|
Fuentes JP, Jadoun S, Yepsen O, Mansilla HD, Yáñez J. Prediction of band edge potentials and reaction products in photocatalytic copper and iron sulfides. Photochem Photobiol Sci 2023:10.1007/s43630-023-00415-3. [PMID: 37120781 DOI: 10.1007/s43630-023-00415-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
The prediction of band edge potentials in photocatalytic materials is an important but challenging task. In contrast, bandgaps can be easily determined through absorption spectra. Here, we present two simple theoretical approaches for the determination of band edge potentials which are based on the electron negativity and work function of each constituent atom. We use these approaches to determine band edge potentials in semiconducting metallic oxides and sulfides, such as titanium dioxide (TiO2), chalcopyrite (CuFeS2), pyrite (FeS2), covellite (CuS), and chalcocite (Cu2S) with respect to an absolute scale (eV) and an electrochemical scale (V). Until now, there is little information on iron and copper sulfides referring to these thermodynamic parameters. TiO2 (Titania p25) was used as reference semiconductor to validate the calculation procedures using experimental values by X-ray diffraction analysis (XRD), diffuse reflectance spectrometry (DRS), and electron paramagnetic resonance spectroscopy (EPR). The production of key chemical species such as reactive oxygen species (ROS) and reactive sulfur species (RSS) has been theoretically and experimentally determined by EPR.
Collapse
Affiliation(s)
- Juan Pablo Fuentes
- Laboratorio de Especiación y Trazas Elementales, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Sapana Jadoun
- Laboratorio de Especiación y Trazas Elementales, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Orlando Yepsen
- Laboratorio de Especiación y Trazas Elementales, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
- Advanced Mining Technological Center-AMTC, Faculty of Physical and Mathematical Sciences, University of Chile, Avenida Tupper 2007, Santiago, Chile
| | - Héctor D Mansilla
- Laboratorio de Especiación y Trazas Elementales, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Yáñez
- Laboratorio de Especiación y Trazas Elementales, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
7
|
Preparation of a Montmorillonite-Modified Chitosan Film-Loaded Palladium Heterogeneous Catalyst and its Application in the Preparation of Biphenyl Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248984. [PMID: 36558118 PMCID: PMC9782881 DOI: 10.3390/molecules27248984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The natural polymer chitosan was modified with polyvinyl alcohol to enhance the mechanical properties of the membrane, and then, the montmorillonite-modified chitosan-loaded palladium catalyst was prepared using the excellent coordination properties of montmorillonite. The results showed that the catalyst has good tensile strength, thermal stability, catalytic activity, and recycling performance and is a green catalytic material with industrial application potential.
Collapse
|
8
|
Roy Chowdhury S, Nandi SK, Haldar D. Proof of Concept: Interface of Recyclable Organogels with Embedded Palladium Nanoparticles Catalyzing Suzuki-Miyaura Coupling in Water at Room Temperature. ACS OMEGA 2022; 7:21566-21573. [PMID: 35785310 PMCID: PMC9244900 DOI: 10.1021/acsomega.2c01360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/02/2022] [Indexed: 06/01/2023]
Abstract
A sustainable approach for C-C cross-coupling reaction at room temperature in water has been developed to avoid tedious Pd separation, reduce the carbon footprint, and save energy. Another important aspect is the catalyst recycling and easy product separation. α,γ-Hybrid peptides were designed to selectively use as a ligand for C-C cross-coupling catalysts as well as to form organogels. The peptides form antiparallel sheet-like structures in the solid state. The peptide containing m-aminobenzoic acid, glycine, and dimethylamine forms a whitish gel in toluene, and co-gelation with Pd(OAc)2 results in light brown gel, which acts as a biphasic catalyst for Suzuki-Miyaura cross-coupling at room temperature in water by mild shaking. The organic-inorganic hybrid gel was characterized by rheology, field-emission scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray analyses. On completion of the cross-coupling reaction, the basic aqueous layer (containing products) above the gel can be simply decanted and the intact organic-inorganic hybrid gel can be recycled by topping-up fresh reactants multiple times. The reaction permitted a range of different substitution patterns for aryl and heterocyclic halides with acid or phenol functional groups. Both electron-donating- and electron-withdrawing-substituted substrates exhibited good results for this transformation. The findings inspire toward a holistic green technology for Suzuki-Miyaura coupling reaction and an innovative avenue for catalyst recycling and product isolation.
Collapse
Affiliation(s)
- Srayoshi Roy Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Sujay Kumar Nandi
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
9
|
Rajabi F, Burange AS, Voskressensky LG, Luque R. Supported phosphine free bis-NHC palladium pincer complex: An efficient reusable nanocatalyst for Suzuki-Miyaura coupling reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Sun J, Li M, Sun X, Wang L, Han P, Qi G, Gao D, Zhang L, Tao S. Copper-Based Integral Catalytic Impeller for the Rapid Catalytic Reduction of 4-Nitrophenol. ACS OMEGA 2021; 6:21784-21791. [PMID: 34471780 PMCID: PMC8388078 DOI: 10.1021/acsomega.1c03458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 05/31/2023]
Abstract
The integral catalytic impeller can simultaneously improve reaction efficiency and avoid the problem of catalyst separation, which has great potential in applying heterogeneous catalysis. This paper introduced a strategy of combining electroless copper plating with 3D printing technology to construct a pluggable copper-based integral catalytic agitating impeller (Cu-ICAI) and applied it to the catalytic reduction of 4-nitrophenol (4-NP). The obtained Cu-ICAI exhibits very excellent catalytic activity. The 4-NP conversion rate reaches almost 100% within 90 s. Furthermore, the Cu-ICAI can be easily pulled out from the reactor to be repeatedly used more than 15 times with high performance. Energy-dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy characterizations show that the catalyst obtained by electroless copper plating is a ternary Cu-Cu2O-CuO composite catalyst, which is conducive to the electron transfer process. This low-cost, facile, and versatile strategy, combining electroless plating and 3D printing, may provide a new idea for the preparation of the integral impeller with other metal catalytic activities.
Collapse
Affiliation(s)
- Jiawei Sun
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| | - Min Li
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| | - Xueyan Sun
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| | - Lu Wang
- School
of Energy and Power Engineering, Dalian
University of Technology, Dalian 116024, P. R. China
| | - Peng Han
- SINOPEC
Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Guicun Qi
- SINOPEC
Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Dali Gao
- SINOPEC
Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Lijing Zhang
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| | - Shengyang Tao
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| |
Collapse
|