1
|
Ren M, Gao Y, Liu F, Kong Q, Sang H. From waste to wonder: Biomass-derived nanocellulose and lignin-based nanomaterials in biomedical applications. Int J Biol Macromol 2025; 307:142373. [PMID: 40122417 DOI: 10.1016/j.ijbiomac.2025.142373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Cellulose and lignin, as the most abundant biomass resources in nature, have been widely utilized in conventional industry. While their high-value potential remained underexplored for decades, recent advancements in nanotechnology and processing techniques have revealed their unique physicochemical properties, biocompatibility, and optical characteristics at the nanoscale, sparking significant interest in biomedical applications. Nanocellulose (NC), characterized by its high surface area, superior mechanical strength, and excellent biocompatibility, holds great promise in drug delivery, wound dressing, and tissue engineering. Similarly, lignin nanoparticles (LNPs) and lignin-based carbon quantum dots (L-CQDs), known for their multi-functionality, low toxicity, and outstanding fluorescence properties, emerge as sustainable alternatives for bio-imaging and bioanalytical detection. This review provides an overview of the hierarchical structure of biomass resources, details the preparation methods of cellulose- and lignin-based nanomaterials, and highlights their advancements in biomedical applications. Furthermore, it addresses the challenges and limitations associated with the clinical applications of these nanomaterials, offering insights and guidance for future research and development.
Collapse
Affiliation(s)
- Manni Ren
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China.
| | - Yingjun Gao
- Department of Dermatology, Jinling Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Fang Liu
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Su C, Wang X, Hirth K, Arvanitis M, Cao Y, Fang G, Zhu JY. Bioactive lignin from maleic acid hydrotropic fractionation: Revealing the structural-bioactivity relationship. Int J Biol Macromol 2025; 302:140519. [PMID: 39892548 DOI: 10.1016/j.ijbiomac.2025.140519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Lignin possesses diverse bioactivities due to its unique physicochemical structure. This study investigates the structural-bioactivity relationships of lignin derived from maleic acid hydrotropic fractionation (MAHF) of two types of herbaceous biomass. The results indicated that lignin with higher phenolic hydroxyl (-OH) content (up to 2.0 mmol/g) and carboxyl (-COOH) groups (up to 0.89 mmol/g) exhibited significantly enhanced antioxidant activity. The highest antioxidant of MAHF lignin (MAHL) reached 98 % for scavenging DPPH (2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl) at 0.56 mg/mL. Antibacterial tests revealed that MAHLs demonstrated inhibition rates of 66 % against E. coli and 54 % against S. aureus at 10 mg/mL. MAHLs at 1 mg/mL concentration blocked >98 % of UV radiation. Furthermore, the study demonstrated that lignin with higher phenolic hydroxyl (-OH), carboxyl (-COOH), and syringyl (S) units and conjugated double bonds exhibit enhanced bioactive properties. Lignin with lower Mw and PDI also tends to possess good bioactivities. The findings from the study can facilitate the application of lignin as an efficient, cost-effective, and renewable biopolymer additive in various industries.
Collapse
Affiliation(s)
- Chen Su
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; USDA Forest Products Laboratory, Madison, WI 53726, United States
| | - Xiu Wang
- Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Kolby Hirth
- USDA Forest Products Laboratory, Madison, WI 53726, United States
| | | | - Yunfeng Cao
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - J Y Zhu
- USDA Forest Products Laboratory, Madison, WI 53726, United States.
| |
Collapse
|
3
|
Kosaristanova L, Bytesnikova Z, Fialova T, Pekarkova J, Svec P, Ondreas F, Jemelikova V, Ridoskova A, Makovicky P, Sivak L, Dolejska M, Zouharova M, Slama P, Adam V, Smerkova K. In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis. J Anim Sci Biotechnol 2024; 15:173. [PMID: 39707565 DOI: 10.1186/s40104-024-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains. In this study, novel selenium-tellurium based nanoparticles (SeTeNPs) were synthesized and characterized. Their antibacterial activity and biocompatibility were evaluated both in vitro and in vivo using a bovine model. A total of 10 heifers were divided into experimental and control groups (5 animals each). After intramammary infection with methicillin resistant S. aureus (MRSA) and the development of clinical signs of mastitis, a dose of SeTeNPs was administered to all quarters in the experimental group. RESULTS Based on in vitro tests, the concentration of 149.70 mg/L and 263.95 mg/L of Se and Te, respectively, was used for application into the mammary gland. Three days after SeTeNPs administration, MRSA counts in the experimental group showed a significant reduction (P < 0.01) compared to the control group. The inhibitory effect observed within the in vitro experiments was thus confirmed, resulting in the suppression of infection in animals. Moreover, the superior biocompatibility of SeTeNPs in the organism was demonstrated, as the nanoparticles did not significantly alter the inflammatory response or histopathology at the site of application, i.e., mammary gland, compared to the control group (P > 0.05). Additionally, the metabolic profile of the blood plasma as well as the histology of the main organs remained unaffected, indicating that the nanoparticles had no adverse effects on the organism. CONCLUSIONS Our findings suggest that SeTeNPs can be used as a promising treatment for bovine mastitis in the presence of resistant bacteria. However, the current study is limited by its small sample size, making it primarily a proof of the concept for the efficacy of intramammary-applied SeTeNPs. Therefore, further research with a larger sample size is needed to validate these results.
Collapse
Affiliation(s)
- Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno, 616 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Frantisek Ondreas
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | - Vendula Jemelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Syllabova 9, Ostrava - Vítkovice, 700 03, Czech Republic
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovak Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Microbiology, Faculty of Medicine, Charles University, Alej Svobody 76, Pilsen, 323 00, Czech Republic
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Monika Zouharova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic.
| |
Collapse
|
4
|
Maršík D, Danda M, Otta J, Thoresen PP, Mat́átková O, Rova U, Christakopoulos P, Matsakas L, Masák J. Preparation and Biological Activity of Lignin-Silver Hybrid Nanoparticles. ACS OMEGA 2024; 9:47765-47787. [PMID: 39651097 PMCID: PMC11618447 DOI: 10.1021/acsomega.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching. To address these issues, we designed stable hybrid lignin-silver nanoparticles (AgLigNPs) intended to effectively hit bacterial envelopes as a main antimicrobial target. The lignin nanoparticles (LigNPs), serving as a reducing and stabilizing agent for AgNPs, have a median size of 256 nm and a circularity of 0.985. These LigNPs were prepared using the dialysis solvent exchange method, producing spherical particles stable under alkaline conditions and featuring reducing groups oriented toward a wrinkled surface, facilitating AgNPs synthesis and attachment. Maximum accumulation of silver on the LigNP surface was observed at a mass reaction ratio mAg:mLig of 0.25, at pH 11. The AgLigNPs completely inhibited suspension growth and reduced biofilm development by 50% in three tested strains of Pseudomonas aeruginosa at a concentration of 80/9.5 (lignin/silver) mg L-1. Compared to unattached AgNPs, AgLigNPs required two to eight times lower silver concentrations to achieve complete inhibition. Additionally, our silver-containing nanosystems were effective against bacteria at safe concentrations in HEK-293 and HaCaT tissue cultures. Stability experiments revealed that the nanosystems tend to aggregate in media used for bacterial cell cultures but remain stable in media used for tissue cultures. In all tested media, the nanoparticles retained their integrity, and the presence of lignin facilitated the prevention of silver ions from leaching. Overall, our data demonstrate the suitability of AgLigNPs for further valorization in the biomedical sector.
Collapse
Affiliation(s)
- Dominik Maršík
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Matěj Danda
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Otta
- Department
of Physics and Measurements, University
of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Petter P. Thoresen
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Olga Mat́átková
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Ulrika Rova
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Paul Christakopoulos
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Leonidas Matsakas
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Jan Masák
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| |
Collapse
|
5
|
Kim C, Lim YJ, Kim YE, Murthy ASN, Cho H, Lee H, Park MS, Lee SH. An Efficient Method for the Selective Syntheses of Sodium Telluride and Symmetrical Diorganyl Tellurides and the Investigation of Reaction Pathways. Molecules 2024; 29:5398. [PMID: 39598787 PMCID: PMC11597708 DOI: 10.3390/molecules29225398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Studies on organotellurium compounds have not been extensively conducted due to a lack of tolerable synthetic methods, difficult isolation processes, and their chemical instabilities. Overcoming these hurdles, we developed an efficient and mild method for the selective synthesis of symmetrical diorganyl tellurides 1, a representative class of organotellurium compounds, using a proper reducing reagent. The reaction condition was optimized for the selective formation of 1 by forming the telluride dianion (Te2-) using a reducing reagent, sodium borohydride (NaBH4), and then followed by the addition of organyl halides. The optimized reaction condition was as follows: (1) Te (1.0 eq), NaBH4 (2.5 eq) in DMF for 1 h at 80 °C; (2) organyl halides (2.0 eq) for 3-5 h at 25-153 °C. Using this condition, 18 various diorganyl tellurides 1 were selectively and efficiently synthesized in reasonable yields (37-93%). The reaction pathways for the formation of diorganyl tellurides 1 were also investigated. Consequently, we established a practical and efficient method for the selective synthesis of diorganyl tellurides 1 as a representative class of organotellurium compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sang Hyup Lee
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea; (C.K.); (Y.J.L.); (Y.E.K.); (A.S.N.M.); (H.C.); (H.L.); (M.-S.P.)
| |
Collapse
|
6
|
Jiang D, Jin F, Zhang Y, Wu Y, Deng P, Wang X, Zhang X, Wu Y. Electrospun lignin-loaded artificial periosteum for bone regeneration and elimination of bacteria. Int J Biol Macromol 2024; 282:137149. [PMID: 39510467 DOI: 10.1016/j.ijbiomac.2024.137149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Recently, the non-negligible role of the periosteum in bone repair has attracted the attention of researchers. In this study, poly(ε-caprolactone) (PCL)/lignin nano-fibrous membranes prepared by electrospinning are proposed as an artificial periosteum. Both in vitro and in vivo studies confirmed that PCL/lignin membranes have a pro-osteogenic effect. This effect was dependent on the lignin concentration, and there was an optimal concentration at which the membrane possessed the highest osteogenesis-potentiating activity among those tested in this study. In addition, the PCL/lignin membranes exhibited promising antibacterial properties against both E. coli and S. aureus, with high lignin concentrations corresponding to high-bactericidal activity. The prepared PCL/lignin membranes displayed promising osteogenic and antibacterial properties. With satisfactory hydrophilicity and mechanical properties, they hold great potential in serving as an artificial periosteum for bone tissue repair. This study provides both theoretical and laboratory evidence for the application of the renewable resource lignin in the repair of the periosteum and bone injuries.
Collapse
Affiliation(s)
- Dingyu Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Fanqi Jin
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Yilu Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Yujun Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Pingfu Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Xiyang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China
| | - Xiaoshan Zhang
- Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China.
| | - Yunqi Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha 410008, People's Republic of China.
| |
Collapse
|
7
|
Havryliuk O, Rathee G, Blair J, Hovorukha V, Tashyrev O, Morató J, Pérez LM, Tzanov T. Unveiling the Potential of CuO and Cu 2O Nanoparticles against Novel Copper-Resistant Pseudomonas Strains: An In-Depth Comparison. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1644. [PMID: 39452980 PMCID: PMC11510091 DOI: 10.3390/nano14201644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Four novel Pseudomonas strains with record resistance to copper (Cu2+) previously isolated from ecologically diverse samples (P. lactis UKR1, P. panacis UKR2, P. veronii UKR3, and P. veronii UKR4) were tested against sonochemically synthesised copper-oxide (I) (Cu2O) and copper-oxide (II) (CuO) nanoparticles (NPs). Nanomaterials characterisation by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and High-Resolution Transmission Electron Microscopy (HRTEM) confirmed the synthesis of CuO and Cu2O NPs. CuO NPs exhibited better performance in inhibiting bacterial growth due to their heightened capacity to induce oxidative stress. The greater stability and geometrical shape of CuO NPs were disclosed as important features associated with bacterial cell toxicity. SEM and TEM images confirmed that both NPs caused membrane disruption, altered cell morphology, and pronounced membrane vesiculation, a distinctive feature of bacteria dealing with stressor factors. Finally, Cu2O and CuO NPs effectively decreased the biofilm-forming ability of the Cu2+-resistant UKR strains as well as degraded pre-established biofilm, matching NPs' antimicrobial performance. Despite the similarities in the mechanisms of action revealed by both NPs, distinctive behaviours were also detected for the different species of wild-type Pseudomonas analysed. In summary, these findings underscore the efficacy of nanotechnology-driven strategies for combating metal tolerance in bacteria.
Collapse
Affiliation(s)
- Olesia Havryliuk
- Department of Extremophilic Microorganisms Biology, D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154 Zabolotny St., 03143 Kyiv, Ukraine or (O.H.); or (V.H.); or (O.T.)
- Laboratory of Sanitary and Environmental Microbiology (MSMLab), UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (J.M.); (L.M.P.)
| | - Garima Rathee
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (G.R.); (J.B.)
| | - Jeniffer Blair
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (G.R.); (J.B.)
| | - Vira Hovorukha
- Department of Extremophilic Microorganisms Biology, D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154 Zabolotny St., 03143 Kyiv, Ukraine or (O.H.); or (V.H.); or (O.T.)
- Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland
| | - Oleksandr Tashyrev
- Department of Extremophilic Microorganisms Biology, D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154 Zabolotny St., 03143 Kyiv, Ukraine or (O.H.); or (V.H.); or (O.T.)
- Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland
| | - Jordi Morató
- Laboratory of Sanitary and Environmental Microbiology (MSMLab), UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (J.M.); (L.M.P.)
| | - Leonardo M. Pérez
- Laboratory of Sanitary and Environmental Microbiology (MSMLab), UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (J.M.); (L.M.P.)
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (G.R.); (J.B.)
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (G.R.); (J.B.)
| |
Collapse
|
8
|
Hu J, Ran S, Huang Z, Liu Y, Hu H, Zhou Y, Ding X, Yin J, Zhang Y. Antibacterial tellurium-containing polycarbonate drug carriers to eliminate intratumor bacteria for synergetic chemotherapy against colorectal cancer. Acta Biomater 2024; 185:323-335. [PMID: 38964527 DOI: 10.1016/j.actbio.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Intratumor microbes have attracted great attention in cancer research due to its influence on the tumorigenesis, progression and metastasis of cancer. However, the therapeutic strategies targeting intratumoral microbes are still in their infancy. Specific microorganisms, such as Fusobacterium nucleatum (F. nucleatum), are abundant in various cancer and always result in the CRC progression and chemotherapy resistance. Here, a combined anticancer and antibacterial therapeutic strategy is proposed to deliver antitumor drug to the tumors containing intratumor microbiota by the antibacerial polymeric drug carriers. We construct oral tellurium-containing drug carriers using a complex of tellurium-containing polycarbonate with cisplatin (PTE@CDDP). The results show that the particle size of the prepared nanoparticles could be maintained at about 105 nm in the digestive system environment, which is in line with the optimal particle size of oral nanomedicine. In vitro mechanism study indicates that the tellurium-containing polymers are highly effective in killing F.nucleatum through a membrane disruption mechanism. The pharmacokinetic experiments confirmed that PTE@CDDP has the potential function of enhancing the oral bioavailability of cisplatin. Both in vitro and in vivo studies show that PTE@CDDP could inhibit intratumor F.nucleatum and lead to a reduction in cell proliferation and inflammation in the tumor site. Together, the study identifies that the CDDP-loaded tellurium-containing nanoparticles have great potential for treating the F.nucleatum-promoted colorectal cancer (CRC) by combining intratumor microbiota modulation and chemotherapy. The synergistic therapeutic strategy provide new insight into treating various cancers combined with bacterial infection. STATEMENT OF SIGNIFICANCE: The synthesized antibacterial polymer was first employed to remodel the intratumor microbes in tumor microenvironment (TME). Moreover, it was the first report of tellurium-containing polymers against F.nucleatum and employed for treatment of the CRC. A convenient oral dosage form of cisplatin (CDDP)-loaded tellurium-containing nanoparticles (PTE@CDDP) was adopted here, and the synergistic antibacterial/chemotherapy effect occurred. The PTE@CDDP could quickly and completely eliminate F.nucleatum in a safe dose. In the CRC model, PTE@CDDP effectively reversed the inflammation level and even restored the intestinal barrier damaged by F.nucleatum. The ultrasensitive ROS-responsiveness of PTE@CDDP triggered the fast oxidation and efficient drug release of CDDP and thus a highly efficient apoptosis of the tumors. Therefore, the tellurium-containing polymers are expected to serve as novel antibacterial agents in vivo and have great potential in the F.nucleatum-associated cancers. The achievements provided new insight into treating CRC and other cancers combined with bacterial infection.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanyuan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyan Hu
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China.
| | - Yan Zhou
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Xiaomin Ding
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Junyi Yin
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Behera S, Mohapatra S, Behera BC, Thatoi H. Recent updates on green synthesis of lignin nanoparticle and its potential applications in modern biotechnology. Crit Rev Biotechnol 2024; 44:774-794. [PMID: 37455422 DOI: 10.1080/07388551.2023.2229512] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023]
Abstract
Lignin is a complex of organic polymers that are abundantly present in the plant cell wall which considered of emerging substrates for various kinds of value-added industrial products. Lignin has potential use for the production of green nanomaterials, which exhibit improved or different properties corresponding to their parent polymers. Nano lignin has received significant interest in recent years due to its applications in numerous fields. Lignin, the abundant and limited functionality has challenges for its potential uses. Creating advanced functional lignin-derived material like lignin nanoparticles (LNPs) which significantly alter the biological process has great potential for its applications. In the fields of biotechnology, several lignin extraction processes from various raw materials and diverse synthesis techniques, including acid precipitation, dialysis, solvent shifting/solvent exchange, antisolvent precipitation, homogenization, water-in-oil (W/O) microemulsion, ultra-sonication, interfacial crosslinking, polymerization, and biological pathway can be employed to produce LNPs. The scientific community has recently become more concerned about the transformation of lignin to lignin nanomaterials, including nanoparticles, nanocapsules, nanofibers, nanotubes, and nanofilms. Recent research has shown that lignin nanoparticles (LNPs) are: non-toxic at adequate amounts (both in vitro and in vivo), are economical, and can be biodegradable by bacteria and fungi. In promising studies, LNPs have been investigated for their potential applications in gene delivery systems, drug carriers, biocatalysts, tissue engineering, heavy metal absorbers, encapsulation of molecules, supercapacitors, hybrid nanocomposites, and other applications. This current review addresses the recent advances in the synthesis of LNPs, their advanced application in different areas, future perspectives, and challenges associated with lignin-based nanomaterials.
Collapse
Affiliation(s)
- Sandesh Behera
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | - Sonali Mohapatra
- Department of Biological Systems Engineering, Enzyme Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Bikash Chandra Behera
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| |
Collapse
|
10
|
Puertas-Segura A, Ivanova K, Ivanova A, Ivanov I, Todorova K, Dimitrov P, Ciardelli G, Tzanov T. Mussel-Inspired Sonochemical Nanocomposite Coating on Catheters for Prevention of Urinary Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34656-34668. [PMID: 38916599 PMCID: PMC11247429 DOI: 10.1021/acsami.4c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Catheter-associated urinary tract infections are the most common hospital-acquired infections and cause patient discomfort, increased morbidity, and prolonged stays, altogether posing a huge burden on healthcare services. Colonization occurs upon insertion, or later by ascending microbes from the rich periurethral flora, and is therefore virtually unavoidable by medical procedures. Importantly, the dwell time is a significant risk factor for bacteriuria because it gives biofilms time to develop and mature. This is why we engineer antibacterial and antibiofilm coating through ultrasound- and nanoparticle-assisted self-assembly on silicone surfaces and validate it thoroughly in vitro and in vivo. To this end, we combine bimetallic silver/gold nanoparticles, which exercise both biocidal and structural roles, with dopamine-modified gelatin in a facile and substrate-independent sonochemical coating process. The latter mussel-inspired bioadhesive potentiates the activity and durability of the coating while attenuating the intrinsic toxicity of silver. As a result, our approach effectively reduces biofilm formation in a hydrodynamic model of the human bladder and prevents bacteriuria in catheterized rabbits during a week of placement, outperforming conventional silicone catheters. These results substantiate the practical use of nanoparticle-biopolymer composites in combination with ultrasound for the antimicrobial functionalization of indwelling medical devices.
Collapse
Affiliation(s)
- Antonio Puertas-Segura
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Aleksandra Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Ivan Ivanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Katerina Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, Sofia 1113, Bulgaria
| | - Petar Dimitrov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, Sofia 1113, Bulgaria
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
11
|
Sári D, Ferroudj A, Semsey D, El-Ramady H, Brevik EC, Prokisch J. Tellurium and Nano-Tellurium: Medicine or Poison? NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:670. [PMID: 38668165 PMCID: PMC11053935 DOI: 10.3390/nano14080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Tellurium (Te) is the heaviest stable chalcogen and is a rare element in Earth's crust (one to five ppb). It was discovered in gold ore from mines in Kleinschlatten near the present-day city of Zlatna, Romania. Industrial and other applications of Te focus on its inorganic forms. Tellurium can be toxic to animals and humans at low doses. Chronic tellurium poisoning endangers the kidney, liver, and nervous system. However, Te can be effective against bacteria and is able to destroy cancer cells. Tellurium can also be used to develop redox modulators and enzyme inhibitors. Soluble salts that contain Te had a role as therapeutic and antimicrobial agents before the advent of antibiotics. The pharmaceutical use of Te is not widespread due to the narrow margin between beneficial and toxic doses, but there are differences between the measure of toxicity based on the Te form. Nano-tellurium (Te-NPs) has several applications: it can act as an adsorptive agent to remove pollutants, and it can be used in antibacterial coating, photo-catalysis for the degradation of dyes, and conductive electronic materials. Nano-sized Te particles are the most promising and can be produced in both chemical and biological ways. Safety assessments are essential to determine the potential risks and benefits of using Te compounds in various applications. Future challenges and directions in developing nano-materials, nano-alloys, and nano-structures based on Te are still open to debate.
Collapse
Affiliation(s)
- Daniella Sári
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Aya Ferroudj
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Dávid Semsey
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Hassan El-Ramady
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA;
| | - József Prokisch
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| |
Collapse
|
12
|
Kannan KP, Gunasekaran V, Sreenivasan P, Sathishkumar P. Recent updates and feasibility of nanodrugs in the prevention and eradication of dental biofilm and its associated pathogens-A review. J Dent 2024; 143:104888. [PMID: 38342369 DOI: 10.1016/j.jdent.2024.104888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
OBJECTIVES Dental biofilm is one of the most prevalent diseases in humans, which is mediated by multiple microorganisms. Globally, half of the human population suffers from dental biofilm and its associated diseases. In recent trends, nano-formulated drugs are highly attractive in the treatment of dental biofilms. However, the impact of different types of nanodrugs on the dental biofilm and its associated pathogens have not been published till date. Thus, this review focuses on the recent updates, feasibility, mechanisms, limitations, and regulations of nanodrugs applications in the prevention and eradication of dental biofilm. STUDY SELECTION, DATA AND SOURCES A systematic search was conducted in PubMed/Google Scholar/Scopus over the past five years covering the major keywords "nanodrugs, metallic nanoparticles, metal oxide nanoparticles, natural polymers, synthetic polymers, biomaterials, dental biofilm, antibiofilm mechanism, dental pathogens", are reviewed in this study. Nearly, 100 scientific articles are selected in this relevant topic published between 2019 and 2023. Data from the selected studies dealing with nanodrugs used for biofilm treatment was qualitatively analyzed. CONCLUSIONS The nanodrugs such as silver nanoparticles, gold nanoparticles, selenium nanoparticles, zinc oxide nanoparticles, copper oxide nanoparticles, titanium oxide nanoparticles, hydroxyapatite nanoparticles and these inorganic nanoparticles incorporated polymer-based nanocomposites, organic/inorganic nanoparticles mediated antimicrobial photodynamic therapy exhibits an excellent antibacterial and antibiofilm activity towards dental pathogens. Finally, this review highlights that bioinspired nanodrugs will be very useful to control the dental biofilm and its associated diseases. CLINICAL SIGNIFICANCE Microbial influence on the oral environment is unavoidable; therefore, curing such dental biofilms and pathogens is essential for the impactful reflection of applying biocompatible treatments. In this direction, the current review explains the demand for the nanodrug in inhibiting biofilms for the effective exploration of employing treatments.
Collapse
Affiliation(s)
- Kannika Parameshwari Kannan
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India
| | - Vinothini Gunasekaran
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India
| | - Pavithra Sreenivasan
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India.
| |
Collapse
|
13
|
Sathiyaseelan A, Zhang X, Lin J, Wang MH. In situ, synthesis of chitosan fabricated tellurium nanoparticles for improved antimicrobial and anticancer applications. Int J Biol Macromol 2024; 258:128778. [PMID: 38103674 DOI: 10.1016/j.ijbiomac.2023.128778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The emergence of antibiotic resistance has had a severe impact on human health and economic burdens, drawing attention to the development of novel antimicrobial therapies. Polymer-metal composites have shown evidence of therapeutic applications by exerting antimicrobial effects and delivering these antimicrobials with biocompatibility. Therefore, this study prepared and characterized chitosan (CS)-fabricated tellurium nanoparticles (Te NPs) for enhanced antimicrobial, antioxidant, and cytotoxicity applications. The CS-Te NPs were spherical, polydisperse, and distributed within the CS matrix with an average size of 37.48 ± 14.56 nm, as confirmed by TEM analysis. CS-Te NPs exhibited positive zeta potential in neutral (pH 7.0: 7.90 ± 1.86 mV) and acidic environment. XRD analysis confirmed the crystalline nature of CS-Te NPs, and these nanoparticles exhibited good thermal and less porosity. A higher release of Te ions occurred from CS-Te NPs at an acidic pH. Further, CS-Te NPs displayed stronger antibacterial and antibiofilm activity against E. coli and S. enterica. Furthermore, CS-Te NPs exhibited significant free radical scavenging activity against ABTS and DPPH free radicals. Moreover, these nanoparticles demonstrated cytotoxicity against cancerous cells (A549 and PC3 cells) when compared to normal cells (NIH3T3 cells). Therefore, this study suggests that CS-Te NPs could serve as a substantial therapeutic agent.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jianxing Lin
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; College of Bioscience and Biotechnology, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
14
|
Liu W, Li Z, Ren Q, Jiang C, Feng J, Hou Q. Upgrading lignin macromolecular by green and recyclable ternary deep eutectic solvents. BIORESOURCE TECHNOLOGY 2024; 394:130230. [PMID: 38141882 DOI: 10.1016/j.biortech.2023.130230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Lignin is the most abundant natural aromatic macromolecule in the nature, but its high value-added utilization has been seriously hindered by the highly random and branched structures and the high difficulty in separation and purification. A microwave-assisted ternary deep eutectic solvent (DES) composed by formic acid, lactic acid and choline chloride was developed for lignin pretreatment. The effects of three types of DES on main characteristics of lignin were investigated, and the corresponding dissolution mechanism was proposed. The results showed that, the microwave-assisted ternary DES pretreatment showed an obvious improvement on main characteristics of regenerated lignin, e.g., a higher purity, lower molecular weight with reduced dispersity, improved thermal stability, higher phenolic hydroxyl content, and increased antioxidative activity in comparison with control. It is expected that the lignin macromolecular can be facile regulated and upgraded by the proposed ternary DES.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhan Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Ren
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuang Jiang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinlong Feng
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
15
|
Lu Y, Jiang M, Pan Y, Wang F, Xu W, Zhou Y, Du X. Preparation of Ag@lignin nanotubes for the development of antimicrobial biodegradable films from corn straw. Int J Biol Macromol 2024; 254:127630. [PMID: 37939776 DOI: 10.1016/j.ijbiomac.2023.127630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Current environmental and energy issues have attracted considerable attention from industries, governments, and academia. Developing alternative diverse petrochemical-based plastics with biodegradable packaging materials from renewable resources is critical for ensuring both sustainability and safety. In this study, biodegradable films are fabricated from corn straw via a facile sol-gel process. Furthermore, these films are imbued with antimicrobial properties by coupling with silver@lignin nanotube hybrid antibacterial agents, formed via the in situ reduction of silver ions into elemental silver by lignin (mild reducing agent), followed by the self-assembly of lignin molecules into nanotubes assisted by an aqueous silver nitrate electrolyte solution. The developed antibacterial corn straw film exhibits strong mechanical and antibacterial properties, with a tensile strength and elongation at break of 68.7 MPa and 11.3 %, respectively, under optimum conditions and antibacterial activity against Escherichia coli and Staphylococcus aureus of 99.9 % and 97.2 %, respectively. The as-prepared corn straw films exhibit high hydrophobicity and ultraviolet resistance. The morphology, structure, and thermal properties of the corn straw films were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and thermogravimetric analysis. This study provides a straw-based biodegradable packaging film with antimicrobial properties.
Collapse
Affiliation(s)
- Yuan Lu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Man Jiang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yu Pan
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Feng Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Wangjie Xu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Yufan Zhou
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaoqing Du
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
16
|
Sathiyaseelan A, Zhang X, Wang MH. Biosynthesis of gallic acid fabricated tellurium nanoparticles (GA-Te NPs) for enhanced antibacterial, antioxidant, and cytotoxicity applications. ENVIRONMENTAL RESEARCH 2024; 240:117461. [PMID: 37890834 DOI: 10.1016/j.envres.2023.117461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The development of antibiotic resistance and the onset of diverse forms of cancer necessitate the utilization of innovative multifunctional biocompatible materials. The synthesis of metal and metalloid nanoparticles through eco-friendly means demonstrates promising potential in therapeutic and diagnostic domains. Among these materials, Tellurium (Te) exhibits exceptional characteristics and finds application in numerous fields; nevertheless, its usage in biological applications has been somewhat limited, primarily due to its inherent toxicity. Furthermore, nanomaterials developed from Te have not garnered adequate research attention. Conversely, nanomaterials fashioned using biomolecules augment their biological efficacy and applicability. Therefore, the present work focuses on synthesizing the tellurium nanoparticles (Te NPs) using the antioxidant molecule gallic acid (GA) and evaluating their biological activity and toxicity for the first time. The study evidenced that GA-Te NPs are spherical and monodispersed, with an average size of 19.74 ± 5.3 nm. XRD analysis confirmed a hexagonal crystalline structure for GA-Te NPs, and FTIR analysis evidenced the capping of GA on Te NPs. GA-Te NPs (MIC: 1.56 μg/mL) strongly reduce the growth and biofilm formation of S. aureus, E. coli, and S. enterica. Additionally, GA-Te NPs at a concentration of 50 μg/mL cause a significant level of toxicity in BT474 breast cancer cells but not in NIH3T3 cells. Unexpectedly, GA-Te NPs at concentrations <250 μg/mL do not cause hemolysis in red blood cells (RBC) Besides, the way of utilizing the lower concentrations of therapeutics could result in ecological safety. Therefore, the study concludes that GA-Te NPs could be used as potential multifunctional agents.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
17
|
Perveen S, Zhai R, Zhang Y, Kawish M, Shah MR, Chen S, Xu Z, Qiufeng D, Jin M. Boosting photo-induced antimicrobial activity of lignin nanoparticles with curcumin and zinc oxide. Int J Biol Macromol 2023; 253:127433. [PMID: 37838113 DOI: 10.1016/j.ijbiomac.2023.127433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Lignin nanoparticles have gained increasing attention as a potential antimicrobial agent due to their biocompatibility, biodegradability, and low toxicity. However, the limited ability of lignin to act as an antibacterial is a major barrier to its widespread use. Thus, it is crucial to develop novel approaches to amplify lignin's biological capabilities in order to promote its effective utilization. In this study, we modified lignin nanoparticles (LNPs) with photo-active curcumin (Cur), zinc oxide (ZnO), or a combination of both to enhance their antimicrobial properties. The successful modifications of LNPs were confirmed using comprehensive characterization techniques. The antimicrobial efficacy of the modified LNPs was assessed against both gram-positive and gram-negative bacterial strains. The results showed that the modification of LNPs with Cur and ZnO have much higher antibacterial and antibiofilm activities than unmodified LNPs. Moreover, photo illumination resulted in even higher antibacterial activity. Furthermore, atomic force microscopy revealed bacterial cells lysis and membrane damage by ZnO/Cur modified LNPs. Our research demonstrates that ZnO/Cur modified LNPs can serve as novel hybrid materials with enhanced antimicrobial capabilities. In addition, the photo-induced enhancement in antibacterial activity not only demonstrated the versatility of this hybrid material but also opened up interesting potential for bioinspired therapeutics agents.
Collapse
Affiliation(s)
- Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Deng Qiufeng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
18
|
Wang L, Kang Y, Zhang W, Yang J, Li H, Niu M, Guo Y, Wang Z. Preparation of Lignin-Based Nanoparticles with Excellent Acidic Tolerance as Stabilizer for Pickering Emulsion. Polymers (Basel) 2023; 15:4643. [PMID: 38139895 PMCID: PMC10747945 DOI: 10.3390/polym15244643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, novel lignin-based nanoparticles (LβNPs) with high acidic tolerance were successfully prepared via electrostatic interaction between β-alanine and lignin nanoparticles. The effects of the mass ratio of lignin nanoparticles to β-alanine and pH value on the morphology and particle sizes of LβNPs were investigated with the aim of obtaining the ideal nanoparticles. The optimized LβNPs were spherical in shape with an average particle size of 41.1 ± 14.5 nm and exhibited outstanding structure stability under high acidic conditions (pH < 4). Subsequently, Pickering emulsions stabilized by LβNPs were prepared using olive oil as the oil phase. Additionally, the effects of pH value, droplet size, morphology, and storage stability on Pickering emulsions were also analyzed. The emulsions displayed excellent stability, and were stable against strongly acidic conditions (pH < 4) after 30 days of storage. The study presented a promising approach to preparing lignin-based nanoparticles with high acidic tolerance (an ideal type of stabilizer to prepare emulsions), and exhibited extremely high potential application values in the fields of drug delivery, food additives, and oily wastewater treatment.
Collapse
Affiliation(s)
- Lina Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Yue Kang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Weilu Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Jiahao Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Haiming Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Meihong Niu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Shandong Huatai Paper Co., Ltd., Dongying 275335, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
19
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int J Biol Macromol 2023; 252:126281. [PMID: 37572815 DOI: 10.1016/j.ijbiomac.2023.126281] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The control of microbial infection transmission often relies on the utilization of synthetic and metal-based antimicrobial agents. However, their non-biodegradability and inadequate disposal practices lead to significant environmental contamination. To address this concern, the quest for natural alternatives has gained paramount importance. Lignin, a widely available renewable aromatic compound, emerges as a promising candidate owing to its inherent phenolic moiety, which lends itself well to acting as a natural antimicrobial agent either independently or in combination with other agents. This article provides a comprehensive account of the structure and primary classes of lignin. Additionally, it elucidates the antimicrobial mechanism of lignin, the factors influencing its efficacy, and the methods employed for its detection. Moreover, it describes the progress made in developing the antimicrobial capacity of lignin in different areas. In conclusion, this paper not only outlines the current state of research on the antimicrobial function of lignin, but also identifies challenges and future possibilities for enhancing its antimicrobial properties. This work holds great significance in the ongoing endeavor to contribute to high-impact research on natural alternatives for controlling infections and fostering environmentally conscious practices.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
20
|
Crivello G, Orlandini G, Morena AG, Torchio A, Mattu C, Boffito M, Tzanov T, Ciardelli G. Lignin-Cobalt Nano-Enabled Poly(pseudo)rotaxane Supramolecular Hydrogel for Treating Chronic Wounds. Pharmaceutics 2023; 15:1717. [PMID: 37376166 DOI: 10.3390/pharmaceutics15061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds (CWs) are a growing issue for the health care system. Their treatment requires a synergic approach to reduce both inflammation and the bacterial burden. In this work, a promising system for treating CWs was developed, comprising cobalt-lignin nanoparticles (NPs) embedded in a supramolecular (SM) hydrogel. First, NPs were obtained through cobalt reduction with phenolated lignin, and their antibacterial properties were tested against both Gram-negative and Gram-positive strains. The anti-inflammatory capacity of the NPs was proven through their ability to inhibit myeloperoxidase (MPO) and matrix metalloproteases (MMPs), which are enzymes involved in the inflammatory process and wound chronicity. Then, the NPs were loaded in an SM hydrogel based on a blend of α-cyclodextrin and custom-made poly(ether urethane)s. The nano-enabled hydrogel showed injectability, self-healing properties, and linear release of the loaded cargo. Moreover, the SM hydrogel's characteristics were optimized to absorb proteins when in contact with liquid, suggesting its capacity to uptake harmful enzymes from the wound exudate. These results render the developed multifunctional SM material an interesting candidate for the management of CWs.
Collapse
Affiliation(s)
- Giulia Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giuliana Orlandini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Angela Gala Morena
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
21
|
Mukheja Y, Kaur J, Pathania K, Sah SP, Salunke DB, Sangamwar AT, Pawar SV. Recent advances in pharmaceutical and biotechnological applications of lignin-based materials. Int J Biol Macromol 2023; 241:124601. [PMID: 37116833 DOI: 10.1016/j.ijbiomac.2023.124601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Lignin, a versatile and abundant biomass-derived polymer, possesses a wide array of properties that makes it a promising material for biotechnological applications. Lignin holds immense potential in the biotechnology and pharmaceutical field due to its biocompatibility, high carbon content, low toxicity, ability to be converted into composites, thermal stability, antioxidant, UV-protectant, and antibiotic activity. Notably, lignin is an environmental friendly alternative to synthetic plastic and fossil-based materials because of its inherent biodegradability, safety, and sustainability potential. The most important findings related to the use of lignin and lignin-based materials are reported in this review, providing an overview of the methods and techniques used for their manufacturing and modification. Additionally, it emphasizes on recent research and the current state of applications of lignin-based materials in the biomedical and pharmaceutical fields and also highlights the challenges and opportunities that need to be overcome to fully realize the potential of lignin biopolymer. An in-depth discussion of recent developments in lignin-based material applications, including drug delivery, tissue engineering, wound dressing, pharmaceutical excipients, biosensors, medical devices, and several other biotechnological applications, is provided in this review article.
Collapse
Affiliation(s)
- Yashdeep Mukheja
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Khushboo Pathania
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta P Sah
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Abhay T Sangamwar
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
22
|
Abd El-Ghany MN, Hamdi SA, Korany SM, Elbaz RM, Farahat MG. Biosynthesis of Novel Tellurium Nanorods by Gayadomonas sp. TNPM15 Isolated from Mangrove Sediments and Assessment of Their Impact on Spore Germination and Ultrastructure of Phytopathogenic Fungi. Microorganisms 2023; 11:microorganisms11030558. [PMID: 36985132 PMCID: PMC10053417 DOI: 10.3390/microorganisms11030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The biosynthesis of nanoparticles using green technology is emerging as a cost-efficient, eco-friendly and risk-free strategy in nanotechnology. Recently, tellurium nanoparticles (TeNPs) have attracted growing attention due to their unique properties in biomedicine, electronics, and other industrial applications. The current investigation addresses the green synthesis of TeNPs using a newly isolated mangrove-associated bacterium, Gayadomonas sp. TNPM15, and their impact on the phytopathogenic fungi Fusarium oxysporum and Alternaria alternata. The biogenic TeNPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared (FTIR). The results of TEM revealed the intracellular biosynthesis of rod-shaped nanostructures with a diameter range from 15 to 23 nm and different lengths reaching up to 243 nm. Furthermore, the successful formation of tellurium nanorods was verified by SEM-EDX, and the XRD pattern revealed their crystallinity. In addition, the FTIR spectrum provided evidence for the presence of proteinaceous capping agents. The bioinspired TeNPs exhibited obvious inhibitory effect on the spores of both investigated phytopathogens accomplished with prominent ultrastructure alternations, as evidenced by TEM observations. The biogenic TeNPs impeded spore germination of F. oxysporum and A. alternata completely at 48.1 and 27.6 µg/mL, respectively. Furthermore, an increase in DNA and protein leakage was observed upon exposure of fungal spores to the biogenic TeNPs, indicating the disruption of membrane permeability and integrity. Besides their potent influence on fungal spores, the biogenic TeNPs demonstrated remarkable inhibitory effects on the production of various plant cell wall-degrading enzymes. Moreover, the cytotoxicity investigations revealed the biocompatibility of the as-prepared biogenic TeNPs and their low toxicity against the human skin fibroblast (HSF) cell line. The biogenic TeNPs showed no significant cytotoxic effect towards HSF cells at concentrations up to 80 μg/mL, with a half-maximal inhibitory concentration (IC50) value of 125 μg/mL. The present work spotlights the antifungal potential of the biogenic TeNPs produced by marine bacterium against phytopathogenic fungi as a promising candidate to combat fungal infections.
Collapse
Affiliation(s)
- Mohamed N. Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: or (M.N.A.E.-G.); (M.G.F.)
| | - Salwa A. Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shereen M. Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Reham M. Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Department of Biology, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed G. Farahat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Branch Campus, Cairo University, Sheikh Zayed City 12588, Egypt
- Correspondence: or (M.N.A.E.-G.); (M.G.F.)
| |
Collapse
|
23
|
Chen M, Li Y, Liu H, Zhang D, Shi QS, Zhong XQ, Guo Y, Xie XB. High value valorization of lignin as environmental benign antimicrobial. Mater Today Bio 2023; 18:100520. [PMID: 36590981 PMCID: PMC9800644 DOI: 10.1016/j.mtbio.2022.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin is a natural aromatic polymer of p-hydroxyphenylpropanoids with various biological activities. Noticeably, plants have made use of lignin as biocides to defend themselves from pathogen microbial invasions. Thus, the use of isolated lignin as environmentally benign antimicrobial is believed to be a promising high value approach for lignin valorization. On the other hand, as green and sustainable product of plant photosynthesis, lignin should be beneficial to reduce the carbon footprint of antimicrobial industry. There have been many reports that make use of lignin to prepare antimicrobials for different applications. However, lignin is highly heterogeneous polymers different in their monomers, linkages, molecular weight, and functional groups. The structure and property relationship, and the mechanism of action of lignin as antimicrobial remains ambiguous. To show light on these issues, we reviewed the publications on lignin chemistry, antimicrobial activity of lignin models and isolated lignin and associated mechanism of actions, approaches in synthesis of lignin with improved antimicrobial activity, and the applications of lignin as antimicrobial in different fields. Hopefully, this review will help and inspire researchers in the preparation of lignin antimicrobial for their applications.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Huiming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dandan Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xin-Qi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
24
|
Maruthapandi M, Gupta A, Saravanan A, Jacobi G, Banin E, Luong JHT, Gedanken A. Ultrasonic-assisted synthesis of lignin-capped Cu 2O nanocomposite with antibiofilm properties. ULTRASONICS SONOCHEMISTRY 2023; 92:106241. [PMID: 36470127 PMCID: PMC9722477 DOI: 10.1016/j.ultsonch.2022.106241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw = 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L-Cu (92 % lignin and 8 % Cu2ONPs, w/w %). The MIC for bacterial eradication was noticeably lower; 0.3 mg/mL (87 % lignin + 13 % Cu2ONPs, w/w %) for PA and SA, whereas this value was appreciably higher for MDR E. coli (0.56 mg/mL, 86 % lignin and 14 % Cu2O NPs). Such results highlighted the potential of L-Cu as an alternative to neutralize MDR pathogens.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Akanksha Gupta
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Arumugam Saravanan
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
25
|
Pepper-Mediated Green Synthesis of Selenium and Tellurium Nanoparticles with Antibacterial and Anticancer Potential. J Funct Biomater 2022; 14:jfb14010024. [PMID: 36662072 PMCID: PMC9867025 DOI: 10.3390/jfb14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
The production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, green nanotechnology and the synthesis of environmentally friendly nanomaterials have been gaining attention over the last few decades, using living organisms or biomolecules derived from them, as the main raw materials to produce cost-effective, environmentally friendly, and ready-to-be-used nanomaterials. In this article and building upon previous knowledge, we have designed and implemented the synthesis of selenium and tellurium nanoparticles using extracts from fresh jalapeño and habanero peppers. After characterization, in this study, the nanoparticles were tested for both their antimicrobial and anticancer features against isolates of antibiotic-resistant bacterial strains and skin cancer cell lines, respectively. The nanosystems produced nanoparticles via a fast, eco-friendly, and cost-effective method showing different antimicrobial profiles between elements. While selenium nanoparticles lacked an antimicrobial effect at the concentrations tested, those made of tellurium produced a significant antibacterial effect even at the lowest concentration tested. These effects were correlated when the nanoparticles were tested for their cytocompatibility and anticancer properties. While selenium nanoparticles were biocompatible and had a dose-dependent anticancer effect, tellurium-based nanoparticles lacked such biocompatibility while exerting a powerful anti-cancer effect. Further, this study demonstrated a suitable mechanism of action for killing bacteria and cancer cells involving reactive oxygen species (ROS) generation. In summary, this study introduces a new green nanomedicine synthesis approach to create novel selenium and tellurium nanoparticles with attractive properties for numerous biomedical applications.
Collapse
|
26
|
Kim C, Lim YJ, Kim YE, Cho H, Lee SH. Studies on the Selective Syntheses of Sodium Ditelluride and Dialkyl Ditellurides. Molecules 2022; 27:molecules27248991. [PMID: 36558124 PMCID: PMC9782605 DOI: 10.3390/molecules27248991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Studies on the selective synthetic method for dialkyl ditellurides 1, a representative class of organyl tellurium compounds, were presented. Considering the difficulty in conducting previous harsh reactions and in suppressing the formation of dialkyl tellurides 2 as side products, we optimized reaction conditions for selective syntheses of sodium ditelluride and the corresponding dialkyl ditellurides 1. We reduced tellurium to sodium ditelluride by using NaBH4 and subsequently, treated the obtained sodium ditelluride with alkyl halides (RX) to give the target compounds 1. Consequently, by applying various alkyl halides (RX) we achieved the selective syntheses of dialkyl ditellurides 1 (13 examples with 4 new compounds) in modest to good yields. We also suggested the mechanistic pathways to dialkyl ditellurides 1.
Collapse
|
27
|
de Oliveira HL, Dias GM, Neves BC. Genome sequence of Pseudomonas aeruginosa PA1-Petro—A role model of environmental adaptation and a potential biotechnological tool. Heliyon 2022; 8:e11566. [DOI: 10.1016/j.heliyon.2022.e11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
|
28
|
Morena AG, Tzanov T. Antibacterial lignin-based nanoparticles and their use in composite materials. NANOSCALE ADVANCES 2022; 4:4447-4469. [PMID: 36341306 PMCID: PMC9595106 DOI: 10.1039/d2na00423b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2023]
Abstract
Lignin, one of the most abundant biopolymers on earth, has been traditionally considered a low-value by-product of the pulp and paper industries. This renewable raw material, besides being a source of valuable molecules for the chemical industry, also has antioxidant, UV-absorbing, and antibacterial properties in its macromolecular form. Moreover, lignin in the form of nanoparticles (LigNPs) presents advantages over bulk lignin, such as higher reactivity due to its larger surface-to-volume ratio. In view of the rapid surge of antimicrobial resistance (AMR), caused by the overuse of antibiotics, continuous development of novel antibacterial agents is needed. The use of LigNPs as antibacterial agents is a suitable alternative to conventional antibiotics for topical application or chemical disinfectants for surfaces and packaging. Besides, their multiple and unspecific targets in the bacterial cell may prevent the emergence of AMR. This review summarizes the latest developments in antibacterial nano-formulated lignin, both in dispersion and embedded in materials. The following roles of lignin in the formulation of antibacterial NPs have been analyzed: (i) an antibacterial active in nanoformulations, (ii) a reducing and capping agent for antimicrobial metals, and (iii) a carrier of other antibacterial agents. Finally, the review covers the inclusion of LigNPs in films, fibers, hydrogels, and foams, for obtaining antibacterial lignin-based nanocomposites for a variety of applications, including food packaging, wound healing, and medical coatings.
Collapse
Affiliation(s)
- A Gala Morena
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya Rambla Sant Nebridi 22 Terrassa 08222 Spain +34 93 739 82 25 +34 93 739 85 70
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya Rambla Sant Nebridi 22 Terrassa 08222 Spain +34 93 739 82 25 +34 93 739 85 70
| |
Collapse
|
29
|
Hodásová Ľ, Morena AG, Tzanov T, Fargas G, Llanes L, Alemán C, Armelin E. 3D-Printed Polymer-Infiltrated Ceramic Network with Antibacterial Biobased Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:4803-4813. [PMID: 36166595 PMCID: PMC9923783 DOI: 10.1021/acsabm.2c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work aimed at the antimicrobial functionalization of 3D-printed polymer-infiltrated biomimetic ceramic networks (PICN). The antimicrobial properties of the polymer-ceramic composites were achieved by coating them with human- and environmentally safe silver nanoparticles trapped in a phenolated lignin matrix (Ag@PL NPs). Lignin was enzymatically phenolated and used as a biobased reducing agent to obtain stable Ag@PL NPs, which were then formulated in a silane (γ-MPS) solution and deposited to the PICN surface. The presence of the NPs and their proper attachment to the surface were analyzed with spectroscopic methods (FTIR and Raman) and X-ray photoelectron spectroscopy (XPS). Homogeneous distribution of 13.4 ± 3.2 nm NPs was observed in the transmission electron microscopy (TEM) images. The functionalized samples were tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, validating their antimicrobial efficiency in 24 h. The bacterial reduction of S. aureus was 90% in comparison with the pristine surface of PICN. To confirm that the Ag-functionalized PICN scaffold is a safe material to be used in the biomedical field, its biocompatibility was demonstrated with human fibroblast (BJ-5ta) and keratinocyte (HaCaT) cells, which was higher than 80% in both cell lines.
Collapse
Affiliation(s)
- Ľudmila Hodásová
- Departament
d’Enginyeria Química, IMEM-BRT, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I,
2nd Floor, 08019 Barcelona, Spain,Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,Departament
de Ciéncia i Enginyeria de Materials, CIEFMA, EEBE, Universitat Politécnica de Catalunya, Campus Diagonal Besòs, C/Eduard
Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain
| | - A. Gala Morena
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politécnica de Catalunya, Terrassa 08222, Spain
| | - Tzanko Tzanov
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politécnica de Catalunya, Terrassa 08222, Spain
| | - Gemma Fargas
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,Departament
de Ciéncia i Enginyeria de Materials, CIEFMA, EEBE, Universitat Politécnica de Catalunya, Campus Diagonal Besòs, C/Eduard
Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain
| | - Luis Llanes
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,Departament
de Ciéncia i Enginyeria de Materials, CIEFMA, EEBE, Universitat Politécnica de Catalunya, Campus Diagonal Besòs, C/Eduard
Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria Química, IMEM-BRT, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I,
2nd Floor, 08019 Barcelona, Spain,Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Elaine Armelin
- Departament
d’Enginyeria Química, IMEM-BRT, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I,
2nd Floor, 08019 Barcelona, Spain,Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,
| |
Collapse
|
30
|
Antibiofilm Activity of Biocide Metal Ions Containing Bioactive Glasses (BGs): A Mini Review. Bioengineering (Basel) 2022; 9:bioengineering9100489. [PMID: 36290457 PMCID: PMC9598244 DOI: 10.3390/bioengineering9100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major clinical issues during the implantation procedure is the bacterial infections linked to biofilms. Due to their tissue localization and the type of bacteria involved, bacterial infections at implant sites are usually difficult to treat, which increases patient morbidity and even mortality. The difficulty of treating biofilm-associated infections and the emergence of multidrug-resistant bacteria are further challenges for the scientific community to develop novel biomaterials with excellent biocompatibility and antibacterial properties. Given their ability to stimulate bone formation and have antibacterial properties, metal ion-doped bioactive glasses (BGs) have received considerable research. This mini review aims to be successful in presenting the developments made about the role of biocide metal ions incorporated into BGs against the development of bacterial biofilms and the spread of nosocomial diseases.
Collapse
|
31
|
Morena A, Bassegoda A, Natan M, Jacobi G, Banin E, Tzanov T. Antibacterial Properties and Mechanisms of Action of Sonoenzymatically Synthesized Lignin-Based Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37270-37279. [PMID: 35960019 PMCID: PMC9412960 DOI: 10.1021/acsami.2c05443] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/01/2022] [Indexed: 06/02/2023]
Abstract
In recent years, lignin has drawn increasing attention for different applications due to its intrinsic antibacterial and antioxidant properties, coupled with biodegradability and biocompatibility. However, chemical modification or combination with metals is usually required to increase its antimicrobial functionality and produce biobased added-value materials for applications wherein bacterial growth should be avoided, such as biomedical and food industries. In this work, a sonoenzymatic approach for the simultaneous functionalization and nanotransformation of lignin to prepare metal-free antibacterial phenolated lignin nanoparticles (PheLigNPs) is developed. The grafting of tannic acid, a natural phenolic compound, onto lignin was achieved by an environmentally friendly approach using laccase oxidation upon the application of high-intensity ultrasound to rearrange lignin into NPs. PheLigNPs presented higher antibacterial activity than nonfunctionalized LigNPs and phenolated lignin in the bulk form, indicating the contribution of both the phenolic content and the nanosize to the antibacterial activity. Studies on the antibacterial mode of action showed that bacteria in contact with the functionalized NPs presented decreased metabolic activity and high levels of reactive oxygen species (ROS). Moreover, PheLigNPs demonstrated affinity to the bacterial surface and the ability to cause membrane destabilization. Antimicrobial resistance studies showed that the NPs did not induce resistance in pathogenic bacteria, unlike traditional antibiotics.
Collapse
Affiliation(s)
- Angela
Gala Morena
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Arnau Bassegoda
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Michal Natan
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Gila Jacobi
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Ehud Banin
- The
Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Tzanko Tzanov
- Group
of Molecular and Industrial Biotechnology, Department of Chemical
Engineering, Universitat Politècnica
de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
32
|
Wang Z, Yin C, Gao Y, Liao Z, Li Y, Wang W, Sun D. Novel functionalized selenium nanowires as antibiotic adjuvants in multiple ways to overcome drug resistance of multidrug-resistant bacteria. BIOMATERIALS ADVANCES 2022; 137:212815. [PMID: 35929231 DOI: 10.1016/j.bioadv.2022.212815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Methicillin-resistant Staphylococcus (MRS) is a multi-drug resistant bacteria that pose a serious threat to human health. Antibacterial nanomaterials are becoming a promising antibiotic substitute or antibiotic adjuvants. In this work, selenium nanowires were modified with nano‑silver (Ag NPs) with antibacterial activity and [Ru(bpy)2dppz]2+ with fluorescent labeling of DNA (SRA), and the antibacterial activity, antibacterial mechanism and biological toxicity of SRA synergistic antibiotics were studied. In vitro, antibacterial results show that SRA (12 μg/mL) improves the antibacterial activity of various antibiotics against resistant bacteria and significantly slows the development of bacterial resistance to antibiotics. Studies on antibacterial mechanisms have shown that SRA synergistic antibiotics destroy drug-resistant bacteria through a combination of physical (physical damage) and chemical pathways (destruction of biofilm, membrane depolarization, cell membrane destruction, adenosine triphosphate consumption and reactive oxygen species production). Transcriptomics analysis found that SRA affects bacterial activity by affecting bacterial biosynthesis, ATP synthesis and biofilm formation. Furthermore, SRA synergistic antibiotics can accelerate wound healing of bacterial infection by reducing the inflammatory response. The toxicity evaluation results show that SRA has extremely low cellular and in vivo toxicity. SRA has the potential of clinical application as multiple antibiotic adjuvants to deal with resistant bacterial infections.
Collapse
Affiliation(s)
- Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yin Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ziyu Liao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weiyu Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
33
|
Tran NT, Nguyen TTT, Ha D, Nguyen TH, Nguyen NN, Baek K, Nguyen NT, Tran CK, Tran TTV, Le HV, Nguyen DM, Hoang D. Highly Functional Materials Based on Nano-Lignin, Lignin, and Lignin/Silica Hybrid Capped Silver Nanoparticles with Antibacterial Activities. Biomacromolecules 2021; 22:5327-5338. [PMID: 34807571 DOI: 10.1021/acs.biomac.1c01250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rice husk is one of the most abundant biomass resources in the world, yet it is not effectively used. This study focuses on the sustainably rice-husk-extracted lignin, nano-lignin (n-Lignin), lignin-capped silver nanoparticles (LCSN), n-Lignin-capped silver nanoparticles (n-LCSN), and lignin-capped silica-silver nanoparticles (LCSSN), and using them for antibacterial activities. The final n-Lignin-based products had a sphere-like structure, of which the size varied between 50 and 80 nm. We found that while n-Lignin and lignin were less effective against Escherichia coli than against Staphylococcus aureus, n-Lignin/lignin-based hybrid materials, i.e., n-LCSN, LCSN, and LCSSN, were better against E. coli than against S. aureus. Interestingly, the antimicrobial behaviors of n-LCSNs could be further improved by decreasing the size of n-Lignin. Considering the facile, sustainable, and eco-friendly method that we have developed here, it is promising to use n-Lignin/lignin-based materials as highly efficient antimicrobials without environmental concerns.
Collapse
Affiliation(s)
- Nhat Thong Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Trang Thi Thu Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Dat Ha
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thu Hien Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Ngan Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kangkyun Baek
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Korea
| | - Ngoc Thuy Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Cong Khanh Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thi Thanh Van Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Van Le
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Dang Mao Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44306 Nantes, France
| | - DongQuy Hoang
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
34
|
Wang X, Guo H, Lu Z, Liu X, Luo X, Li S, Liu S, Li J, Wu Y, Chen Z. Lignin Nanoparticles: Promising Sustainable Building Blocks of Photoluminescent and Haze Films for Improving Efficiency of Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33536-33545. [PMID: 34251791 DOI: 10.1021/acsami.1c08209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Films with the capacity for photoluminescence and haze, which can convert UV to visible light and enhance light management, are of great importance for optoelectronic devices. Here, taking advantage of the inherent fluorescence and self-assembly properties of lignin, we have developed a sustainable lignin-derived multifunctional dopant (L-MS-NPs) for fabricating optical films with haze, fluorescence, and room-temperature phosphorescence (RTP) together with poly(vinyl alcohol) (PVA). The optical films are used to improve the light-harvesting efficiency of solar cells. Specifically, attributed to the robust morphology in the film matrix, L-MS-NPs cause a rough morphology in the surface of an L-MS-NPs/PVA composite film, which eventually triggers the great optical haze. Additionally, L-MS-NPs inherit fluorescence properties from lignin and show fluorescence emission when embed in the film matrix. Moreover, the PVA film matrix can stabilize the excited triplet state, which finally induces RTP of L-MS-NPs. The combined haze, fluorescence, and RTP properties of the L-MS-NPs/PVA composite film enhances the power conversion efficiency (PCE) of dye-sensitized solar cells from ∼3.9 to ∼4.1%.
Collapse
Affiliation(s)
- Xue Wang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Huanxin Guo
- Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Zonghao Lu
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Xue Liu
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Xiongfei Luo
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Shujun Li
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
- Key Laboratory of Bio-based Material Science & Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Shouxin Liu
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
- Key Laboratory of Bio-based Material Science & Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Jian Li
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
- Key Laboratory of Bio-based Material Science & Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Yongzhen Wu
- Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
- Key Laboratory of Bio-based Material Science & Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| |
Collapse
|