1
|
Nakano K, Kamei R, Kanao E, Hosomi T, Yamada SK, Ishihama Y, Yanagida T, Kubo T. Novel Separation Media with Metal Oxide Nanostructures for Capillary Electrochromatography. ACS MEASUREMENT SCIENCE AU 2025; 5:199-207. [PMID: 40255607 PMCID: PMC12006950 DOI: 10.1021/acsmeasuresciau.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/22/2025]
Abstract
Zinc oxide nanowires (ZnO nanowire, ZnO NWs) are nanostructures that have drawn attention as separation media for efficient biomolecules because of high biological compatibility and low cost. Development of the capillary column (ZnO column) using a ZnO NW to an inner wall has been reported, although there are only a few studies about molecular recognition of a ZnO NW regardless of numerous studies reporting ZnO NWs. In our previous studies, we conducted fundamental research to elucidate molecular recognition of ZnO NW and develop a novel liquid phase separation field. Consequently, we achieved baseline separation of mixed adenosine phosphate analytes using a phosphate buffer in the mobile phase. In this study, to improve the low resistance of ZnO NW toward a solvent, we covered a surface of ZnO NW with titanium oxide (TiO2) thin layers using atomic layer deposition. As a result, the column (TiO2 NW column) showed high affinity toward acidic compounds like the ZnO column, strongly interacting with especially phosphate groups. Resistance of ZnO NW to a weak acidic buffer solution was then dramatically improved. This is because multipoint electrostatic interaction between the phosphate groups and the NW surface occurred. Next, we conducted capillary electrochromatography to examine the possibility for application of separation analysis. The elution order of the phosphorylated compound was successfully controlled by the migration solution containing aqueous acetonitrile with weak acids.
Collapse
Affiliation(s)
- Katsuya Nakano
- Graduate
School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryoma Kamei
- Seinan
Indusutries, Co. LTD, Kitagagaya 4-3-24, Suminoe-ku, Osaka 559-0011, Japan
| | - Eisuke Kanao
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- National
Institutes of Biomedical Innovation, Health
and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takuro Hosomi
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Sayaka Konishi Yamada
- Graduate
School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yasushi Ishihama
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takuya Kubo
- Graduate
School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Graduate
School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
2
|
Kamei R, Hosomi T, Kanai M, Kanao E, Liu J, Takahashi T, Li W, Tanaka W, Nagashima K, Nakano K, Otsuka K, Kubo T, Yanagida T. Rational Strategy for Space-Confined Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23931-23937. [PMID: 37155349 DOI: 10.1021/acsami.3c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Atomic layer deposition (ALD) offers excellent controllability of spatial uniformity, film thickness at the Angstrom level, and film composition even for high-aspect-ratio nanostructured surfaces, which are rarely attainable by other conventional deposition methodologies. Although ALD has been successfully applied to various substrates under open-top circumstances, the applicability of ALD to confined spaces has been limited because of the inherent difficulty of supplying precursors into confined spaces. Here, we propose a rational methodology to apply ALD growths to confined spaces (meter-long microtubes with an aspect ratio of up to 10 000). The ALD system, which can generate differential pressures to confined spaces, was newly developed. By using this ALD system, it is possible to deposit TiOx layers onto the inner surface of capillary tubes with a length of 1000 mm and an inner diameter of 100 μm with spatial deposition uniformity. Furthermore, we show the superior thermal and chemical robustness of TiOx-coated capillary microtubes for molecular separations when compared to conventional molecule-coated capillary microtubes. Thus, the present rational strategy of space-confined ALD offers a useful approach to design the chemical and physical properties of the inner surfaces of various confined spaces.
Collapse
Affiliation(s)
- Ryoma Kamei
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wenjun Li
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsuya Nakano
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
3
|
Kanao E, Nakano K, Kamei R, Hosomi T, Ishihama Y, Adachi J, Kubo T, Otsuka K, Yanagida T. Moderate molecular recognitions on ZnO m-plane and their selective capture/release of bio-related phosphoric acids. NANOSCALE ADVANCES 2022; 4:1649-1658. [PMID: 36134362 PMCID: PMC9417451 DOI: 10.1039/d1na00865j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/16/2022] [Indexed: 05/25/2023]
Abstract
Herein, we explore the hidden molecular recognition abilities of ZnO nanowires uniformly grown on the inner surface of an open tubular fused silica capillary via liquid chromatography. Chromatographic evaluation revealed that ZnO nanowires showed a stronger intermolecular interaction with phenylphosphoric acid than any other monosubstituted benzene. Furthermore, ZnO nanowires specifically recognized the phosphate groups present in nucleotides even in the aqueous mobile phase, and the intermolecular interaction increased with the number of phosphate groups. This discrimination of phosphate groups in nucleotides was unique to the rich (101̄0) m-plane of ZnO nanowires with a moderate hydrophilicity and negative charge. The discrimination could be evidenced by the changes in the infrared bands of the phosphate groups on nucleotides on ZnO nanowires. Finally, as an application of the molecular recognition, nucleotides were separated by the number of phosphate groups, utilizing optimized gradient elution on ZnO nanowire column. Thus, the present results elucidate the unique and versatile molecular selectivity of well-known ZnO nanostructures for the capture and separation of biomolecules.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Katsuya Nakano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Ryoma Kamei
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| |
Collapse
|
4
|
Wu M, Jiang X, Meng Y, Niu Y, Yuan Z, Du S, Li X, Ruan X, Xiao W, Yan X, He G. A Covalent Organic Framework Membrane with Homo Hierarchical Pores for Confined Reactive Crystallization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4739-4749. [PMID: 35015497 DOI: 10.1021/acsami.1c21385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gas-liquid (G-L) reactive crystallization is a major technology for advanced materials construction, which requires a short diffusion path on the interface to ensure the reactant supply and stable crystal nucleation under ultrahigh supersaturation. Herein, a covalent organic framework (COF) membrane with homo hierarchical pore structures was proposed as an effective interfacial material for the regulation of confined reactive crystallization. By combining the ordered nanopores of COFs and micropores of anodic aluminum oxide (AAO), the COF membrane simultaneously provided an excellent nanoscale diffusion-reaction regulation network as the molecular-level confined G-L reactive interface and adjustable submicrometer gas mass transfer channels. The highly selective construction of CaCO3 superstructures was then achieved. When the submicrometer primary pore size rp of the constructed COF membrane ranged from 120 to 1.6 nm, the diffusion mechanism of CO2 varied from viscous flow diffusion to Knudsen diffusion. The growth orientation of CaCO3 crystals was well confined to obtain spindle-shaped crystals with high selectivity. Meanwhile, the crystal selectivity factor (cube/sphere) increased from 0 to 3.53 under the low interfacial nuclear barrier. Thus, the COF membrane with coupled micro-nanostructures successfully screened the directional preparation conditions for diverse CaCO3 superstructures, which also paved a meaningful path for the functional application of COFs in accurate mass transfer control and confined chemical reactions.
Collapse
Affiliation(s)
- Mengyuan Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yingshuang Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuchao Niu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhijie Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shaofu Du
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xuehua Ruan
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaoming Yan
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|