1
|
Wang J, Ren Y, Wang Y, Li Z, Song Z, Zhao Q, Zhao M, Liu H, Ma H, Wang J, Dong Y, Li Y, He G, Jiang Z. Sub-Minute Fabrication of Metal Organic Framework Membranes via Additive-Accelerated Electrodeposition. Angew Chem Int Ed Engl 2025; 64:e202502862. [PMID: 40016155 DOI: 10.1002/anie.202502862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Efficient fabrication of metal organic framework (MOF) membranes is important for their broad applications in molecular separations. However, current approaches for MOF membrane fabrication are usually time-consuming due to the slow, random nucleation and crystal growth, particularly the lack of in-situ defect healing ability. Here, we report an additive-accelerated electrodeposition method, which allows ultrafast fabrication of MOF membranes through the synergy of electric field and catecholamine additives. The strong electric field facilitates the directed nucleation of MOF on the substrates while the multifunctional additives accelerate the MOF crystallization, growth and grain-boundary defect healing. Consequently, we fabricate well-intergrown, uniform MOF (ZIF-8) membranes with an ultrathin thickness of ∼180 nm in 30 s, which is the most rapid fabrication of MOF membranes till now. The membranes exhibit superior C3H6/C3H8 separation performance with a C3H6 permeance of 145 GPU and a C3H6/C3H8 separation factor of 151, as well as good stability at high pressure of 7 bar, and the ultrafast membrane fabrication can be achieved on commercial ceramic substrates, exhibiting the potential for practical applications. This work may establish a platform for fast and controllable fabrication of MOF membranes as well as many other membranes based on metal-coordination chemistry.
Collapse
Affiliation(s)
- Jianyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yifan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhenyang Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Ziheng Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Quan Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Mingang Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Heyang Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Hanze Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Jinyue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yuao Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
2
|
Nam KJ, Mohamed AMO, Seong J, An H, Kang DY, Economou IG, Lee JS. Cobalt-Based ZIF Composite Membranes: In Situ Defect Engineering for Enhanced Water Stability and Gas Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409515. [PMID: 39679852 DOI: 10.1002/smll.202409515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Porous coordination polymers with excellent molecular sieving ability, high dispersibility, and good compatibility with engineered polymer matrices hold promise for various industrial applications, such as gas separation and battery separators. Here, an in situ defect engineering approach is proposed for highly processable cobalt (Co)-based zeolitic imidazolate frameworks (ZIFs) with enhanced molecular sieving ability and water stability. By varying alkylamine (AA) modulators, the pore structures and textural properties of ZIFs can be fine-tuned. The resulting high-loading composite membrane exhibits excellent C3H6/C3H8 separation performance and mechanical properties. This in situ defect engineering approach enables efficient interfacial engineering for high-performance composite membranes.
Collapse
Affiliation(s)
- Ki Jin Nam
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Amro M O Mohamed
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, 23874, Qatar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Jeongho Seong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Heseong An
- Department of Chemical Engineering, Sunchon National University, Jeollanam-do, 57922, Republic of Korea
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ioannis G Economou
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Institute of Energy and Environmental Technology, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
3
|
Li N, Ma C, Zhang J, Xu L, Wang S, Wang Z, Zhang S, Pang J, Hou J, Qiao Z, Zhong C. Tailored Polymer-Zeolite Imidazolate Framework Membranes for Aperture-Matched C4 Hydrocarbon Separation. Angew Chem Int Ed Engl 2025:e202506117. [PMID: 40269615 DOI: 10.1002/anie.202506117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
The integration of metal-organic frameworks (MOFs) with polymers for efficient C4 hydrocarbon separation membranes remains challenging, primarily due to inherent phase incompatibility. This work presents an in-situ synthesis strategy for polymer-zeolitic-imidazolate frameworks (polyZIF), utilizing polymer-metal-ligand coordination bonds combined with structural directing agents to produce crystalline microporous frameworks. With an accessible BET surface area of 261 m2 g-1 and a permanent porosity of ca. 4.42 Å, polyZIF membrane demonstrates butadiene permeance (∼332 GPU) and the selectivity over n-butene, n-butane, iso-butene, and iso-butane (17.2, 28.1, 21.5, and 34.8) under mixed gas conditions, respectively. Demonstrating practical scalability, the improved dispersibility and reduced interfacial defects in polyZIF facilitates fabrication of large-area defect-free membranes (up to 80 cm2) while maintaining robust C4 separation performance. This advancement not only establishes a novel preparation for constructing polyZIF membranes with C4 hydrocarbon molecular-sieving capability but also provides critical insights into industrial application of ZIF-based polymer membranes.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Advanced Separation Membrane Materials, Tiangong University, Tianjin, 300387, China
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Chao Ma
- State Key Laboratory of Advanced Separation Membrane Materials, Tiangong University, Tianjin, 300387, China
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jingli Zhang
- School of Chemical Engineering, Nankai University, Tianjin, 300387, China
| | - Lin Xu
- School of Chemical Engineering, Nankai University, Tianjin, 300387, China
| | - Sa Wang
- School of Chemical Engineering, Nankai University, Tianjin, 300387, China
| | - Ziyue Wang
- State Key Laboratory of Advanced Separation Membrane Materials, Tiangong University, Tianjin, 300387, China
| | - Si Zhang
- State Key Laboratory of Advanced Separation Membrane Materials, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Jiandong Pang
- School of Chemical Engineering, Nankai University, Tianjin, 300387, China
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Brisbane, 4072, Australia
| | - Zhihua Qiao
- State Key Laboratory of Advanced Separation Membrane Materials, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Chongli Zhong
- State Key Laboratory of Advanced Separation Membrane Materials, Tiangong University, Tianjin, 300387, China
- School of Chemical Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
4
|
Fan W, Zhang X. Polydopamine modified coconut shell biochar decorated with ZIF-8 for improved adsorption of malachite green and rhodamine B from aqueous solution. ENVIRONMENTAL RESEARCH 2025; 269:120933. [PMID: 39855414 DOI: 10.1016/j.envres.2025.120933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Although various biochars from different biomass materials have been developed to remediate dye-contaminated environments, the removal capabilities of pristine biochar for dyes urgently require further enhancement due to insufficient surface adsorption sites. To introduce more adsorption sites, this work proposes a simple approach to fabricate coconut shell biochar (CSB) based adsorbent by anchoring zeolitic imidazolate framework-8 (ZIF-8) via the active sites provided by polydopamine (PDA)-coated CSB. The nucleation sites provided by the PDA layer promote the dispersion of ZIF-8 on the surface of CSB, resulting in sufficient adsorption sites for removing malachite green (MG) and rhodamine B (RB) from wastewater. The resulting CSB/PDA/ZIF-8 demonstrates a large specific surface area (749.54 m2 g-1) and outstanding adsorption capacities for MG (1568 mg g-1) and RB (1496 mg g-1). Furthermore, CSB/PDA/ZIF-8 adsorbents can maintain a satisfactory removal rate for MG (91%) and RB (77%) even after five reuses. The analysis of the adsorption mechanism exhibits that electrostatic interactions, hydrogen bonds, coordination bonds, and π-π stacking are of significance for adsorbing MG and RB. Therefore, CSB/PDA/ZIF-8 is a promising candidate for dye wastewater treatment, while this work provides guidance for the high-quality utilization of biomass materials.
Collapse
Affiliation(s)
- Wenjuan Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoxiang Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Xu Z, Du J, Jin X, Tao Y, Lu J, Hu J, Lv Y, Xia X, Wang H. In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation. Carbohydr Polym 2025; 351:123091. [PMID: 39779008 DOI: 10.1016/j.carbpol.2024.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment. Kinetic tests showed CZT-Cur-SA films released 65.68 % of Cur at pH 6.0 within 24 h, compared to 28.26 % at pH 7.0. These films demonstrated exhibited excellent mechanical properties, antioxidation capacity (82.59 %), reinforced moisture (0.51 × 10-10 g m-1 s-1 Pa-1) and satisfied antimicrobial effects on E. coli (1.69 %) and S. aureus (0.88 %). The optimized CZT-Cur-SA film extended strawberry shelf life to at least 7 days under ambient conditions. Our findings introduce a promising approach to designing responsive, biodegradable active packaging for enhanced food safety.
Collapse
Affiliation(s)
- Zhihang Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xingming Jin
- Beijing Shieldry Technology Co., Ltd, Beijing 100010, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinwen Hu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Guan J, Du J, Sun Q, He W, Ma J, Hassan SUI, Wu J, Zhang H, Zhang S, Liu J. Metal-organic cages improving microporosity in polymeric membrane for superior CO 2 capture. SCIENCE ADVANCES 2025; 11:eads0583. [PMID: 39841833 PMCID: PMC11753381 DOI: 10.1126/sciadv.ads0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.
Collapse
Affiliation(s)
- Jian Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingcheng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shabi UI Hassan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jiangtao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Fu X, Hu Y, Li W, He J, Deng Y, Zhang R, Chen G. Customizing Pore Structure and Lithiophilic Sites Dual-Gradient Free-Standing 3D Lithium-Based Anode to Enable Excellent Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405227. [PMID: 39118565 DOI: 10.1002/smll.202405227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Developing 3D hosts is one of the most promising strategies for putting forward the practical application of lithium(Li)-based anodes. However, the concentration polarization and uniform electric field of the traditional 3D hosts result in undesirable "top growth" of Li, reduced space utilization, and obnoxious dendrites. Herein, a novel dual-gradient 3D host (GDPL-3DH) simultaneously possessing gradient-distributed pore structure and lithiophilic sites is constructed by an electrospinning route. Under the synergistic effect of the gradient-distributed pore and lithiophilic sites, the GDPL-3DH exhibits the gradient-increased electrical conductivity from top to bottom. Also, Li is preferentially and uniformly deposited at the bottom of the GDPL-3DH with a typical "bottom-top" mode confirmed by the optical and SEM images, without Li dendrites. Consequently, an ultra-long lifespan of 5250 h of a symmetrical cell at 2 mA cm-2 with a fixed capacity of 2 mAh cm-2 is achieved. Also, the full cells based on the LiFePO4, S/C, and LiNi0.8Co0.1Mn0.1O2 cathodes all exhibit excellent performances. Specifically, the LiFePO4-based cell maintains a high capacity of 136.8 mAh g-1 after 700 cycles at 1 C (1 C = 170 mA g-1) with 94.7% capacity retention. The novel dual-gradient strategy broadens the perspective of regulating the mechanism of lithium deposition.
Collapse
Affiliation(s)
- Xiangxiang Fu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yangming Hu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wanting Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiafeng He
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuanfu Deng
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Provincial Research Center of Electrochemical Energy Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Rui Zhang
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guohua Chen
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
8
|
Geng Y, Li R, Zhao Z, Li G, Huang B, Chen X, Jiao C. Bio-based P-N flame retardant with ZIF-67 in-situ growth on flexible polyurethane foam with excellent fire safety performance. CHEMOSPHERE 2024; 357:142048. [PMID: 38641295 DOI: 10.1016/j.chemosphere.2024.142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
The wide application of flexible polyurethane foam (FPUF) poses a giant challenge to human society in terms of fire prevention and environmental pollution. To solve this problem, the lignocellulose-based P-N flame retardant (LFPN) has been developed using mechanochemical methods. It was found that FPUF treated using LFPN exhibited good flame retardancy, but suffered from high smoke generation and toxicity. The hollow dodecahedral ZIF-67 has been used for smoke suppression catalysis, but the agglomeration phenomenon makes it inefficient. Hence, in this study, the adhesive properties of polydopamine (PDA) were utilized to assist the in-situ growth of ZIF-67. The results showed that the total smoke release rate of the treated FPUF was reduced by 40.5%. The toxic gases, such as carbon monoxide (CO), hydrogen cyanide, etc., also showed the same decreasing trend. What's more, the catalytic effect of ZIF-67 itself and the synergistic effect with LFPN gave FPUF great flame retardant and smoke inhibition properties. This novel FPUF provides a new reference for achieving smoke suppression and toxicity reduction.
Collapse
Affiliation(s)
- Yiwei Geng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Rongjia Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Zexuan Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Gaoyuan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Biyu Huang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Xilei Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| | - Chuanmei Jiao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| |
Collapse
|
9
|
Li Z, Shao Y, Yang Y, Zan J. Zeolitic imidazolate framework-8: a versatile nanoplatform for tissue regeneration. Front Bioeng Biotechnol 2024; 12:1386534. [PMID: 38655386 PMCID: PMC11035894 DOI: 10.3389/fbioe.2024.1386534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Extensive research on zeolitic imidazolate framework (ZIF-8) and its derivatives has highlighted their unique properties in nanomedicine. ZIF-8 exhibits advantages such as pH-responsive dissolution, easy surface functionalization, and efficient drug loading, making it an ideal nanosystem for intelligent drug delivery and phototherapy. These characteristics have sparked significant interest in its potential applications in tissue regeneration, particularly in bone, skin, and nerve regeneration. This review provides a comprehensive assessment of ZIF-8's feasibility in tissue engineering, encompassing material synthesis, performance testing, and the development of multifunctional nanosystems. Furthermore, the latest advancements in the field, as well as potential limitations and future prospects, are discussed. Overall, this review emphasizes the latest developments in ZIF-8 in tissue engineering and highlights the potential of its multifunctional nanoplatforms for effective complex tissue repair.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Rehabilitation, Ganzhou People’s Hospital, Ganzhou, China
| | - Yinjin Shao
- Department of Rehabilitation, Ganzhou People’s Hospital, Ganzhou, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
| | - Jun Zan
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
| |
Collapse
|
10
|
Ghaderi M, Bi H, Dam-Johansen K. Advanced materials for smart protective coatings: Unleashing the potential of metal/covalent organic frameworks, 2D nanomaterials and carbonaceous structures. Adv Colloid Interface Sci 2024; 323:103055. [PMID: 38091691 DOI: 10.1016/j.cis.2023.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
The detrimental impact of corrosion on metallic materials remains a pressing concern across industries. Recently, intelligent anti-corrosive coatings for safeguarding metal infrastructures have garnered significant interest. These coatings are equipped with micro/nano carriers that store corrosion inhibitors and release them when triggered by external stimuli. These advanced coatings have the capability to elevate the electrochemical impedance values of steel by 2-3 orders of magnitude compared to the blank coating. However, achieving intelligent, durable, and reliable anti-corrosive coatings requires careful consideration in the design of these micro/nano carriers. This review paper primarily focuses on investigating the corrosion inhibition mechanism of various nano/micro carriers/barriers and identifying the challenges associated with using them for achieving desired properties in anti-corrosive coatings. Furthermore, the fundamental aspects required for nano/micro carriers, including compatibility with the coating matrix, high specific surface area, stability in different environments, stimuli-responsive behavior, and facile synthesis were investigated. To achieve this aim, we explored the properties of micro/nanocarriers based on oxide nanoparticles, carbonaceous and two-dimensional (2D) nanomaterials. Finally, we reviewed recent literature on the application of state-of the art nanocarriers based on metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). We believe that the outcomes of this review paper offer valuable insights for researchers in selecting appropriate materials that can effectively enhance the corrosion resistance of coatings.
Collapse
Affiliation(s)
- Mohammad Ghaderi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| | - Huichao Bi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Kim Dam-Johansen
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Wu MY, Mo RJ, Ding XL, Huang LQ, Li ZQ, Xia XH. Homochiral Zeolitic Imidazolate Framework with Defined Chiral Microenvironment for Electrochemical Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301460. [PMID: 37081282 DOI: 10.1002/smll.202301460] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The recognition and separation of chiral molecules with similar structure are of great industrial and biological importance. Development of highly efficient chiral recognition systems is crucial for the precise application of these chiral molecules. Herein, a homochiral zeolitic imidazolate frameworks (c-ZIF) functionalized nanochannel device that exhibits an ideal platform for electrochemical enantioselective recognition is reported. Its distinct chiral binding cavity enables more sensitive discrimination of tryptophan (Trp) enantiomer pairs than other smaller chiral amino acids owing to its size matching to the target molecule. It is found that introducing neighboring aldehyde groups into the chiral cavity will result in an inferior chiral Trp recognition due to the decreased adsorption-energy difference of D- and L-Trp on the chiral sites. This study may provide an alternative strategy for designing efficient chiral recognition devices by utilizing the homochiral reticular materials and tailoring their chiral environments.
Collapse
Affiliation(s)
- Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Wang J, Liu J, Li L, Kong J, Zhang X. Mn-MOF catalyzed multi-site atom transfer radical polymerization electrochemical sensing of miRNA-21. Mikrochim Acta 2023; 190:317. [PMID: 37488331 DOI: 10.1007/s00604-023-05896-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/01/2023] [Indexed: 07/26/2023]
Abstract
A green electrochemical biosensor was developed based on metal-organic framework (MOF)-catalyzed atom transfer radical polymerization (ATRP) for quantifying miRNA-21, used as the proof-of-concept analyte. Unlike conventional ATRP, Mn-PCN-222 (PCN, porous coordination network) could be used as an alternative for green catalyst to substitute traditional catalysts. First, poly (diallyldimethylammonium chloride) (PDDA) was fixed on the surface of the indium tin oxide (ITO) electrode, and then the Mn-PCN-222 was linked to ITO electrode via electrostatic binding with PDDA. Next, aminated ssDNA (NH2-DNA) was used to modify the electrode further by amide reaction with Mn-PCN-222. Then, the recognition and hybridization of NH2-DNA with miRNA-21 prompt the generation of DNA-RNA complexes, which further hybridize with Fc-DNA@β-CD-Br15 and permit the initiator to be immobilized on the electrode surface. Accordingly, β-CD-Br15 could initiate the polymerization of ferrocenylmethyl methacrylates (FcMMA) under the catalysis of MOF to complete the ATRP reaction. FcMMA presented a distinct electrochemical signal at ~ 0.33 V. Taking advantage of the unique multi-site properties of β-CD-Br15 and the efficient catalytic reaction induced by Mn-PCN-222, ultrasensitive detection of miRNA-21 was achieved with a detection limit of 0.4 fM. The proposed electrochemical biosensor has been applied to the detection of miRNA-21 in serum samples. Therefore, the proposed strategy exhibited potential in early clinical biomedicine.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Jingliang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, People's Republic of China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, People's Republic of China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, People's Republic of China
| |
Collapse
|
13
|
Li Q, Yu J, Lin L, Zhu Y, Wei Z, Wan F, Zhang X, He F, Tian L. One-Pot Rapid Synthesis of Cu 2+-Doped GOD@MOF to Amplify the Antitumor Efficacy of Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16482-16491. [PMID: 36972557 DOI: 10.1021/acsami.3c00562] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemodynamic therapy (CDT) relies on the transformation of intracellular hydrogen peroxide (H2O2) to hydroxyl radicals (·OH) with higher toxicity under the catalysis of Fenton/Fenton-like reagents, which amplifies the oxidative stress and induces significant cellular apoptosis. However, the CDT efficacy is generally limited by the overexpressed GSH and insufficient endogenous H2O2 in tumors. Co-delivery of Cu2+ and glucose oxidase (GOD) can lead to a Cu2+/Cu+ circulation to realize GSH depletion and amplify the Fenton-like reaction. pH-responsive metal-organic frameworks (MOFs) are the optical choice to deliver Fenton/Fenton-like ions to tumors. However, considering that the aqueous condition is requisite for GOD encapsulation, it is challenging to abundantly dope Cu2+ in ZIF-8 MOF nanoparticles in aqueous conditions due to the ease of precipitation and enlarged crystal size. In this work, a robust one-pot biomimetic mineralization method using excessive ligand precursors in aqueous conditions is developed to synthesize GOD@Cu-ZIF-8. Copper ions abundantly doped to the GOD@Cu-ZIF-8 can eliminate GSH to produce Cu+, which is further proceeded to the Fenton-like reaction in the presence of GOD-catalyzed H2O2. Through breaking the tumor microenvironment homeostasis and producing an enhanced CDT effect, the promising antitumor capability of GOD@Cu-ZIF-8 was evidenced by the experiments both in vitro and in vivo.
Collapse
Affiliation(s)
- Qing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yulin Zhu
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feiyan Wan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xindan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feng He
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
14
|
Wang Y, Ren Y, Cao Y, Liang X, He G, Ma H, Dong H, Fang X, Pan F, Jiang Z. Engineering HOF-Based Mixed-Matrix Membranes for Efficient CO 2 Separation. NANO-MICRO LETTERS 2023; 15:50. [PMID: 36787058 PMCID: PMC9929012 DOI: 10.1007/s40820-023-01020-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have emerged as a new class of crystalline porous materials, and their application in membrane technology needs to be explored. Herein, for the first time, we demonstrated the utilization of HOF-based mixed-matrix membrane for CO2 separation. HOF-21, a unique metallo-hydrogen-bonded organic framework material, was designed and processed into nanofillers via amine modulator, uniformly dispersing with Pebax polymer. Featured with the mix-bonded framework, HOF-21 possessed moderate pore size of 0.35 nm and displayed excellent stability under humid feed gas. The chemical functions of multiple binding sites and continuous hydrogen-bonded network jointly facilitated the mass transport of CO2. The resulting HOF-21 mixed-matrix membrane exhibited a permeability above 750 Barrer, a selectivity of ~ 40 for CO2/CH4 and ~ 60 for CO2/N2, surpassing the 2008 Robeson upper bound. This work enlarges the family of mixed-matrix membranes and lays the foundation for HOF membrane development.
Collapse
Affiliation(s)
- Yuhan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China
| | - Hanze Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Pudong, Shanghai, 201203, People's Republic of China
| | - Xiao Fang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China.
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China.
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, People's Republic of China.
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, 522000, Guangdong Province, People's Republic of China.
| |
Collapse
|
15
|
Chen Q, Hong L, Jiang SK, Zhang CX, Wang S, Li WX, Sun SP, Liu ML. Bird's nest -inspired fabrication of ZIF-8 interlayer for organic solvent nanofiltration membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
16
|
Chen K, Ni L, Zhang H, Li L, Guo X, Qi J, Zhou Y, Zhu Z, Sun X, Li J. Phenolic resin regulated interface of ZIF-8 based mixed matrix membrane for enhanced gas separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
High-performance Removal of Tetracycline Enabled by Fe0 Nanoparticles Supported on Carbon@ZIF-8. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Hassanzadeh H, Abedini R, Ghorbani M. CO 2 Separation over N 2 and CH 4 Light Gases in Sorbitol-Modified Poly(ether- block-amide) (Pebax 2533) Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Hassanzadeh
- Enhanced Oil Recovery (EOR) and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| | - Reza Abedini
- Enhanced Oil Recovery (EOR) and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| | - Mohsen Ghorbani
- Polymer Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| |
Collapse
|
19
|
Loloei M, Kaliaguine S, Rodrigue D. CO2-Selective mixed matrix membranes of bimetallic Zn/Co-ZIF vs. ZIF-8 and ZIF-67. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Zhang W, Yang K, Han X, Cai H, Lu W, Yuan Y, Zhang S, Gao F. Metal-organic frameworks decorated pomelo peel cellulose nanofibers membranes for high performance dye rejection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Liu J, Zhang N, Li J, Li M, Wang G, Wang W, Fan Y, Jiang S, Chen G, Zhang Y, Sun X, Liu Y. A novel umami electrochemical biosensor based on AuNPs@ZIF-8/Ti3C2 MXene immobilized T1R1-VFT. Food Chem 2022; 397:133838. [DOI: 10.1016/j.foodchem.2022.133838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023]
|
22
|
Zhou C, Pan M, Li S, Sun Y, Zhang H, Luo X, Liu Y, Zeng H. Metal organic frameworks (MOFs) as multifunctional nanoplatform for anticorrosion surfaces and coatings. Adv Colloid Interface Sci 2022; 305:102707. [PMID: 35640314 DOI: 10.1016/j.cis.2022.102707] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Corrosion of metallic materials is a long-standing problem in many engineering fields. Various organic coatings have been widely applied in anticorrosion of metallic materials over the past decades. However, the protective performance of many organic coatings is limited due to the undesirable local failure of the coatings caused by micro-pores and cracks in the coating matrix. Recently, metal organic frameworks (MOFs)-based surfaces and coatings (MOFBSCs) have exhibited great potential in constructing protective materials on metallic substrates with efficient and durable anticorrosion performance. The tailorable porous structure, flexible composition, numerous active sites, and controllable release properties of MOFs make them an ideal platform for developing various protective functionalities, such as self-healing property, superhydrophobicity, and physical barrier against corrosion media. MOFs-based anticorrosion surfaces and coatings can be divided into two categories: the composite surfaces/coatings using MOFs-based passive/active nanofillers and the surfaces/coatings using MOFs as functional substrate support. In this work, the state-of-the-art fabrication strategies of the MOFBSCs are systematically reviewed. The anticorrosion mechanisms of MOFBSCs and functions of the MOFs in the coating matrix are discussed accordingly. Additionally, we highlight both traditional and emerging electrochemical techniques for probing protective performances and mechanisms of MOFBSCs. The remaining challenging issues and perspectives are also discussed.
Collapse
Affiliation(s)
- Chengliang Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sijia Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongjian Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Xiaohu Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, PR China.
| | - Yali Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
23
|
Liu X, Liu S, Li Y, Zong X, Luo J, Zhang C, Xue S. Transport properties of
O
2
,
N
2
, and
CO
2
through the
CMS
membranes derived from tris(4‐aminophenyl)amine‐based polyimides. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiangyun Liu
- School of Materials Science and Engineering Tianjin University of Technology Tianjin China
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin China
| | - Shan Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin China
| | - Ye Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin China
| | - Xueping Zong
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin China
| | - Jiangzhou Luo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin China
| | - Chunxue Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin China
| | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin China
| |
Collapse
|
24
|
Yang Z, Ying Y, Pu Y, Wang D, Yang H, Zhao D. Poly(ionic liquid)-Functionalized UiO-66-(OH) 2: Improved Interfacial Compatibility and Separation Ability in Mixed Matrix Membranes for CO 2 Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunpan Ying
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunchuan Pu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Dechao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
25
|
Wan X, Zhang K, Wan T, Yan Y, Ye Z, Peng X. Graphene oxide constructed nano Newton's cradle for ultrafast and highly selective CO2 transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Zhang X, Yang S, Lu R, Zan X, Li N. Universal Strategy to Efficiently Coat Zeolitic Imidazolate Frameworks onto Diverse Substrates. ACS OMEGA 2022; 7:17765-17773. [PMID: 35664582 PMCID: PMC9161383 DOI: 10.1021/acsomega.2c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Anchoring metal-organic framework (MOF) coating has attracted extensive interest due to its wide applications in drug delivery, gas storage and separation, catalysis, and so forth. Here, we reported a flexible strategy on generating ZIF-8 coatings onto diverse substrates in the scale up to hundreds cm2, independent of the geometry of the substrate, with controllable thickness, texture structure, and crystal size of coating. By understanding the mechanism and factors on the formation of ZIF-8 coatings, various zeolitic imidazolate framework coatings were successfully produced. This general strategy and in-depth insights pave the new highway to the design and synthesis of MOF coatings onto diverse substrates.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoshuo Yang
- Oujiang
Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou
Institute, University of Chinese Academy
of Sciences, No. 1 Jinlian
Road, Wenzhou 325001, China
- Hubei
Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruofei Lu
- Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zan
- Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Oujiang
Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou
Institute, University of Chinese Academy
of Sciences, No. 1 Jinlian
Road, Wenzhou 325001, China
| | - Na Li
- Oujiang
Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou
Institute, University of Chinese Academy
of Sciences, No. 1 Jinlian
Road, Wenzhou 325001, China
| |
Collapse
|
27
|
Zheng W, Liu Z, Ding R, Dai Y, Li X, Ruan X, He G. Constructing continuous and fast transport pathway by highly permeable polymer electrospun fibers in composite membrane to improve CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
He S, Zhu B, Li S, Zhang Y, Jiang X, Hon Lau C, Shao L. Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120277] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Song Y, Lu X, Liu Z, Liu W, Gai L, Gao X, Ma H. Efficient Removal of Cr(VI) by TiO 2 Based Micro-Nano Reactor via the Synergy of Adsorption and Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:291. [PMID: 35055308 PMCID: PMC8778119 DOI: 10.3390/nano12020291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/24/2022]
Abstract
The low-toxicity treatment of chromium-containing wastewater represents an important way of addressing key environmental problems. In this study, a core-shell structural ZIF-8@TiO2 photocatalyst was synthesized by a simple one-step hydrothermal method. The obtained composite photocatalyst possessed improved photocatalytic activity compared with TiO2. The results indicated that the optimized ZIF-8@TiO2 composite exhibited the highest removal efficiency with 93.1% of Cr(VI) after 120 min under UV-vis irradiation. The removal curves and XPS results indicated that the adsorbed Cr(VI) on the ZIF-8 during the dark process was preferentially reduced. The superior removal efficiency of ZIF-8@TiO2 is attributed to the combination of both high adsorption of ZIF-8, which attracted Cr(VI) on the composite surface, and the high separation efficiency of photo-induced electron-hole pairs. For the mixture of wastewater that contained methyl orange and Cr(VI), 97.1% of MO and 99.7% of Cr(VI) were removed after 5 min and 60 min light irradiation, respectively. The high removal efficiency of multiple pollutants provides promising applications in the field of Cr(VI) contaminated industrial wastewater treatment.
Collapse
Affiliation(s)
- Yu Song
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Xi Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| | - Zhibao Liu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA;
| | - Ligang Gai
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| | - Xiang Gao
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| |
Collapse
|
30
|
Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proc Natl Acad Sci U S A 2022; 119:2114964119. [PMID: 34969860 PMCID: PMC8740686 DOI: 10.1073/pnas.2114964119] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Mixed matrix membranes (MMMs) are one of the most promising solutions for energy-efficient gas separation. However, conventional MMM synthesis methods inevitably lead to poor filler-polymer interfacial compatibility, filler agglomeration, and limited loading. Herein, inspired by symbiotic relationships in nature, we designed a universal bottom-up method for in situ nanosized metal organic framework (MOF) assembly within polymer matrices. Consequently, our method eliminating the traditional postsynthetic step significantly enhanced MOF dispersion, interfacial compatibility, and loading to an unprecedented 67.2 wt % in synthesized MMMs. Utilizing experimental techniques and complementary density functional theory (DFT) simulation, we validated that these enhancements synergistically ameliorated CO2 solubility, which was significantly different from other works where MOF typically promoted gas diffusion. Our approach simultaneously improves CO2 permeability and selectivity, and superior carbon capture performance is maintained even during long-term tests; the mechanical strength is retained even with ultrahigh MOF loadings. This symbiosis-inspired de novo strategy can potentially pave the way for next-generation MMMs that can fully exploit the unique characteristics of both MOFs and matrices.
Collapse
|
31
|
Xu Q, Chen Z, Zhang Y, Hu X, Chen F, Zhang L, Zhong N, Zhang J, Wang Y. Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the in vitro assessment for its potential as cranioplasty implants. J Mater Chem B 2022; 10:3747-3758. [DOI: 10.1039/d2tb00419d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Challenges of cranial defect reconstruction after craniotomy arise from insufficient osteogenesis and biofilm infection, which requires novel biomaterials. Herein, we proposed a mussel-inspired bioactive poly(styrene-butadiene-styrene) (SBS) as a promising cranioplasty...
Collapse
|
32
|
Xin Q, Zhao M, Guo J, Huang D, Zeng Y, Zhao Y, Zhang T, Zhang L, Wang S, Zhang Y. Light-responsive metal-organic framework sheets constructed smart membranes with tunable transport channels for efficient gas separation. RSC Adv 2021; 12:517-527. [PMID: 35424524 PMCID: PMC8694204 DOI: 10.1039/d1ra06814h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/11/2021] [Indexed: 01/21/2023] Open
Abstract
Exploring a new type of smart membrane with tunable separation performance is a promising area of research. In this study, new light-responsive metal-organic framework [Co(azpy)] sheets were prepared by a facile microwave method for the first time, and were then incorporated into a polymer matrix to fabricate smart mixed matrix membranes (MMMs) applied for flue gas desulfurization and decarburization. The smart MMMs exhibited significantly elevated SO2(CO2)/N2 selectivity by 184(166)% in comparison with an unfilled polymer membrane. The light-responsive characteristic of the smart MMMs was investigated, and the permeability and selectivity of the Co(azpy) sheets-loaded smart MMMs were able to respond to external light stimuli. In particular, the selectivity of the smart MMM at the Co(azpy) content of 20% for the SO2/N2 system could be switched between 341 and 211 in situ irradiated with Vis and UV light, while the SO2 permeability switched between 58 Barrer and 36 Barrer, respectively. This switching influence was mainly ascribed to the increased SO2 adsorption capacity in the visible light condition, as verified by adsorption test. The CO2 permeability and CO2/N2 selectivity of MMMs in the humidified state could achieve 248 Barrer and 103.2, surpassing the Robeson's upper bound reported in 2019.
Collapse
Affiliation(s)
- Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Meixue Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Jianping Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Dandan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Yinan Zeng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Yuhang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Teng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Lei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Shaofei Wang
- College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| |
Collapse
|
33
|
TEA driven C, N co-doped superfine Fe 3O 4 nanoparticles for efficient trifunctional electrode materials. J Colloid Interface Sci 2021; 609:249-259. [PMID: 34906910 DOI: 10.1016/j.jcis.2021.11.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
Poor conductivity is an obstacle that restricts the development of the electrochemistry performance of Fe3O4. In this work, a novel carbon and nitrogen co-doped ultrafine Fe3O4 nanoparticles (CN-Fe3O4) have been synthesized by triethylamine (TEA) induction and subsequent calcination. The addition of TEA could not only regulate the size of Fe3O4 nanoparticles, but also promote the formation of amorphous carbon layer. Well-designed CN-Fe3O4 heterostructures provide a highly interconnected porous conductive network, large heterogeneous interface area, large specific surface area and a large number of active sites, which greatly improve conductivity and promote electron transfer and electrolyte diffusion. The prepared CN-Fe3O4 electrode exhibits a high specific capacitance of 399.3 mF cm-2 and good cycling stability. Meanwhile, CN-Fe3O4 catalyst exhibits excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities, with overpotentials of 136 and 281 mV at the current density of 10 mA cm-2, respectively. This work provides a promising approach for the design of high-performance anode materials for supercapacitors and provides profound implications for the development of catalysts with bifunctional catalytic activity.
Collapse
|
34
|
Ma S, Li H, Li C, Tian H, Tao M, Fei J, Qi L. Metal-organic frameworks/polydopamine synergistic interface enhancement of carbon fiber/phenolic composites for promoting mechanical and tribological performances. NANOSCALE 2021; 13:20234-20247. [PMID: 34851344 DOI: 10.1039/d1nr07104a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon fiber/phenolic composites have wide application prospects in the transmission of vehicles, where the combination of prominent mechanical and tribological properties is required. Multiscale metal-organic frameworks (MOFs) and polydopamine (PDA) as binary reinforcements were employed to construct a rigid-flexible hierarchical structure for improving the interfacial performances of friction materials. This unique rigid-flexible (MOFs/PDA) reinforcement could act as an effective interfacial linker, significantly facilitating the integration of fibers into the matrix and establishing a strong mechanical interlocking and chemical bonding onto the fiber/matrix interphase, thus boosting the mechanical and tribological properties of the composites. Benefiting from the MOF/PDA synergistic enhancement effects, the interlaminar shear strength of ZIF-8-composites (P1), MOF-5-composites (P2) and UiO-66-(COOH)2-composites (P3) was improved by 70.80%, 43.80% and 53.28%, respectively. In addition, the wear rate of P1 decreased from 3.55 × 10-8 cm3 J-1 to 2.45 × 10-8 cm3 J-1. This work provides a feasible approach for establishing rigid-flexible reinforced structures and opens up a double-component synergistic enhancement strategy to efficiently promote mechanical and tribological properties for fabricating high-performance carbon fiber/phenolic composites.
Collapse
Affiliation(s)
- Shanshan Ma
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Hejun Li
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Chang Li
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Haochen Tian
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Meixia Tao
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Jie Fei
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Lehua Qi
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
35
|
Li X, Wang D, Ning H, Xin Y, He Z, Su F, Wang Y, Zhang J, Wang H, Qian L, Zheng Y, Yao D, Li M. An electrostatic repulsion strategy construct ZIFs based liquids with permanent porosity for efficient CO2 capture. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Chen K, Ni L, Zhang H, Xie J, Yan X, Chen S, Qi J, Wang C, Sun X, Li J. Veiled metal organic frameworks nanofillers for mixed matrix membranes with enhanced CO2/CH4 separation performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Zhang W, Liu H, Liu Z, An Y, Zhong Y, Hu Z, Li S, Chen Z, Wang S, Sheng X, Zhang X, Wang X. Eu-Doped Zeolitic Imidazolate Framework-8 Modified Mixed-Crystal TiO 2 for Efficient Removal of Basic Fuchsin from Effluent. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7265. [PMID: 34885420 PMCID: PMC8658464 DOI: 10.3390/ma14237265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) was doped with a rare-earth metal, Eu, using a solvent synthesis method evenly on the surface of a mixed-crystal TiO2(Mc-TiO2) structure in order to produce a core-shell structure composite ZIF-8(Eu)@Mc-TiO2 adsorption photocatalyst with good adsorption and photocatalytic properties. The characterisation of ZIF-8(Eu)@Mc-TiO2 was performed via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis (BET) and ultraviolet-visible light differential reflectance spectroscopy (UV-DRs). The results indicated that Eu-doped ZIF-8 was formed evenly on the Mc-TiO2 surface, a core-shell structure formed and the light-response range was enhanced greatly. The ZIF-8(Eu)@Mc-TiO2 for basic fuchsin was investigated to validate its photocatalytic performance. The effect of the Eu doping amount, basic fuchsin concentration and photocatalyst dosage on the photocatalytic efficiency were investigated. The results revealed that, when 5%-Eu-doped ZIF-8(Eu)@Mc-TiO2 (20 mg) was combined with 30 mg/L basic fuchsin (100 mL) under UV irradiation for 1 h, the photocatalytic efficiency could reach 99%. Further, it exhibited a good recycling performance. Thus, it shows certain advantages in its degradation rate and repeatability compared with previously reported materials. All of these factors suggested that, in an aqueous medium, ZIF-8(Eu)@Mc-TiO2 is an eco-friendly, sustainable and efficient material for the photocatalytic degradation of basic fuchsin.
Collapse
Affiliation(s)
- Wanqi Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.Z.); (H.L.); (Z.L.); (Y.A.); (Y.Z.); (S.L.)
| | - Hui Liu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.Z.); (H.L.); (Z.L.); (Y.A.); (Y.Z.); (S.L.)
| | - Zhechen Liu
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.Z.); (H.L.); (Z.L.); (Y.A.); (Y.Z.); (S.L.)
| | - Yuhong An
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.Z.); (H.L.); (Z.L.); (Y.A.); (Y.Z.); (S.L.)
| | - Yuan Zhong
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.Z.); (H.L.); (Z.L.); (Y.A.); (Y.Z.); (S.L.)
| | - Zichu Hu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.S.)
| | - Shujing Li
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.Z.); (H.L.); (Z.L.); (Y.A.); (Y.Z.); (S.L.)
| | - Zhangjing Chen
- Department of Sustainable Biomaterials, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Sunguo Wang
- Sungro Bioresource & Bioenergy Technologies Corp., Edmonton, AB T6R3J6, Canada;
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.S.)
| | - Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.H.); (X.S.)
- Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, China
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.Z.); (H.L.); (Z.L.); (Y.A.); (Y.Z.); (S.L.)
- Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, China
| |
Collapse
|
38
|
Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Wang L, Li X, Xiong S, Lin H, Xu Y, Jiao Y, Chen J. Plant polyphenols induced the synthesis of rich oxygen vacancies Co 3O 4/Co@N-doped carbon hollow nanomaterials for electrochemical energy storage and conversion. J Colloid Interface Sci 2021; 600:58-71. [PMID: 34004430 DOI: 10.1016/j.jcis.2021.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Reasonable hollow structure design and oxygen vacancy defects control play an important role in the optimization of electrochemical energy storage and electrocatalytic properties. Herein, a plant polyphenol tannic acid was used to etch Co-based zeolitic imidazolate framework (ZIF-67) followed by calcination to prepare a porous Co3O4@Co/NC hollow nanoparticles (Co3O4@Co/NC-HN) with rich oxygen vacancy defects. Owing to the metal-phenolic networks (MPNs), rich oxygen vacancy defects and the synergistic effect between Co3O4 and Co/NC, the box-like Co3O4@Co/NC-HN nanomaterials with large specific surface areas exhibit excellent supercapacitor performance and electrocatalytic activity. As expected, Co3O4@Co/NC-HN shows high specific capacity (273.9 mAh g-1 at 1 A g-1) and remarkable rate performance. Moreover, the assembled Hybrid supercapacitor (HSC, Co3O4@Co/NC-HN//Active carbon) device obtained a maximum energy density of 57.8 Wh kg-1 (800 W kg-1) and exhibited superior cycle stability of 92.6% after 4000 cycles. Notably, as an electrocatalyst, the nanocomposites exhibit small overpotential and Tafel slope. These results strongly demonstrate that both unique hollow structure and abundant oxygen vacancies designed from plant polyphenols provide superiorities for the synthesis of efficient and green multifunctional electrode materials for energy storage and conversion.
Collapse
Affiliation(s)
- Lingdan Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfa Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shanshan Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
40
|
Chuah CY, Jiang X, Goh K, Wang R. Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation. MEMBRANES 2021; 11:666. [PMID: 34564483 PMCID: PMC8466440 DOI: 10.3390/membranes11090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Membrane separation is a compelling technology for hydrogen separation. Among the different types of membranes used to date, the mixed-matrix membranes (MMMs) are one of the most widely used approaches for enhancing separation performances and surpassing the Robeson upper bound limits for polymeric membranes. In this review, we focus on the recent progress in MMMs for hydrogen separation. The discussion first starts with a background introduction of the current hydrogen generation technologies, followed by a comparison between the membrane technology and other hydrogen purification technologies. Thereafter, state-of-the-art MMMs, comprising emerging filler materials that include zeolites, metal-organic frameworks, covalent organic frameworks, and graphene-based materials, are highlighted. The binary filler strategy, which uses two filler materials to create synergistic enhancements in MMMs, is also described. A critical evaluation on the performances of the MMMs is then considered in context, before we conclude with our perspectives on how MMMs for hydrogen separation can advance moving forward.
Collapse
Affiliation(s)
- Chong Yang Chuah
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Xu Jiang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
41
|
|
42
|
Zhao Q, Zhao DL, Nai MH, Chen SB, Chung TS. Nanovoid-Enhanced Thin-Film Composite Reverse Osmosis Membranes Using ZIF-67 Nanoparticles as a Sacrificial Template. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33024-33033. [PMID: 34235913 DOI: 10.1021/acsami.1c07673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, nanovoid-enhanced thin-film composite (TFC) membranes have been successfully fabricated using ZIF-67 nanoparticles as the sacrificial template. By incorporating different amounts of ZIF-67 during interfacial polymerization, the resultant TFC membranes can have different degrees of nanovoids after self-degradation of ZIF-67 in water, consequently influencing their physiochemical properties and separation performance. Nanovoid structures endow the membranes with additional passages for water molecules. Thus, all the newly developed TFC membranes exhibit better separation performance for brackish water reverse osmosis (BWRO) desalination than the pristine TFC membrane. The membrane made from 0.1 wt % ZIF-67 shows a water permeance of 2.94 LMH bar-1 and a salt rejection of 99.28% when being tested under BWRO at 20 bar. This water permeance is 53% higher than that of the pristine TFC membrane with the salt rejection well maintained.
Collapse
Affiliation(s)
- Qipeng Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Die Ling Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Shing Bor Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|