1
|
Jang W, Luong HM, Kim MS, Nguyen TQ, Wang DH. Enhancing Detection Frequency and Reducing Noise Through Continuous Structures via Release-Controlled Transfer Toward Light-Based Wireless Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406316. [PMID: 39246216 DOI: 10.1002/adma.202406316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Organic photodetectors (OPDs) have received considerable attention owing to their superior absorption coefficient and tunable bandgap. The introduction of bulk-heterojunction (BHJ) structure aims to maximize charge generation, however, its response speed is constrained by the random distribution of donor and acceptor. Herein, a multiple-active layer design consisting of a single acceptor layer and a bulk-heterojunction layer (A/BHJ structure) is introduced, which combines the benefits of both the planar junction and the BHJ, improving photo-sensing. A transfer process is employed for this structure, which involves calculating the energy release rate at each interface, considering temperature and velocity. Consequently, the OPD with the A/BHJ structure is successfully fabricated through transfer printing, resulting in reduced dark current, superior detectivity (1.06 × 1013 Jones), and rapid response, achieved by creating a high hole injection barrier and suppressing trap sites within the interfaces. By thoroughly investigating charge dynamics in the structure, the A/BHJ structure-based OPD attains large bandwidth detection with high signal-to-noise. An efficient wireless data communication system with digital-to-analog conversion is showcased using the A/BHJ structure-based OPD.
Collapse
Affiliation(s)
- Woongsik Jang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Hoang M Luong
- Center for Polymers and Organic Solids and Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Min Soo Kim
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids and Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dong Hwan Wang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
2
|
Min JW, Samanta T, Lee AY, Jung YK, Viswanath NSM, Kim YR, Cho HB, Moon JY, Jang SH, Kim JH, Im WB. Highly Emissive Lanthanide-Based 0D Metal Halide Nanocrystals for Efficient Ultraviolet Photodetector. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402951. [PMID: 38923817 DOI: 10.1002/smll.202402951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Recently, lanthanide-based 0D metal halides have attracted considerable attention for their applications in X-ray imaging, light-emitting diodes (LEDs), sensors, and photodetectors. Herein, lead-free 0D gadolinium-alloyed cesium cerium chloride (Gd3+-alloyed Cs3CeCl6) nanocrystals (NCs) are introduced as promising materials for optoelectronic application owing to their unique optical properties. The incorporation of Gd3+ in Cs3CeCl6 (CCC) NCs is proposed to increase the photoluminescence quantum yield (PLQY) from 57% to 96%, along with significantly enhanced phase and chemical stability. The structural analysis is performed by density functional theory (DFT) to confirm the effect of Gd3+ in Cs3Ce1- xGdxCl6 (CCGC) alloy system. Moreover, the CCGC NCs are applied as the active layer in UVPDs with different Gd3+ concentration. The excellent device performance is shown at 20% of Gd3+ in CCGC NCs with high detectivity (7.938 × 1011 Jones) and responsivity (0.195 A W-1) at -0.1 V at 310 nm. This study paves the way for the development of lanthanide-based metal halide NCs for next-generation UVPDs and other optoelectronic applications.
Collapse
Affiliation(s)
- Jeong Wan Min
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Tuhin Samanta
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ah Young Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Young-Kwang Jung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | | | - Yu Ri Kim
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Han Bin Cho
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ji Yoon Moon
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Se Hyuk Jang
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Elahi E, Ahmad M, Dahshan A, Rabeel M, Saleem S, Nguyen VH, Hegazy HH, Aftab S. Contemporary innovations in two-dimensional transition metal dichalcogenide-based P-N junctions for optoelectronics. NANOSCALE 2023; 16:14-43. [PMID: 38018395 DOI: 10.1039/d3nr04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDCs) with various physical characteristics have attracted significant interest from the scientific and industrial worlds in the years following Moore's law. The p-n junction is one of the earliest electrical components to be utilized in electronics and optoelectronics, and modern research on 2D materials has renewed interest in it. In this regard, device preparation and application have evolved substantially in this decade. 2D TMDCs provide unprecedented flexibility in the construction of innovative p-n junction device designs, which is not achievable with traditional bulk semiconductors. It has been investigated using 2D TMDCs for various junctions, including homojunctions, heterojunctions, P-I-N junctions, and broken gap junctions. To achieve high-performance p-n junctions, several issues still need to be resolved, such as developing 2D TMDCs of superior quality, raising the rectification ratio and quantum efficiency, and successfully separating the photogenerated electron-hole pairs, among other things. This review comprehensively details the various 2D-based p-n junction geometries investigated with an emphasis on 2D junctions. We investigated the 2D p-n junctions utilized in current rectifiers and photodetectors. To make a comparison of various devices easier, important optoelectronic and electronic features are presented. We thoroughly assessed the review's prospects and challenges for this emerging field of study. This study will serve as a roadmap for more real-world photodetection technology applications.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Physics & Astronomy and Graphene Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea.
| | - Muneeb Ahmad
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - A Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Muhammad Rabeel
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - Sidra Saleem
- Division of Science Education, Department of Energy Storage/Conversion Engineering for Graduate School, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Van Huy Nguyen
- Department of Nanotechnology and Advanced Materials Engineering, and H.M.C., Sejong University, Seoul 05006, South Korea
| | - H H Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006 South Korea.
| |
Collapse
|
4
|
Ouyang T, Zhao X, Xun X, Gao F, Zhao B, Bi S, Li Q, Liao Q, Zhang Y. Boosting Charge Utilization in Self-Powered Photodetector for Real-Time High-Throughput Ultraviolet Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301585. [PMID: 37271884 PMCID: PMC10427366 DOI: 10.1002/advs.202301585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Indexed: 06/06/2023]
Abstract
Ultraviolet (UV) communication is a cutting-edge technology in communication battlefields, and self-powered photodetectors as their optical receivers hold great potential. However, suboptimal charge utilization has largely limited the further performance enhancement of self-powered photodetectors for high-throughput communication application. Herein, a self-powered Ti3 C2 Tx -hybrid poly(3,4 ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS)/ZnO (TPZ) photodetector is designed, which aims to boost charge utilization for desirable applications. The device takes advantage of photothermal effect to intensify pyro-photoelectric effect as well as the increased conductivity of the PEDOT:PSS, which significantly facilitated charge separation, accelerated charge transport, and suppressed interface charge recombination. Consequently, the self-powered TPZ photodetector exhibits superior comprehensive performance with high responsivity of 12.3 mA W-1 and fast response time of 62.2 µs, together with outstanding reversible and stable cyclic operation. Furthermore, the TPZ photodetector has been successfully applied in an integrated UV communication system as the self-powered optical receiver capable of real-time high-throughput information transmission with ASCII code under 9600 baud rate. This work provides the design insight of highly performing self-powered photodetectors to achieve high-efficiency optical communication in the future.
Collapse
Affiliation(s)
- Tian Ouyang
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xuan Zhao
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xiaochen Xun
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Fangfang Gao
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Bin Zhao
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Shuxin Bi
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Qi Li
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| |
Collapse
|
5
|
Feng J, Liang Z, Shi X, Zhang X, Meng D, Dai R, Zhang S, Jia Y, Yan N, Li S, Wang Z. Enhanced ultrathin ultraviolet detector based on a diamond metasurface and aluminum reflector. OPTICS EXPRESS 2023; 31:15836-15847. [PMID: 37157675 DOI: 10.1364/oe.488265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metasurface is a kind of sub-wavelength artificial electromagnetic structure, which can resonate with the electric field and magnetic field of the incident light, promote the interaction between light and matter, and has great application value and potential in the fields of sensing, imaging, and photoelectric detection. Most of the metasurface-enhanced ultraviolet detectors reported so far are metal metasurfaces, which have serious ohmic losses, and studies on the use of all-dielectric metasurface-enhanced ultraviolet detectors are rare. The multilayer structure of the diamond metasurface-gallium oxide active layer-silica insulating layer-aluminum reflective layer was theoretically designed and numerically simulated. In the case of gallium oxide thickness of 20 nm, the absorption rate of more than 95% at the working wavelength of 200-220 nm is realized, and the working wavelength can be adjusted by changing the structural parameters. The proposed structure has the characteristics of polarization insensitivity and incidence angle insensitivity. This work has great potential in the fields of ultraviolet detection, imaging, and communications.
Collapse
|
6
|
Effect of Co3O4/TiO2 heterojunction photoanode with enhanced photocathodic protection on 304 stainless steel under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
7
|
Kadir A, Jamal R, Abdiryim T, Liu X, Zhang H, Serkjan N, Zou D, Liu YJ. Ultraviolet Photodetector Based on Poly(3,4-Ethylenedioxyselenophene)/ZnO Core-Shell Nanorods p-n Heterojunction. NANOSCALE RESEARCH LETTERS 2022; 17:67. [PMID: 35876971 PMCID: PMC9314489 DOI: 10.1186/s11671-022-03705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 05/08/2023]
Abstract
In this work, we successfully assembled an organic-inorganic core-shell hybrid p-n heterojunction ultraviolet photodetector by the electropolymerization deposition of poly(3,4-ethylenedioxyselenophene) (PEDOS) on the surface of zinc oxide nanoarrays (ZnO NRs). The structures of composite were confirmed by FTIR, UV-Vis, XRD and XPS. Mott-Schottky analysis was used to study the p-n heterojunction structure. The photodetection properties of ZnO NRs/PEDOS heterojunction ultraviolet photodetector were systematically investigated current-voltage (I-V) and current-time (I-t) analysis under different bias voltages. The results showed that PEDOS films uniformly grew on ZnO NRs surface and core-shell structure was formed. The p-n heterojunction structure was formed with strong built-in electric field between ZnO NRs and PEDOS. Under the irradiation of UV light, the device showed a good rectification behavior. The responsivity, detection rate and the external quantum efficiency of the ultraviolet photodetector reached to 247.7 A/W, 3.41 × 1012 Jones and 84,000% at 2 V bias, respectively. The rise time (τr) and fall time (τf) of ZnO NRs/PEDOS UV photodetector were obviously shortened compared to ZnO UV photodetector. The results show that the introduction of PEDOS effectively improves the performance of the UV photodetector.
Collapse
Affiliation(s)
- Aygul Kadir
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Petroleum and Gas Fine Chemicals, Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Petroleum and Gas Fine Chemicals, Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China.
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Hujun Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Nawrzhan Serkjan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Dongna Zou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| | - Ya Jun Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, People's Republic of China
| |
Collapse
|
8
|
Jing Y, Xu Y, Xu C, Li L, Shi L, Zhang H, Jin L, Zou Y, Ma X. Self-powered photodetectors with a position-controlled array based on ZnO nanoclusters. APPLIED OPTICS 2022; 61:5136-5143. [PMID: 36256193 DOI: 10.1364/ao.458934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
A self-powered ultraviolet (UV) photodetector (PD) with a position-controlled array based on zinc oxide (ZnO) nanoclusters (NCs) has been proposed. The structure of the special array makes it possible to reduce the light loss and improve the light trap. The PD innovatively modifies the structure of ZnO PDs, which is distinguished from other traditional devices. The results demonstrate that the ZnO NC array can spontaneously generate the carrier and successfully achieve the detection at zero bias under the radiation of UV light. In this study, the structure is fabricated with two different substrates of silicon (Si) and GaN. At zero bias voltage, the Si-based PD under 365 nm shows the responsivity and external quantum efficiency (EQE) reaching up to 14.1 mA/W and 4.79%, respectively, and the responsivity of the GaN-based detector can be obtained up to 59.9 mA/W; its parameter of EQE is 20.04%, the photocurrent is 10-5A, and the on/off ratio is 174. Our findings indicate that this structure of the device has potential for applications that require detection of light.
Collapse
|
9
|
Jiang S, Huang R, Li W, Huang X, Sheng H, Wu F, Lv Y, Fu Y, Zhao C, Mai W. Low-Temperature Vapor-Phase Anion-Exchange Strategy for Wide-Bandgap Double-Perovskite Cs 2AgBiCl 6 Films toward Weak Ultraviolet Light Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26279-26286. [PMID: 35616486 DOI: 10.1021/acsami.2c06008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-temperature synthesis of high-quality, high-stability, wide-bandgap perovskite films by solution methods is still challenging. Herein, large-scale wide-bandgap Cs2AgBiCl6 (CABC) double perovskite films are synthesized by a vapor-phase anion-exchange strategy. By dedicatedly designing an ultrathin TiO2 modification layer between the substrate and double perovskites, high-quality heterojunctions with matched energy band alignment are formed, contributing to a remarkably enhanced ON/OFF ratio of 2.4 × 104 (86 times) and a responsivity of 16 mA W-1 (12 times). Additionally, the ultraviolet photodetectors (UV PDs) exhibit an excellent UV detection limit of 1.18 μW cm-2 (20 nW), a broad linear dynamic range of 146 dB, and a high specific detectivity of 2.06 × 1011 Jones, as well as long-term stability. Finally, we further demonstrate a weak UV imaging system using CABC UV PDs as imaging sensors. The system is capable of imaging weak UV signals as low as 2.94 μW cm-2 (50 nW). Our results provide a feasible approach for low-temperature fabrication of wide-bandgap perovskite UV PDs and explore the promising application for weak UV detection and imaging.
Collapse
Affiliation(s)
- Shaowei Jiang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Rongqing Huang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wanjun Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xinyue Huang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Haigang Sheng
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Fei Wu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yibo Lv
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yong Fu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Chuanxi Zhao
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
10
|
Guo T, Zhao S, Chu Z, Ma J, Xu W, Li Y, Shi Z, Ran G. Large-area large-grain CsPbCl 3perovskite films by confined re-growth for violet photodetectors. NANOTECHNOLOGY 2022; 33:33LT01. [PMID: 35561656 DOI: 10.1088/1361-6528/ac6f65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
CsPbCl3perovskite is an attractive semiconductor material with characteristics such as a wide bandgap, high chemical stability, and excellent optoelectronic properties, which broaden its application prospects for ultraviolet (UV) and violet photodetectors (PDs). However, large-area CsPbCl3films with high coverage, large grains, and controllable thickness are still difficult to prepare by using the solution method due to the extremely low solubility of their precursors in conventional solvents. Herein, a water-assisted confined re-growth method is developed, and a CsPbCl3microcrystalline film with an area of 3 cm × 3 cm is grown, the thickness of which is controllable within a range of several microns. The as-prepared thin film exhibits a flat and smooth surface, large grains, and enhanced photoluminescence. Furthermore, the fabricated violet PDs based on the prepared CsPbCl3film show a high responsivity of 2.17 A W-1, external quantum efficiency of 664%, on/off ratio of 2.58 × 103, and good stability. This study provides a prospective solution for the growth of large-area, large-grain, and surface-smooth CsPbCl3films for high-performance UV and violet PDs.
Collapse
Affiliation(s)
- Tong Guo
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| | - Shiqi Zhao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| | - Zihao Chu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| | - Jingli Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, People's Republic of China
| | - Wanjin Xu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| | - Yanping Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, People's Republic of China
| | - Guangzhao Ran
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Saeed S, Dai R, Janjua RA, Huang D, Wang H, Wang Z, Ding Z, Zhang Z. Fast-Response Metal-Semiconductor-Metal Junction Ultraviolet Photodetector Based on ZnS:Mn Nanorod Networks via a Cost-Effective Method. ACS OMEGA 2021; 6:32930-32937. [PMID: 34901644 PMCID: PMC8655908 DOI: 10.1021/acsomega.1c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 05/11/2023]
Abstract
In this work, Mn2+-doped ZnS nanorods were synthesized by a facile hydrothermal method. The morphology, structure, and composition of the as-prepared samples were investigated. The temperature-dependent photoluminescence of ZnS:Mn nanorods was analyzed, and the corresponding activation energies were calculated by using a simple two-step rate equation. Mn2+-related orange emission (4T1 → 6A1) demonstrates high stability and is comparatively less affected by the temperature variations than the defect-related emission. A metal-semiconductor-metal junction ultraviolet photodetector based on the nanorod networks has been fabricated by a cost-effective method. The device exhibits visible blindness, superior ultraviolet photodetection with a responsivity of 1.62 A/W, and significantly fast photodetection response with the rise and decay times of 12 and 25 ms, respectively.
Collapse
Affiliation(s)
- Sara Saeed
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Rucheng Dai
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| | - Raheel Ahmed Janjua
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
- National
Engineering Research Center for Optical Instruments, College of Optical
Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Da Huang
- Department
of Physics, University of Science and Technology
of China, Hefei 230026, China
| | - He Wang
- Department
of Physics, University of Science and Technology
of China, Hefei 230026, China
| | - Zhongping Wang
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| | - Zejun Ding
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Zengming Zhang
- Department
of Physics and CAS Key Laboratory of Strong-Coupled Quantum Matter
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
- The
Center of Physical Experiments, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Dong M, Cheng H, Cai Y, Dai F, Wang L. High-transmission narrowband ultraviolet filter based on an aluminum laminated nanostructure on glass. OPTICS EXPRESS 2021; 29:39838-39846. [PMID: 34809339 DOI: 10.1364/oe.444409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
We present an aluminum (Al) laminated nanostructure stacked on a glass substrate to produce highly transmitted narrowband ultraviolet (UV) filters. The laminated nanostructure was mainly composed of an Al nanohole array, and each Al nanohole had a coaxial Al nanoring at the bottom. This UV filter showed a single dominant peak with a high transmission over 50% and a narrow bandwidth less than 80 nm in the 200-400 nm waveband that was achieved based on the synergy of surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). The electric field profiles of the laminated nanostructure indicate that SPR selects the transmission wavelength and LSPR contributes to single peak. This narrowband UV filter can be utilized in UV detectors.
Collapse
|
13
|
Dai R, Liu Y, Wu J, Wan P, Zhu X, Kan C, Jiang M. Self-powered ultraviolet photodetector based on an n-ZnO:Ga microwire/p-Si heterojunction with the performance enhanced by a pyro-phototronic effect. OPTICS EXPRESS 2021; 29:30244-30258. [PMID: 34614751 DOI: 10.1364/oe.439587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
In the present study, a heterojunction made of an individual ZnO microwire via Ga incorporation (ZnO:Ga MW) with a p-Si substrate was constructed to develop a self-powered ultraviolet photodetector. When operated under an illumination of 370 nm light with a power density of ∼ 0.5 mW/cm2, the device exhibited an excellent responsivity of 0.185 A/W, a large detectivity of 1.75×1012 Jones, and excellent stability and repeatability. The device also exhibited a high on/off photocurrent ratio up to 103, and a short rising and falling time of 499/412 μs. By integrating the pyro-phototronic effect, the maximum responsivity and detectivity increased significantly to 0.25 A/W and 2.30×1012 Jones, respectively. The response/recovery time was drastically reduced to 79/132 μs without an external power source. In addition, the effects of light wavelength, power density, and bias voltage on the photocurrent response mediated by the pyro-phototronic effect were systematically characterized and discussed. Our work not only provides an easy yet efficient procedure for constructing a self-powered ultraviolet photodetector but also broadens the application prospects for developing individual wire optoelectronic devices based on the photovoltaic-pyro-phototronic effect.
Collapse
|