1
|
Zhou P, Cao Y, Liu H, Wang L, Yu S, Hegazy M, Wu S. Advances and challenges of artificial cells in life: A review. POLYMER 2025; 317:127940. [DOI: 10.1016/j.polymer.2024.127940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Inam A, Zhang S, Zhang S, Wu D. AQ4N nanocomposites for hypoxia-associated tumor combination therapy. Biomater Sci 2024; 12:5883-5911. [PMID: 39431892 DOI: 10.1039/d4bm00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Hypoxia in solid tumors increases their invasiveness and resistance to therapy, presenting a formidable obstacle in tumor therapy. The hypoxia prodrug banoxantrone (AQ4N) undergoes conversion into its topoisomerase II inhibitor form AQ4 under hypoxic conditions, which inhibits tumor cells while leaving normal cells unharmed. Numerous studies have found that AQ4N significantly enhances the tumor effect while minimizing toxicity to normal tissues when combined with other drugs or therapeutic approaches. Thus, to maximize AQ4N's effectiveness, co-delivery of AQ4N with other therapeutic agents to the tumor site is paramount, leading to the development of multifunctional multicomponent AQ4N nanocomposites thereby emerging as promising candidates for combination therapy in tumor treatment. However, currently there is a lack of systematic analysis and reviews focusing on AQ4N. Herein, this review provides a comprehensive retrospect and analysis of the recent advancements in AQ4N nanocomposites. Specifically, we discuss the synergistic effects observed when AQ4N is combined with chemotherapeutic drugs, radiotherapy, phototherapy, starvation, sonodynamic therapy and immunotherapy in preclinical models. Moreover, the advantages, limitations, and future perspectives of different AQ4N nanocomposites are highlighted, providing researchers from diverse fields with novel insights into tumor treatment.
Collapse
Affiliation(s)
- Amrah Inam
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| | - Shuo Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| | - Shuai Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
3
|
Lv P, Wang Z, Si X, Su J, Yu Z, Yu H, Ji G, Song W. Biopolymer immune implants co-loaded with TMZ, R848 and IOX1 for perioperative therapy of glioblastoma. Acta Biomater 2024; 189:143-154. [PMID: 39368721 DOI: 10.1016/j.actbio.2024.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma (GBM), a prevalent and aggressive brain tumor, poses significant treatment challenges due to its rapid progression and the difficulty in achieving complete surgical resection. The current treatment regime, primarily surgery followed by radiotherapy and chemotherapy, offers limited success, with a five-year survival rate of less than 10 %. For addressing the challenges faced in the treatment of GBM, an approach using a biopolymer implant constructed with dynamic reversible covalent bonds, was designed to achieve controlled and constant-rate release of chemotherapy drug (Temozolomide, TMZ), immune adjuvant (Resiquimod, R848) and checkpoint inhibitor (5-carboxy-8-hydroxyquinoline, IOX1). The safety evaluation demonstrated the biocompatibility of the implants, with no significant inflammatory response or adverse effects on various systemic organs. In vivo antitumor study showed that the local delivery of drug combination via this implant significantly inhibited tumor recurrence of orthotopic GBM. Immune analysis revealed that the combination of the three drugs effectively activated systemic antitumor immune responses and induced memory effects. The synergistic mechanism of the drug combination was further validated by RNA whole sequencing. The innovative approach of combining chemotherapy and immunotherapy in biopolymer immune implants for GBM treatment showed promising and opens new avenues for treating GBM, particularly in addressing postoperative recurrence. STATEMENT OF SIGNIFICANCE: Our research introduces a pioneering approach in treating orthotopic brain glioblastoma (GBM), characterized by inevitable tumor recurrence, poor immune infiltration and the restrictive nature of the blood-brain barrier. To break the impasse of ineffective treatment for GBM, the innovative use of dynamically reversible covalent bonds in polymer matrix ensures the controlled, stable and sustained release of drug combinations of the chemotherapeutic agent temozolomide, immune adjuvants and checkpoint inhibitors, which maintains the optimal concentration in the tumor, overcoming problems associated with conventional chemotherapy such as systemic toxicity and low tumor targeting. Empirical evidence from in vivo experiments on the rat GBM model demonstrates significant outcomes: 90 % tumor size reduction and prolonged survival with over 70 % tumor cure rate.
Collapse
Affiliation(s)
- Pinxin Lv
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhanfeng Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China
| | - Zhifei Yu
- The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Hongquan Yu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Guofeng Ji
- Xuanwu Hospital, Capital Medical University, Beijing 100010, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
4
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Negut I, Bita B. Polymersomes as Innovative, Stimuli-Responsive Platforms for Cancer Therapy. Pharmaceutics 2024; 16:463. [PMID: 38675124 PMCID: PMC11053450 DOI: 10.3390/pharmaceutics16040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses the urgent need for more targeted and less toxic cancer treatments by exploring the potential of multi-responsive polymersomes. These advanced nanocarriers are engineered to deliver drugs precisely to tumor sites by responding to specific stimuli such as pH, temperature, light, hypoxia, and redox conditions, thereby minimizing the side effects associated with traditional chemotherapy. We discuss the design, synthesis, and recent applications of polymersomes, emphasizing their ability to improve therapeutic outcomes through controlled drug release and targeted delivery. Moreover, we highlight the critical areas for future research, including the optimization of polymersome-biological interactions and biocompatibility, to facilitate their clinical adoption. Multi-responsive polymersomes emerge as a promising development in nanomedicine, offering a pathway to safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Irina Negut
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
| | - Bogdan Bita
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
6
|
Kayani A, Raza A, Si J, Dutta D, Zhou Q, Ge Z. Polymersome Membrane Engineering with Active Targeting or Controlled Permeability for Responsive Drug Delivery. Biomacromolecules 2023; 24:4622-4645. [PMID: 37870458 DOI: 10.1021/acs.biomac.3c00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Polymersomes have been extensively investigated for drug delivery as nanocarriers for two decades due to a series of advantages including high stability under physiological conditions, simultaneous encapsulation of hydrophilic and hydrophobic drugs inside inner cavities and membranes, respectively, and facile adjustment of membrane and surface properties, as well as controlled drug release through incorporation of stimuli-responsive components. Despite these features, polymersome nanocarriers frequently suffer from nontargeting delivery and poor membrane permeability. In recent years, polymersomes have been functionalized for more efficient drug delivery. The surface shells were explored to be modified with diverse active targeting groups to improve disease-targeting delivery. The membrane permeability of the polymersomes was adjusted by incorporation of the stimuli-responsive components for smart controlled transportation of the encapsulated drugs. Therefore, being the polymersome-biointerface, tailorable properties can be introduced by its carefully modulated engineering. This review elaborates on the role of polymersome membranes as a platform to incorporate versatile features. First, we discuss how surface functionalization facilitates the directional journey to the targeting sites toward specific diseases, cells, or intracellular organelles via active targeting. Moreover, recent advances in the past decade related to membrane permeability to control drug release are also summarized. We finally discuss future development to promote polymersomes as in vivo drug delivery nanocarriers.
Collapse
Affiliation(s)
- Anum Kayani
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Arsalan Raza
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiale Si
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Debabrata Dutta
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
7
|
Zhu Y, Cao S, Huo M, van Hest JCM, Che H. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. Chem Sci 2023; 14:7411-7437. [PMID: 37449076 PMCID: PMC10337762 DOI: 10.1039/d3sc01707a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Polymersomes are vesicular nanostructures enclosed by a bilayer-membrane self-assembled from amphiphilic block copolymers, which exhibit higher stability compared with their biological analogues (e.g. liposomes). Due to their versatility, polymersomes have found various applications in different research fields such as drug delivery, nanomedicine, biological nanoreactors, and artificial cells. However, polymersomes prepared with high molecular weight components typically display low permeability to molecules and ions. It hence remains a major challenge to balance the opposing features of robustness and permeability of polymersomes. In this review, we focus on the design and strategies for fabricating permeable polymersomes, including polymersomes with intrinsic permeability, the formation of nanopores in the membrane bilayers by protein insertion, and the construction of stimuli-responsive polymersomes. Then, we highlight the applications of permeable polymersomes in the fields of biomimetic nanoreactors, artificial cells and organelles, and nanomedicine, to underline the challenges in the development of polymersomes as soft matter with biomedical utilities.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Meng Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| |
Collapse
|
8
|
Kansız S, Elçin YM. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Adv Colloid Interface Sci 2023; 317:102930. [PMID: 37290380 DOI: 10.1016/j.cis.2023.102930] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Liposomes and polymersomes are colloidal vesicles that are self-assembled from lipids and amphiphilic polymers, respectively. Because of their ability to encapsulate both hydrophilic and hydrophobic therapeutics, they are of great interest in drug delivery research. Today, the applications of liposomes and polymersomes have expanded to a wide variety of complex therapeutic molecules, including nucleic acids, proteins and enzymes. Thanks to their chemical versatility, they can be tailored to different drug delivery applications to achieve maximum therapeutic index. This review article evaluates liposomes and polymersomes from a perspective that takes into account the physical and biological barriers that reduce the efficiency of the drug delivery process. In this context, the design approaches of liposomes and polymersomes are discussed with representative examples in terms of their physicochemical properties (size, shape, charge, mechanical), targeting strategies (passive and active) and response to different stimuli (pH, redox, enzyme, temperature, light, magnetic field, ultrasound). Finally, the challenges limiting the transition from laboratory to practice, recent clinical developments, and future perspectives are addressed.
Collapse
Affiliation(s)
- Seyithan Kansız
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey; Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
9
|
Sam R, Divanbeigi Kermani M, Ohadi M, Salarpour S, Dehghan Noudeh G. Different Applications of Temperature responsive nanogels as a new drug delivery system mini review. Pharm Dev Technol 2023; 28:492-500. [PMID: 37129530 DOI: 10.1080/10837450.2023.2209796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Temperature-sensitive drug delivery systems (TSDDS) are one of the systems that have received more attention in medical science these days due to their advantages. As these systems are sensitive to temperature, drug delivery to the target becomes more specific. Temperature-sensitive nanogels have many applications, including microbial infections, cancer therapy, transdermal use and tissue repair. These systems are characterized by minimal toxicity, improved therapeutic efficacy and reduced exposure to normal cells. This mini-review is prepared with different types of temperature-sensitive nanogel formation, release mechanisms, and their different applications. Various systems reported under these categories for targeted and controlled delivery of different classes of drugs, such as anti-cancer and antibiotic drugs with special emphasis on anti-cancer drugs and tissue healing, are discussed in this mini-review.
Collapse
Affiliation(s)
- Reyhaneh Sam
- Student research committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghan Noudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Zhang H, Wang R, Wu C, Feng W, Zhong Q, Chen X, Wang T, Mao C. Diffusion-mediated carving of interior topologies of all-natural protein nanoparticles to tailor sustained drug release for effective breast cancer therapy. Biomaterials 2023; 295:122027. [PMID: 36805237 DOI: 10.1016/j.biomaterials.2023.122027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/01/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Proteins are promising base materials for developing drug carriers with efficient blood circulation due to low possibilities of clearance by macrophages. However, such natural biopolymers have highly sophisticated molecular structures, preventing them from being assembled into nano-platforms with manipulable payload release profiles. Here, we report the self-assembly of two natural proteins (milk casein and rice protein) into protein nanoparticles (NPs, ∼150 nm) with tailorable release profiles. Diffusion of plant-derived paclitaxel (PTX)-containing eugenol into the hydrophobic cores of the NPs and subsequent dialysis to remove eugenol from the cores lead to the carving of the NP interiors. With the increase in the mass ratios of casein and rice protein, this process generates all-natural NPs with PTX loaded in their full cavities, semi-full cavities, or solid cores. These NPs can be efficiently uptaken by breast cancer cells and could kill the cancer cells efficiently. PTX in these NPs demonstrates increasingly sustained in vivo release profiles from full cavities, semi-full cavities, to solid cores, gradually extending its pharmacokinetic profiles in blood plasma to favor drug accumulation in breast tumor models. Consequently, the NPs with solid cores completely inhibit tumor growth in vivo, more effectively than those with full and semi-full cavities. Our work opens up a new avenue to the use of diffusion-mediated nanoscale carving in producing biomaterials with controllable interior topologies relevant to drug release profiles.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 21422, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 21422, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 21422, China; School of Food Science and Technology, Jiangnan University, Wuxi 21422, China
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 21422, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 21422, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 21422, China; School of Food Science and Technology, Jiangnan University, Wuxi 21422, China
| | - Chao Wu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 21422, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 21422, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 21422, China; School of Food Science and Technology, Jiangnan University, Wuxi 21422, China
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Xianfu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 21422, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 21422, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 21422, China; School of Food Science and Technology, Jiangnan University, Wuxi 21422, China.
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China; Department of Chemistry and Biochemistry and Stephenson Life Science Research Center, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
11
|
Qiao L, Gao M, Yi X, Peng H, Zhang R, Yao W, Sun G, He X. Biomimetic gene editing system for precise tumor cell reprogramming and augmented tumor therapy. J Control Release 2023; 356:663-677. [PMID: 36924897 DOI: 10.1016/j.jconrel.2023.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
The abnormal level of hypoxia-inducible factor-1 alpha (HIF-1α) is closely related to cancer metastasis and treatment resistance. CRISPR-Cas9-based gene editing technology has sparked profound hope to solve this issue by precise gene disruption, although the in vivo application remains hindered by the lack of a safe and efficient delivery strategy. Herein, we developed a cell membrane biomimetic core-shell system for light-controllable, precise gene editing. The inner core of the system comprises protamine for CRISPR-Cas9/sgRNA plasmid (pCas9) loading and calcium ions for efficient pCas9 transfection. The shell of the system is camouflaged by a cell membrane and modified with AS1411 aptamers for tumor targeting and photosensitizers to induce lysosomal escape and pCas9 release through reactive oxygen species production, thereby producing light-controllable enhanced gene editing. Neoplastic H1299 cells were reprogrammed using the biomimetic gene editing system upon laser irradiation with reduced VEGF and Vimentin expression, leading to enhanced antimetastatic effects. Genetic disruption of HIF-1α augmented the in vivo chemotherapeutic efficacy of paclitaxel. Our approach of using a membrane-camouflaged system combined with light augmentation provides a potential solution for the in vivo delivery of CRISPR-Cas9 as well as a feasible strategy for cancer therapy.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Hui Peng
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ruijie Zhang
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Wanqing Yao
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
Peng J, Du K, Sun J, Yang X, Wang X, Zhang X, Song G, Feng F. Photocatalytic Generation of Hydrogen Radical (H⋅) with GSH for Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202214991. [PMID: 36537886 DOI: 10.1002/anie.202214991] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
As a reactive hydrogen species, the hydrogen radical (H⋅) scarcely sees applications in tumor biological therapy due to the very limited bio-friendly sources of H⋅. In this work, we report that TAF can act as an organic photosensitizer as well as an efficient photocatalytic H⋅ generator with reduced glutathione (GSH) as a fuel. The photoactivation of TAF leads to cell death in two ways including triple amplification of oxidative stress via ferroptosis-apoptosis under normoxia and apoptosis through biological reductions under hypoxia. TAF presents excellent biosafety with ultrahigh photocytotoxicity index at an order of magnitude of 102 -103 on both normoxic and hypoxic cells. The in vitro data suggest that H⋅ therapy is promising to overcome the challenge of tumor hypoxia at low doses of both photocatalyst and light. In addition, the capability of near-infrared two-photon excitation would benefit broad biological applications.
Collapse
Affiliation(s)
- Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Ke Du
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Jian Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Current address: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xianli Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Xia Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Xiaoran Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Gang Song
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Current address: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Xu D, Li C, Li W, Lin B, Lv R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Front Chem 2023; 11:1036715. [PMID: 36846851 PMCID: PMC9949555 DOI: 10.3389/fchem.2023.1036715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Up-conversion (or anti-Stokes) luminescence refers to the phenomenon whereby materials emit high energy, short-wavelength light upon excitation at longer wavelengths. Lanthanide-doped up-conversion nanoparticles (Ln-UCNPs) are widely used in biomedicine due to their excellent physical and chemical properties such as high penetration depth, low damage threshold and light conversion ability. Here, the latest developments in the synthesis and application of Ln-UCNPs are reviewed. First, methods used to synthesize Ln-UCNPs are introduced, and four strategies for enhancing up-conversion luminescence are analyzed, followed by an overview of the applications in phototherapy, bioimaging and biosensing. Finally, the challenges and future prospects of Ln-UCNPs are summarized.
Collapse
Affiliation(s)
| | | | | | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | | |
Collapse
|
14
|
Peng J, Du K, Sun J, Yang X, Wang X, Zhang X, Song G, Feng F. Photocatalytic Generation of Hydrogen Radical (H⋅) with GSH for Photodynamic Therapy. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202214991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Ke Du
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jian Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Current address: Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xianli Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xia Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xiaoran Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Gang Song
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Current address: Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| |
Collapse
|
15
|
Wang Y, Chen W, Wang Z, Zhu Y, Zhao H, Wu K, Wu J, Zhang W, Zhang Q, Guo H, Ju H, Liu Y. NIR-II Light Powered Asymmetric Hydrogel Nanomotors for Enhanced Immunochemotherapy. Angew Chem Int Ed Engl 2023; 62:e202212866. [PMID: 36401612 DOI: 10.1002/anie.202212866] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanomotors are appealing drug carriers, and the strength of the propelling force is important for their motion capability. Though high motion efficiency has been achieved with 808 nm light driven Janus-structured noble metal nanomotors, the NIR-I light penetration depth and material biocompatibility limit their broad application. Herein, we develop a 1064 nm NIR-II light driven asymmetric hydrogel nanomotor (AHNM) with high motion capability and load it with doxorubicin for enhanced immunochemotherapy. Magnetic field assisted photopolymerization generates an asymmetric distribution of Fe3 O4 @Cu9 S8 nanoparticles in the AHNM, producing self-thermophoresis as driving force under NIR-II irradiation. The AHNM is also functionalized with dopamine for the capture and retention of tumor-associated antigens to boost immune activation. The as-obtained NIR-II light driven AHNM has a high tumor tissue penetration capability and enhances immunochemotherapy, providing a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Zhong Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Prospects for hypoxia-based drug delivery platforms for the elimination of advanced metastatic tumors: From 3D modeling to clinical concepts. J Control Release 2023; 353:1002-1022. [PMID: 36516901 DOI: 10.1016/j.jconrel.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia is a unique characteristic of the solid tumor microenvironment. Hypoxia contributes to multi-drug resistance, metastasis and cancer relapse through numerous molecular pathways, but at the same time provides an opportunity for the development of novel drugs or modalities specifically targeting hypoxic tumor regions. Given the high significance of tumor hypoxia in therapeutic results, we here discuss a variety of hypoxia-adopted strategies, and their potential and utility in the treatment of deep-seated hypoxic tumor cells. We discuss the merits and demerits of these approaches, as well as their combination with other approaches such as photodynamic therapy. We also survey the currently available 3D hypoxia modeling systems, in particular organoid-based microfluidics. Finally, we discuss the potential and the current status of preclinical tumor hypoxia approaches in clinical trials for advanced cancer. We believe that multi-modal imaging and therapeutic hypoxia adopted drug delivery platforms could provide better efficacy and safety profiles, and more importantly personalized therapy. Determining the hypoxia status of tumors could offer a second chance for the clinical translation of hypoxia-based agents, such as hypoxia activated prodrugs (HAPs) from bench to bedside.
Collapse
|
17
|
Wang X, Hu J, Liu S. Overcoming the Dilemma of Permeability and Stability of Polymersomes through Traceless Cross-Linking. Acc Chem Res 2022; 55:3404-3416. [PMID: 36351034 DOI: 10.1021/acs.accounts.2c00442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In nature, cells are highly compartmentalized into many organelles that are well separated from the rest of the cellular space by unique membrane structures, which are of crucial importance to allow cells to perform various physiological functions in such a small and crowded space. Learning from the ubiquitous membrane structures of cells and organelles has continuously inspired the development of artificial self-assembled nanostructures, with lipid vesicles (liposomes) and polymer vesicles (polymersomes) being the most representative examples. Similar to the membrane-bound structures of cells and organelles, both liposomes and polymersomes contain an aqueous interior enclosed by a bilayer membrane. Therefore, liposomes and polymersomes have been extensively investigated to mimic the fundamental structures and functions of living cells. For example, liposomes and polymersomes have been successfully engineered as nanocarriers, smart nanoreactors, artificial organelles, and so on. Notably, living cells can exchange both energy and materials with surrounding environments, benefiting from the selective permeability of lipid membranes. The permselectivity of cell membranes is thus an essential attribute of living organisms. Compared to liposomes, polymersomes have increased structural stability but low membrane permeability. Indeed, polymersomes are almost impermeable to small molecules, ions, and even water molecules. To improve the permeability of polymersomes, much effort has been devoted to the incorporation of channel proteins, the coassembly of oppositely charged block copolymers (BCPs), the development of stimuli-responsive BCPs, and so on. Despite great achievements, these approaches generally lead to decreased stability of polymersomes and, sometimes, polymersome disintegration. In this Account, we discuss our recent efforts to reconcile the stability and permeability of polymersomes via a traceless cross-linking approach. Although cross-linking reactions within bilayer membranes generally lead to decreased permeability, the traceless cross-linking approach can concurrently improve the stability and permeability of polymersomes. Specifically, stimuli-responsive polymersomes undergo either covalent cross-linking or noncovalent cross-linking reactions under specific stimuli to increase bilayer stability, while the cross-linking processes can concurrently permeabilize polymersome bilayers through cross-linking-driven hydrophobic-to-hydrophilic transitions. Notably, unlike conventional cross-linking processes requiring additional cross-linkers, the traceless cross-linking process does not involve extra cross-linking agents but takes full advantage of the in situ generated active moieties. By taking advantage of the simultaneous modulation of the stability and permeability of polymersomes via traceless cross-linking, these polymersomes can be further engineered as smart nanocarriers and nanoreactors. The robustness and generality of this approach have been validated by both extracellular and intracellular stimuli such as light irradiation, glutathione, and hydrogen peroxide. Moreover, many functional groups such as fluorescent dyes and contrast agents can be integrated into this versatile platform as well, enabling the construction of theranostic nanovectors capable of responding to pathological microenvironments. This Account provides a new approach to regulating the permeability of polymersomes while maintaining their structural stability.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
19
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
20
|
Xu C, Ban Q, Wang W, Hou J, Jiang Z. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J Control Release 2022; 349:184-205. [PMID: 35798093 DOI: 10.1016/j.jconrel.2022.06.061] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
Gut microbes are closely associated with most human health. When ingested orally, probiotics can effectively regulate the composition and quantity of human intestinal microorganisms, which is beneficial to human health. However, probiotics will be affected by the harsh environment of the digestive tract during the in vivo transportation process, and ensuring the viability of probiotics is a great challenge. Probiotic encapsulating technology provides an effective solution to this problem. The introduction of extreme temperatures, large probiotic microcapsule sizes and the difficulty in controlling probiotic microcapsule particle sizes mean that traditional microcapsule encapsulation methods have some limitations. From traditional microcapsule technology to the bulk encapsulation of probiotics with nanofibers and nanoparticles to the recent ability to wear nano "armor" for a single probiotic through biofilm, biological membrane and nanocoating. Emerging probiotic nanoagents provides a new conceptual and development direction for the field of probiotic encapsulation. In this review, we presented the characteristics of encapsulated probiotic carrier materials and digestive tract transport systems, we focused on the encapsulation systems of probiotic nanoagents, we analyzed the shortcomings and advantages of the current agent encapsulation systems, and we stated the developmental direction and challenges for these agents for the future.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Qingfeng Ban
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
21
|
Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:836. [PMID: 35269324 PMCID: PMC8912464 DOI: 10.3390/nano12050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes are biomimetic cell membrane-like model structures that are self-assembled stepwise from amphiphilic copolymers. These polymeric (nano)carriers have gained the scientific community's attention due to their biocompatibility, versatility, and higher stability than liposomes. Their tunable properties, such as composition, size, shape, and surface functional groups, extend encapsulation possibilities to either hydrophilic or hydrophobic cargoes (or both) and their site-specific delivery. Besides, polymersomes can disassemble in response to different stimuli, including light, for controlling the "on-demand" release of cargo that may also respond to light as photosensitizers and plasmonic nanostructures. Thus, polymersomes can be spatiotemporally stimulated by light of a wide wavelength range, whose exogenous response may activate light-stimulable moieties, enhance the drug efficacy, decrease side effects, and, thus, be broadly employed in photoinduced therapy. This review describes current light-responsive polymersomes evaluated for anticancer therapy. It includes light-activable moieties' features and polymersomes' composition and release behavior, focusing on recent advances and applications in cancer therapy, current trends, and photosensitive polymersomes' perspectives.
Collapse
Affiliation(s)
- Elisa Hernández Becerra
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Cristina Castro
- Engineering School, Pontificia Bolivariana University, Bloque 11, Cq. 1 No. 70-01, Medellín 050004, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| |
Collapse
|
22
|
Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022; 19:1687-1703. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-assembly of amphiphilic macromolecules has provided an advantageous platform to address significant issues in a variety of areas, including biology. Such soft nanoparticles with a hydrophobic core and hydrophilic corona, referred to as micelles, have been extensively investigated for delivering lipophilic therapeutics by physical encapsulation. Polymeric vesicles or polymersomes with similarities in morphology to liposomes continue to play an essential role in understanding the behavior of cell membranes and, in addition, have offered opportunities in designing smart nanoformulations. With the evolution in synthetic methodologies to macromolecular precursors, the construction of such assemblies can now be modulated to tailor their properties to match desired needs. This review brings into focus the current state-of-the-art in the design of polymersomes using amphiphilic miktoarm star polymers through a detailed analysis of the synthesis of miktoarm star polymers with tuned lengths of varied polymeric arms, their self-assembly, and applications in drug delivery.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.,Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
23
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|