1
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2025; 46:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
2
|
Wang H, Du J, Mao Y. Hydrogel-Based Continuum Soft Robots. Gels 2025; 11:254. [PMID: 40277689 PMCID: PMC12026835 DOI: 10.3390/gels11040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
This paper comprehensively reviews the latest advances in hydrogel-based continuum soft robots. Hydrogels exhibit exceptional flexibility and adaptability compared to traditional robots reliant on rigid structures, making them ideal as biomimetic robotic skins and platforms for constructing highly accurate, real-time responsive sensory interfaces. The article systematically summarizes recent research developments across several key dimensions, including application domains, fabrication methods, actuator technologies, and sensing mechanisms. From an application perspective, developments span healthcare, manufacturing, and agriculture. Regarding fabrication techniques, the paper extensively explores crosslinking methods, additive manufacturing, microfluidics, and other related processes. Additionally, the article categorizes and thoroughly discusses various hydrogel-based actuators responsive to solute/solvent variations, pH, chemical reactions, temperature, light, magnetic fields, electric fields, hydraulic/electro-osmotic stimuli, and humidity. It also details the strategies for designing and implementing diverse sensors, including strain, pressure, humidity, conductive, magnetic, thermal, gas, optical, and multimodal sensors. Finally, the paper offers an in-depth discussion of the prospective applications of hydrogel-based continuum soft robots, particularly emphasizing their potential in medical and industrial fields. Concluding remarks include a forward-looking outlook highlighting future challenges and promising research directions.
Collapse
Affiliation(s)
- Honghong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Jingli Du
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Yi Mao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
3
|
Guo P, Zhang Z, Qian C, Wang R, Cheng L, Tian Y, Wu H, Zhu S, Liu A. Programming Hydrogen Bonds for Reversible Elastic-Plastic Phase Transition in a Conductive Stretchable Hydrogel Actuator with Rapid Ultra-High-Density Energy Conversion and Multiple Sensory Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410324. [PMID: 39308311 DOI: 10.1002/adma.202410324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Smart hydrogels have recently garnered significant attention in the fields of actuators, human-machine interaction, and soft robotics. However, when constructing large-scale actuated systems, they usually exhibit limited actuation forces (≈2 kPa) and actuation speeds. Drawing inspiration from hairspring energy conversion mechanism, an elasticity-plasticity-controllable composite hydrogel (PCTA) with robust contraction capabilities is developed. By precisely manipulating intermolecular and intramolecular hydrogen-bonding interactions, the material's elasticity and plasticity can be programmed to facilitate efficient energy storage and release. The proposed mechanism enables rapid generation of high contraction forces (900 kPa) at ultra-high working densities (0.96 MJ m-3). Molecular dynamics simulations reveal that modifications in the number and nature of hydrogen bonds lead to a distinct elastic-plastic transition in hydrogels. Furthermore, the conductive PCTA hydrogel exhibits multimodal sensing capabilities including stretchable strain sensing with a wide sensing range (1-200%), fast response time (180 ms), and excellent linearity of the output signal. Moreover, it demonstrates exceptional temperature and humidity sensing capabilities with high detection accuracy. The strong actuation power and real-time sensory feedback from the composite hydrogels are expected to inspire novel flexible driving materials and intelligent sensing systems.
Collapse
Affiliation(s)
- Ping Guo
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhaoxin Zhang
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China
| | - Chengnan Qian
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruofei Wang
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Cheng
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ye Tian
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Huaping Wu
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Shuze Zhu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China
| | - Aiping Liu
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Dong X, Wang C, Song H, Shao J, Lan G, Zhang J, Li X, Li M. Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications. Biomimetics (Basel) 2024; 9:585. [PMID: 39451793 PMCID: PMC11505285 DOI: 10.3390/biomimetics9100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Soft hydrogel grippers have attracted considerable attention due to their flexible/elastic bodies, stimuli-responsive grasping and releasing capacity, and novel applications in specific task fields. To create soft hydrogel grippers with robust grasping of various types of objects, high load capability, fast grab response, and long-time service life, researchers delve deeper into hydrogel materials, fabrication strategies, and underlying actuation mechanisms. This article provides a systematic overview of hydrogel materials used in soft grippers, focusing on materials composition, chemical functional groups, and characteristics and the strategies for integrating these responsive hydrogel materials into soft grippers, including one-step polymerization, additive manufacturing, and structural modification are reviewed in detail. Moreover, ongoing research about actuating mechanisms (e.g., thermal/electrical/magnetic/chemical) and grasping applications of soft hydrogel grippers is summarized. Some remaining challenges and future perspectives in soft hydrogel grippers are also provided. This work highlights the recent advances of soft hydrogel grippers, which provides useful insights into the development of the new generation of functional soft hydrogel grippers.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Chen Wang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Haoxin Song
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jinqiang Shao
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Guiyao Lan
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jiaming Zhang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Xiangkun Li
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Ming Li
- Center for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Zhang M, Shen H, Hakobyan K, Jiang Z, Liang K, Xu J. Robust Hydrogel Actuators Functioning in Multi-Environments Enabled by Thermo-Responsive Polymer Nanoparticle Coatings on Hydrogel Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400534. [PMID: 38597736 DOI: 10.1002/smll.202400534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Hydrogel actuators with anisotropic structures exhibit reversible responsiveness upon the trigger of various external stimuli, rendering them promising for applications in many fields including artificial muscles and soft robotics. However, their effective operation across multiple environments remains a persistent challenge, even for widely studied thermo-responsive polymers like poly(N-isopropyl acrylamide) (PNIPAm). Current attempts to address this issue are hindered by complex synthetic procedures or specific substrates. This study introduces a straightforward methodology to grow a thin, dense PNIPAm nanoparticle layer on diverse hydrogel surfaces, creating a highly temperature-sensitive hydrogel actuator. This actuator demonstrates adaptability across various environments, including water, oil, and open air, owing to its distinct structure facilitating self-water circulation during actuation. The thin PNIPAm layer consists of interconnected PNIPAm nanoparticles synthesized via in situ interfacial precipitation polymerization, seamlessly bonded to the hydrogel substrate through an interfacial layer containing hybrid hydrogel/PNIPAm nanoparticles. This unique anisotropic structure ensures exceptional structural stability without interfacial delamination, even enduring harsh treatments such as freezing, ultrasonic irradiation, and prolonged water immersion. Remarkably, PNIPAm films on hydrogel surfaces which enable programmable 3D actuation can also be precisely patterned. This synthetic approach opens a novel pathway for fabricating advanced hydrogel actuators with broad-ranging applications.
Collapse
Affiliation(s)
- Mengnan Zhang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Haokun Shen
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Karen Hakobyan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Zhen Jiang
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Sydney, NSW, 2522, Australia
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Lv X, Tao H, Yuan X, Wang Z, Ding C, Xu J, Shan D, Guo B. Multiresponse Liquid Metal Bionic Flexible Actuator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39034611 DOI: 10.1021/acs.langmuir.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The flexible actuator has attracted significant interest for its ability to respond flexibly to external stimuli, especially for renewable natural energy sources. However, the flexible actuator faces issues such as inadequate sensitivity and inability to achieve synergistic responses. Therefore, we prepared a highly sensitive flexible actuator by mixing liquid metal (LM) with poly(vinylpyrrolidone) (PVP), graphene oxide (GO), and coating the resulting mixtures onto poly(ethylene terephthalate) (PET) substrate materials using the rod coating process. The flexible actuator responds quickly to near-infrared light and humidity and can be rapidly transformed from flat to curved with a maximum angular change of 540°. By demonstrating the flexible actuator in action, it can be used to create a crawling robot that mimics the movement of an inchworm on a leaf, as well as a gripper capable of lifting objects 5 times its weight, and a crawling robot that moves forward, turns left, and then right. Flexible actuators hold significant promise for applications in emerging fields such as advanced bionics and artificial intelligence.
Collapse
Affiliation(s)
- Xushuai Lv
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - He Tao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Ximin Yuan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenjia Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Chaogang Ding
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Debin Shan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Bin Guo
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Puza F, Thiel MC, Wagner Y, Marx M, Motz C, Lienkamp K. Polymer Hydrogel Sheets with Perpendicular Cross-Linking Gradient: Non-Monotonic Actuation and Ion-Specific Effects on the Actuation Kinetics. Macromol Rapid Commun 2024; 45:e2300539. [PMID: 37985952 DOI: 10.1002/marc.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Non-monotonous actuation, that is, different kinds of motion in response to a single stimulus, is observed in some natural materials but difficult to implement in synthetic systems. Herein, polymer hydrogel sheets made from polyacrylamide (PAAm) or poly(dimethylacrylamide) (PDMAA) with a cross-linking gradient along the sheet thickness are reported. These are obtained by thermally initiated free radical polymerization using a specially designed Teflon mold with a glass lid. The resulting PAAm hydrogels undergo non-monotonous actuation (rolling into a tube and re-opening) when exposed to aqueous media as a single external stimulus. Their actuation kinetics is tuned with anions that have specific ion effects in their interaction with the surrounding solvent and the polymer itself: structure-breaking chloride enhances the hydration of the polymer backbone, structure-making sulfate decreases it, and is thus slowing down the actuation kinetics of the PAAm hydrogels. The PDMAA gel rolls up instantaneously in aqueous NaCl and only re-opens after 24 h. PDMAA actuation in aqueous Na2 SO4 is only moderate as the gel did not swell in that solvent. Bilayer hydrogels made from PAAm and PDMAA (without gradient) show monotonic actuation, closing in NaCl solution and re-opening in Na2 SO4 .
Collapse
Affiliation(s)
- Fatih Puza
- Professur für Polymerwerkstoffe, Fachrichtung Materialwissenschaft und Werkstofftechnik, Universität des Saarlandes, Campus, 66123, Saarbrücken, Germany
| | - Marc Christopher Thiel
- Professur für Polymerwerkstoffe, Fachrichtung Materialwissenschaft und Werkstofftechnik, Universität des Saarlandes, Campus, 66123, Saarbrücken, Germany
| | - Yannic Wagner
- Professur für Polymerwerkstoffe, Fachrichtung Materialwissenschaft und Werkstofftechnik, Universität des Saarlandes, Campus, 66123, Saarbrücken, Germany
| | - Michael Marx
- Professur für Experimentelle Methodik der Werkstoffwissenschaften, Fachrichtung Materialwissenschaft und Werkstofftechnik, Universität des Saarlandes, Campus, 66123, Saarbrücken, Germany
| | - Christian Motz
- Professur für Experimentelle Methodik der Werkstoffwissenschaften, Fachrichtung Materialwissenschaft und Werkstofftechnik, Universität des Saarlandes, Campus, 66123, Saarbrücken, Germany
| | - Karen Lienkamp
- Professur für Polymerwerkstoffe, Fachrichtung Materialwissenschaft und Werkstofftechnik, Universität des Saarlandes, Campus, 66123, Saarbrücken, Germany
| |
Collapse
|
8
|
Park J, Kim TY, Kim Y, An S, Kim KS, Kang M, Kim SA, Kim J, Lee J, Cho S, Seo J. A Mechanically Resilient and Tissue-Conformable Hydrogel with Hemostatic and Antibacterial Capabilities for Wound Care. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303651. [PMID: 37705116 PMCID: PMC10602564 DOI: 10.1002/advs.202303651] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/05/2023] [Indexed: 09/15/2023]
Abstract
Hydrogels are used in wound dressings because of their tissue-like softness and biocompatibility. However, the clinical translation of hydrogels remains challenging because of their long-term stability, water swellability, and poor tissue adhesiveness. Here, tannic acid (TA) is introduced into a double network (DN) hydrogel consisting of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) to realize a tough, self-healable, nonswellable, conformally tissue-adhesive, hemostatic, and antibacterial hydrogel. The TA within the DN hydrogel forms a dynamic network, enabling rapid self-healing (within 5 min) and offering effective energy dissipation for toughness and viscoelasticity. Furthermore, the hydrophobic moieties of TA provide a water-shielding effect, rendering the hydrogel nonswellable. A simple chemical modification to the hydrogel further strengthens its interfacial adhesion with tissues (shear strength of ≈31 kPa). Interestingly, the TA also can serve as an effective hemostatic (blood-clotting index of 58.40 ± 1.5) and antibacterial component, which are required for a successful wound dressing. The antibacterial effects of the hydrogel are tested against Escherichia coli and Staphylococcus aureus. Finally, the hydrogel is prepared in patch form and applied to a mouse model to test in vivo biocompatibility and hemostatic performances.
Collapse
Affiliation(s)
- Jae Park
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
- LYNK Solutec Inc.Seoul03722Republic of Korea
| | - Tae Young Kim
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Yeonju Kim
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Soohwan An
- Department of BiotechnologyYonsei University50–1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Kyeong Seok Kim
- Department of ChemistryHanyang UniversitySeoul04763Republic of Korea
| | - Minkyong Kang
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Soo A Kim
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jayoung Kim
- Department of Medical EngineeringCollege of MedicineYonsei UniversitySeoul03722Republic of Korea
| | - Joonseok Lee
- Department of ChemistryHanyang UniversitySeoul04763Republic of Korea
| | - Seung‐Woo Cho
- Department of BiotechnologyYonsei University50–1 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
- LYNK Solutec Inc.Seoul03722Republic of Korea
| |
Collapse
|
9
|
Zhang Y, Cao X, Zhao Y, Li H, Xiao S, Chen Z, Huang G, Sun Y, Liu Z, He Z. An Anisotropic Hydrogel by Programmable Ionic Crosslinking for Sequential Two-Stage Actuation under Single Stimulus. Gels 2023; 9:gels9040279. [PMID: 37102891 PMCID: PMC10137370 DOI: 10.3390/gels9040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
As one of the most important anisotropic intelligent materials, bi-layer stimuli-responsive actuating hydrogels have proven their wide potential in soft robots, artificial muscles, biosensors, and drug delivery. However, they can commonly provide a simple one-actuating process under one external stimulus, which severely limits their further application. Herein, we have developed a new anisotropic hydrogel actuator by local ionic crosslinking on the poly(acrylic acid) (PAA) hydrogel layer of the bi-layer hydrogel for sequential two-stage bending under a single stimulus. Under pH = 13, ionic-crosslinked PAA networks undergo shrinking (-COO−/Fe3+ complexation) and swelling (water absorption) processes. As a combination of Fe3+ crosslinked PAA hydrogel (PAA@Fe3+) with non-swelling poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonate) (PZ) hydrogel, the as-prepared PZ-PAA@Fe3+ bi-layer hydrogel exhibits distinct fast and large-amplitude bidirectional bending behavior. Such sequential two-stage actuation, including bending orientation, angle, and velocity, can be controlled by pH, temperature, hydrogel thickness, and Fe3+ concentration. Furthermore, hand-patterning Fe3+ to crosslink with PAA enables us to achieve various complex 2D and 3D shape transformations. Our work provides a new bi-layer hydrogel system that performs sequential two-stage bending without switching external stimuli, which will inspire the design of programmable and versatile hydrogel-based actuators.
Collapse
Affiliation(s)
- Yanjing Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yuyu Zhao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Huahuo Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Shengwei Xiao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Correspondence: (S.X.); (Y.S.); (Z.H.)
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Correspondence: (S.X.); (Y.S.); (Z.H.)
| | - Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Zhicai He
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Correspondence: (S.X.); (Y.S.); (Z.H.)
| |
Collapse
|
10
|
Liang H, Wei Y, Ji Y. Magnetic-responsive Covalent Adaptable Networks. Chem Asian J 2023; 18:e202201177. [PMID: 36645376 DOI: 10.1002/asia.202201177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Covalent adaptable networks (CANs) are reprocessable polymers whose structural arrangement is based on the recombination of dynamic covalent bonds. Composite materials prepared by incorporating magnetic particles into CANs attract much attention due to their remote and precise control, fast response speed, high biological safety and strong penetration of magnetic stimuli. These properties often involve magnetothermal effect and direct magnetic-field guidance. Besides, some of them can also respond to light, electricity or pH values. Thus, they are favorable for soft actuators since various functions are achieved such as magnetic-assisted self-healing (heating or at ambient temperature), welding (on land or under water), shape-morphing, and so on. Although magnetic CANs just start to be studied in recent two years, their advances are promised to expand the practical applications in both cutting-edge academic and engineering fields. This review aims to summarize recent progress in magnetic-responsive CANs, including their design, synthesis and application.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University Chung-Li, 32023, Taiwan, P. R. China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Zhao J, Liu H, Chen W, Jian Y, Zeng G, Wang Z. Hydrogel of HEMA, NVP, and Morpholine-Derivative Copolymer for Sulfate Ion Adsorption: Behaviors and Mechanisms. Molecules 2023; 28:molecules28030984. [PMID: 36770649 PMCID: PMC9923838 DOI: 10.3390/molecules28030984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
SO42--containing compounds are widely present in wastewater generated from various industries and mining industries, such as slag leachate, pulp and paper wastewater, modified starch wastewater, etc. When the concentration of SO42- is too high, it will not only be corrosive to metal equipment but also accumulate in the environmental media. Based on this, a novel cationic hydrogel HNM was synthesized in this study by introducing morpholine groups into the conventional hydrogel HEMA-NVP system for the adsorption of SO42- in aqueous solutions. Characterizations by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that morpholine groups had been introduced into the as-synthesizedhydrogels. The scanning electron microscope (SEM) characterization results show that the introduction of morpholine groups changed the surface of the hydrogel from micron-scale wrinkles to nanoscale gaps, increasing the contact area with the solution. The results of static water contact angle (WCA), equilibrium water content (EWC), and SO42- adsorption capacity show that the introduction of morpholine groups not only further improved the equilibrium water content and hydrophilicity of the hydrogel but also greatly improved the SO42- adsorption capacity of the hydrogel, with the maximum SO42- adsorption amount of 21.59 mg/g, which was much higher than that of the hydrogel without morpholine groups of 5.15 mg/g. Further studies found that the adsorption of SO42- on the hydrogel HNM was pH-dependent, and acidic conditions were favorable for the adsorption. Therefore, the introduction of morpholine groups greatly enhanced the ability of conventional HEMA-NVP hydrogels to remove SO42- from aqueous solutions.
Collapse
Affiliation(s)
- Jing Zhao
- Laboratory of Organic Solid Waste Treatment and Recycling, College of Materials Science and Engineering, Henan Institute of Technology, Xinxiang 453003, China
| | - Haitao Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Correspondence: (H.L.); (Y.J.); (Z.W.)
| | - Wenwen Chen
- Department of Chemistry, Lishui University, Lishui 323000, China
| | - Yu Jian
- Department of Chemistry, Lishui University, Lishui 323000, China
- Correspondence: (H.L.); (Y.J.); (Z.W.)
| | - Guoyong Zeng
- Department of Chemistry, Lishui University, Lishui 323000, China
| | - Zhenyu Wang
- Department of Environmental Engineering, College of Ecology, Lishui University, Lishui 323000, China
- Correspondence: (H.L.); (Y.J.); (Z.W.)
| |
Collapse
|
12
|
Zhang Y, Li P, Zhang K, Wang X. Temporary Actuation of Bilayer Polymer Hydrogels Mediated by the Enzymatic Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15433-15441. [PMID: 36459698 DOI: 10.1021/acs.langmuir.2c02853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Most soft actuators have the ability of monotonic responsiveness. That is, there is only one response action after being stimulated once. In this work, a temporarily responsive bilayer hydrogel actuator is designed and fabricated by combining a tertiary amine-containing pH-responsive layer and a urease-containing non-responsive layer. The hydrogel actuator can achieve programed deformation and recovery driven by chemical fuels (i.e., acidic urea solutions), which is essentially regulated by rapid acidification and slow enzymatic production of ammonia for recovering the pH of the system. The actuation extent and duration can be simply controlled by the fuel levels, and the repeated actuations are also possible via refueling. Furthermore, we fabricate several hydrogel devices that can display specific patterns or lift an item. This enzymatic method shows new possibilities to control the temporary actuation of polymer hydrogels potentially useful in many fields such as soft robotics, biomimetic devices, and environmental sensing.
Collapse
Affiliation(s)
- Yuanzhi Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, Shandong, China
| | - Panpan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, Shandong, China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, Shandong, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, Shandong, China
| |
Collapse
|
13
|
Gao Y, Wei C, Zhao S, Gao W, Li Z, Li H, Luo J, Song X. Conductive
double‐network
hydrogel for a highly conductive
anti‐fatigue
flexible sensor. J Appl Polym Sci 2022. [DOI: 10.1002/app.53327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi Gao
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Cuilian Wei
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Shuangliang Zhao
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes Guangxi University Nanning China
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Wei Gao
- School of Resources, Environment and Materials Guangxi University Nanning China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes Guangxi University Nanning China
| | - Zequan Li
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Hong Li
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Jianju Luo
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Xianyu Song
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering Chongqing Three Gorges University Chongqing China
| |
Collapse
|
14
|
Tu CM, Chao CH, Hung SC, Ou SY, Zhuang CH, Liu CY. Bio-inspired thermal responsible liquid crystal actuators showing shape and color variations simultaneously. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Ko J, Kim C, Kim D, Song Y, Lee S, Yeom B, Huh J, Han S, Kang D, Koh JS, Cho J. High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Sci Robot 2022; 7:eabo6463. [DOI: 10.1126/scirobotics.abo6463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hydrogels have diverse chemical properties and can exhibit reversibly large mechanical deformations in response to external stimuli; these characteristics suggest that hydrogels are promising materials for soft robots. However, reported actuators based on hydrogels generally suffer from slow response speed and/or poor controllability due to intrinsic material limitations and electrode fabrication technologies. Here, we report a hydrogel actuator that operates at low voltages (<3 volts) with high performance (strain > 50%, energy density > 7 × 10
5
joules per cubic meter, and power density > 3 × 10
4
watts per cubic meter), surpassing existing hydrogel actuators and other types of electroactive soft actuators. The enhanced performance of our actuator is due to the formation of wrinkled nanomembrane electrodes that exhibit high conductivity and excellent mechanical deformation through capillary-assisted assembly of metal nanoparticles and deswelling-induced wrinkled structures. By applying an electric potential through the wrinkled nanomembrane electrodes that sandwich the hydrogel, we were able to trigger a reversible and substantial electroosmotic water flow inside a hydrogel film, which drove the controlled swelling of the hydrogel. The high energy efficiency and power density of our wrinkled nanomembrane electrode–induced actuator enabled the fabrication of an untethered insect-scale aquabot integrated with an on-board control unit demonstrating maneuverability with fast locomotion speed (1.02 body length per second), which occupies only 2% of the total mass of the robot.
Collapse
Affiliation(s)
- Jongkuk Ko
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Changhwan Kim
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Dongjin Kim
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Yongkwon Song
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seokmin Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Daeshik Kang
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
16
|
Zhang Z, Wang Y, Wang Q, Shang L. Smart Film Actuators for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105116. [PMID: 35038215 DOI: 10.1002/smll.202105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from the extremely flexible motion abilities in natural organisms, soft actuators have emerged in the past few decades. Particularly, smart film actuators (SFAs) demonstrate unique superiority in easy fabrication, tailorable geometric configurations, and programmable 3D deformations. Thus, they are promising in many biomedical applications, such as soft robotics, tissue engineering, delivery system, and organ-on-a-chip. In this review, the latest achievements of SFAs applied in biomedical fields are summarized. The authors start by introducing the fabrication techniques of SFAs, then shift to the topology design of SFAs, followed by their material selections and distinct actuating mechanisms. After that, their biomedical applications are categorized in practical aspects. The challenges and prospects of this field are finally discussed. The authors believe that this review can boost the development of soft robotics, biomimetics, and human healthcare.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiao Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
17
|
Ouyang H, Xie X, Xie Y, Wu D, Luo X, Wu J, Wang Y, Zhao L. Compliant, Tough, Anti-Fatigue, Self-Recovery, and Biocompatible PHEMA-Based Hydrogels for Breast Tissue Replacement Enabled by Hydrogen Bonding Enhancement and Suppressed Phase Separation. Gels 2022; 8:gels8090532. [PMID: 36135244 PMCID: PMC9498755 DOI: 10.3390/gels8090532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Although hydrogel is a promising prosthesis implantation material for breast reconstruction, there is no suitable hydrogel with proper mechanical properties and good biocompatibility. Here, we report a series of compliant and tough poly (hydroxyethyl methacrylate) (PHEMA)-based hydrogels based on hydrogen bond-reinforcing interactions and phase separation inhibition by introducing maleic acid (MA) units. As a result, the tensile strength, fracture strain, tensile modulus, and toughness are up to 420 kPa, 293.4%, 770 kPa, and 0.86 MJ/m3, respectively. Moreover, the hydrogels possess good compliance, where the compression modulus is comparable to that of the silicone breast prosthesis (~23 kPa). Meanwhile, the hydrogels have an excellent self-recovery ability and fatigue resistance: the dissipative energy and elastic modulus recover almost completely after waiting for 2 min under cyclic compression, and the maximum strength remains essentially unchanged after 1000 cyclic compressions. More importantly, in vitro cellular experiments and in vivo animal experiments demonstrate that the hydrogels have good biocompatibility and stability. The biocompatible hydrogels with breast tissue-like mechanical properties hold great potential as an alternative implant material for reconstructing breasts.
Collapse
Affiliation(s)
- Hongyan Ouyang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiangyan Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yuanjie Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Di Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xingqi Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- Correspondence: (Y.W.); (L.Z.)
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
18
|
Zhao Y, Cui J, Qiu X, Yan Y, Zhang Z, Fang K, Yang Y, Zhang X, Huang J. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Adv Colloid Interface Sci 2022; 308:102749. [PMID: 36007285 DOI: 10.1016/j.cis.2022.102749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Living bodies are made of numerous bio-sensors and actuators for perceiving external stimuli and making movement. Hydrogels have been considered as ideal candidates for manufacturing bio-sensors and actuators because of their excellent biocompatibility, similar mechanical and electrical properties to that of living organs. The key point of manufacturing hydrogel sensors/actuators is that the materials should not only possess excellent mechanical and electrical properties but also form effective interfacial connections with various substrates. Traditional hydrogel normally shows high electrical resistance (~ MΩ•cm) with limited mechanical strength (<1 MPa), and it is prone to fatigue fracture during continuous loading-unloading cycles. Just like iron should be toughened and hardened into steel, manufacturing and post-treatment processes are necessary for modifying hydrogels. Besides, advanced design and manufacturing strategies can build effective interfaces between sensors/actuators and other substrates, thus enhancing the desired mechanical and electrical performances. Although various literatures have reviewed the manufacture or modification of hydrogels, the summary regarding the post-treatment strategies and the creation of effective electrical and mechanically sustainable interfaces are still lacking. This paper aims at providing an overview of the following topics: (i) the manufacturing and post-engineering treatment of hydrogel sensors and actuators; (ii) the processes of creating sensor(actuator)-substrate interfaces; (iii) the development and innovation of hydrogel manufacturing and interface creation. In the first section, the manufacturing processes and the principles for post-engineering treatments are discussed, and some typical examples are also presented. In the second section, the studies of interfaces between hydrogels and various substrates are reviewed. Lastly, we summarize the current manufacturing processes of hydrogels, and provide potential perspectives for hydrogel manufacturing and post-treatment methods.
Collapse
Affiliation(s)
- Yiming Zhao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zekai Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Kezhong Fang
- Lunan Pharmaceutical Group Co., LTD, Linyi 276005, China
| | - Yu Yang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi 276005, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
19
|
Material Design for Enhancing Properties of 3D Printed Polymer Composites for Target Applications. TECHNOLOGIES 2022. [DOI: 10.3390/technologies10020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth.
Collapse
|
20
|
Electroresponsive Hydrogel-Based Switching Components for Soft, Bioelectrical, and Fluidic Circuits. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/3206755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of various soft components for fluid circuits is conducive to the further development of soft robots. The electroresponsive hydrogel is applied to build a functional oscillator in the study conducted. Based on the multiphasic mixture model, the deformation of the hydrogel under external electric fields is analyzed through COMSOL Multiphysics simulator. Owing to the characteristics of the hydrogel that it will deform in response to electric field, the hydrogel is employed to control fluidic circuits, resulting in a novel controllable functional soft oscillator.
Collapse
|
21
|
Wan Z, Pu L, Zhang Y, Shen X, Zhu M, Li S. Polymer Catalyst with Photo-Mediated Catalytic Ability, by Virtue of Cis/Trans-Alterable Conformation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kaniewska K, Karbarz M. Electrochemical devices based on conducting surfaces modified with smart hydrogels: Outlook and perspective. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Klaudia Kaniewska
- Faculty of Chemistry, Biological and Chemical Research Center University of Warsaw Warsaw Poland
| | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center University of Warsaw Warsaw Poland
| |
Collapse
|
23
|
Wang Z, Zhang X, Cao T, Wang T, Sun L, Wang K, Fan X. Antiliquid-Interfering, Antibacteria, and Adhesive Wearable Strain Sensor Based on Superhydrophobic and Conductive Composite Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46022-46032. [PMID: 34542266 DOI: 10.1021/acsami.1c15052] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conductive hydrogels are promising multifunctional materials for wearable sensors, but their practical applications require combined properties that are difficult to achieve. Herein, we developed a flexible wearable sensor with double-layer structure based on conductive composite hydrogel, which included the outer layer of silicone elastomer (Ecoflex)/silica microparticle composite film and the inner layer of P(AAm-co-HEMA)-MXene-AgNPs hydrogel. Through covalently cross-linking silicone elastomer on the surface of the hydrogel polymer, we bonded a thin Ecoflex film (100 μm) on the P(AAm-co-HEMA)-MXene-AgNPs hydrogel with robust interface, which can easily adhere to the Ecoflex/SiO2 microparticle composite film by silicone glue. The Ecoflex/SiO2 microparticle composite film endows the strain wearable sensor with superhydrophobic function that could maintain the stability under stretching or bending. Moreover, it can effectively resist the interference of water droplets and water flow. The P(AAm-co-HEMA)-MXene-AgNPs hydrogel exhibits outstanding antibacterial activity to inhibit Staphylococcus aureus, Escherichia coli, and even drug-resistant Escherichia coli. In addition, the flexible wearable sensor exhibited good self-adhesive performance by changing the reaction temperature of hydrogel and can adhere strongly onto various materials. The conductive composite hydrogel reported in this work contributes an innovative strategy for the preparation of multifunctional flexible wearable sensor.
Collapse
Affiliation(s)
- Zichao Wang
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuan Zhang
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tao Cao
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tong Wang
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Linxiao Sun
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Keyao Wang
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaodong Fan
- The key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
24
|
Cao X, Xuan S, Sun S, Xu Z, Li J, Gong X. 3D Printing Magnetic Actuators for Biomimetic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30127-30136. [PMID: 34137263 DOI: 10.1021/acsami.1c08252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomimetic actuators with stimuli-responsiveness, adaptivity, and designability have attracted extensive attention. Recently, soft intelligent actuators based on stimuli-responsive materials have been gradually developed, but it is still challenging to achieve various shape manipulations of actuators through a simple 3D printing technology. In this paper, a 3D printing strategy based on magneto-active materials is developed to manufacture various biomimetic magnetic actuators, in which the new printable magnetic filament is composed of a thermoplastic rubber material and magnetic particles. The continuous shape transformation of magnetic actuators is further demonstrated to imitate the motion characteristic of creatures, including the predation behavior of octopus tentacles, the flying behavior of the butterfly, and the flower blooming behavior of the plant. Furthermore, the magnetic field-induced deformation of the biomimetic structure can be simulated by the finite element method, which can further guide the structural design of the actuators. This work proves that the biomimetic actuator based on soft magneto-active materials has the advantages of programmable integrated structure, rapid prototyping, remote noncontact actuation, and rapid magnetic response. As a result, this 3D printing method possesses broad application prospects in soft robotics and other fields.
Collapse
Affiliation(s)
- Xufeng Cao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shuaishuai Sun
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Zhenbang Xu
- CAS Key Laboratory of On-orbit Manufacturing and Integration for Space Optics System, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Jun Li
- Anhui Weiwei Rubber Parts Group Co. Ltd. Tongcheng 231400, Anhui, China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|