1
|
Bigdelifam D, Hashemi M. Mechanochemical Synthesis of Graphene Oxide/UiO-66-NH 2 Nanocomposites: Characterization and Fabrication of an Electrochemical Sensor for the Determination of Tetracycline Residues in Milk Samples. ACS OMEGA 2025; 10:16184-16193. [PMID: 40321592 PMCID: PMC12044491 DOI: 10.1021/acsomega.4c09975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/11/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
This paper describes a green mechanochemical approach for the synthesis of a graphene oxide-based UiO-66-NH2 metal organic framework composite (GO/UiO-66-NH2) for the fabrication of a sensitive electrochemical sensor for the determination of tetracycline (TC) residues in milk samples. The structural and electrochemical characteristics of the GO/UiO-66-NH2 nanocomposite were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), FT-IR spectroscopy, and cyclic voltammetry (CV). Incorporation of UiO-66-NH2 onto the GO surface can increase the number of effective reaction sites and improve the electrochemical performance of the fabricated sensor. The sensor was simply prepared through drop-casting a GO/UiO-66-NH2 suspension onto the glassy carbon electrode surface and used for TC determination by differential pulse voltammetry (DPV) as a sensitive analytical method. The fabricated sensor provided a linear calibration over the concentration ranges of 0.02-1.00 μg mL-1 (R 2 = 0.9921) and 1.00-40 μg mL-1 (R 2 = 0.9932) with a limit of detection of 0.003 μg mL-1 using DPV. The proposed sensor was successfully applied to measure the TC residues in different milk samples with satisfying recovery from 94.0 to 105.0%.
Collapse
Affiliation(s)
- Davood Bigdelifam
- Department of Analytical Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6515733677, Iran
| | - Mahdi Hashemi
- Department of Analytical Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6515733677, Iran
| |
Collapse
|
2
|
Azizi K, Shahhosseini S, Esfahani HJ. Synthesis and characterization of advanced Ad-UiO-66@NGO composite for efficient CO 2 capture and CO 2/N 2 adsorption selectivity. ENVIRONMENTAL RESEARCH 2025; 268:120819. [PMID: 39800291 DOI: 10.1016/j.envres.2025.120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Highly effective adsorbents, with their impressive adsorption capacity and outstanding selectivity, play a pivotal role in technologies such as carbon capture and utilization in industrial flue gas applications, leading to significant reductions in greenhouse gas emissions. This study aims to synthesize advanced composites via solvothermal methods, incorporating a defective Zirconium-based MOF and amine-functionalized graphene oxide. The main objective is to enhance the CO2 adsorption capacity of the composite and improve its CO2/N2 separation selectivity. The samples were characterized using XRD, FT-IR, TGA, FE-SEM, and nitrogen adsorption and desorption analysis. The composites' gas uptake capacity toward pure CO2 and N2 adsorption were tested at various temperatures and pressure ranges of 1-9 bar. The resulting amino-defective UiO-66/NGO composite containing 15 wt% of amine-modified GO, displayed the highest CO2 uptake capacity of 15.13 mmol/g at 298 K and 9 bar, representing a remarkable 48% increase compared to the pristine MOF. Furthermore, isotherm and kinetic modeling showed a high level of agreement between the experimental data and the Freundlich and Elovich models, as indicated by their R2 values of 0.998 and 0.973, respectively. Moreover, the thermodynamic evaluation confirmed the exothermic and the spontaneity of the reaction. Furthermore, the adsorbent's CO2/N2 selectivity was evaluated using the ideal adsorbed solution theory, revealing a remarkable selectivity value of 148. The regenerability evaluation through cyclic adsorption experiments showed that the optimized composite maintained CO2 adsorption reversibility at over 81.50% after 55 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Keywan Azizi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shahrokh Shahhosseini
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Heidar Javdani Esfahani
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
3
|
Wang D, Jia X, Shan Z, Gao L, Yang J, Wang Z, Song H. Zr-MOFs (UIO-66-NH 2)@Fluorinated Graphene for Developing Highly Antiwear, Friction-Reduction Lubricating Additives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27061-27072. [PMID: 39658828 DOI: 10.1021/acs.langmuir.4c04002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Fluorinated graphene (FG) among numerous two-dimensional materials has enormous potential in improving antifriction properties. However, they being susceptible to thermal oxidation and prone to wear hinder practical applications. Herein, UIO-66-NH2 (Zr-MOF) enjoying good chemical and thermal stabilities was assembled on the surface of FG nanosheets under covalent bonds and van der Waals forces. The Zr-MOF@FG composite was successfully synthesized and used as a lubricant additive. It can be seen that Zr-MOF@FG composites offer a synergistic lubricant mechanism at the friction interface. Moreover, due to the adsorption and purification performance of Zr-MOF, the obtained Zr-MOF@FG composite adsorbs the abrasive rust during the friction process, thereby realizing the purification of the lubricant. These findings suggest that Zr-MOF@FG shows tremendous potential as a lubricant additive.
Collapse
Affiliation(s)
- Ding Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Xiaohua Jia
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Zhiqiang Shan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Li Gao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Jin Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Zhaofeng Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory for Yantai Advanced Materials and Green Manufacturing, Yantai 264006, P.R. China
| | - Haojie Song
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| |
Collapse
|
4
|
Yuan X, Liao JH, Du GJ, Hou Y, Hu SQ. Immobilization β-glucosidase from Dictyoglomus thermophilum on UiO-66-NH 2: An efficient catalyst for enzymatic synthesis of kinsenoside via reverse hydrolysis reaction. Int J Biol Macromol 2024; 282:137330. [PMID: 39515718 DOI: 10.1016/j.ijbiomac.2024.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Kinsenoside is a rare and valuable glycoside with extensive bioactivities. However, the enzymatic synthesis of kinsenoside has been a challenging task due to the limited enzyme toolbox and unsatisfactory yield. Herein, the β-glucosidase from Dictyoglomus thermophilum (DtBGL) was heterologously expressed, purified and enzymatically characterized. The purified DtBGL was successfully immobilized on the metal-organic frameworks of UiO-66-NH2. The DtBGL@UiO-66-NH2 was fully characterized using SEM, XRD, TGA and FTIR. The studies on enzymatic properties demonstrated that DtBGL@UiO-66-NH2 exhibited increased catalytic activity and stability compared to the free DtBGL. Particularly, DtBGL@UiO-66-NH2 could catalyze the synthesis of kinsenoside via the reverse hydrolysis reaction and the kinsenoside yield was 34.12 % under the optimized catalytic system, which was 1.9-fold higher compared with the free DtBGL. Moreover, DtBGL@UiO-66-NH2 displayed good reusability with a kinsenoside yield of 27.02 % after reuse for 3 times. The present work not only identifies and characterizes a highly active β-glucosidase with reverse hydrolysis activity, but also proposes the immobilized enzyme as an effective catalyst for the industrial production of glycosides.
Collapse
Affiliation(s)
- Xin Yuan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jia-Hui Liao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Gui-Jia Du
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Song-Qing Hu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China.
| |
Collapse
|
5
|
Yang Y, Wang Y, Jiang X, Mi J, Ge D, Tong Y, Zhu Y. Modified Ce/Zr-MOF Nanoparticles Loaded with Curcumin for Alzheimer's Disease via Multifunctional Modulation. Int J Nanomedicine 2024; 19:9943-9959. [PMID: 39355653 PMCID: PMC11444058 DOI: 10.2147/ijn.s479242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a neurodegenerative condition, stands as the most prevalent form of dementia. Its complex pathological mechanisms and the formidable blood-brain barrier (BBB) pose significant challenges to current treatment approaches. Oxidative stress is recognized as a central factor in AD, underscoring the importance of antioxidative strategies in its treatment. In this study, we developed a novel brain-targeted nanoparticle, Ce/Zr-MOF@Cur-Lf, for AD therapy. Methods Layer-by-layer self-assembly technology was used to prepare Ce/Zr-MOF@Cur-Lf. In addition, the effect on the intracellular reactive oxygen species level, the uptake effect by PC12 and bEnd.3 cells and the in vitro BBB permeation effect were investigated. Finally, the mouse AD model was established by intrahippocampal injection of Aβ1-42, and the in vivo biodistribution, AD therapeutic effect and biosafety of the nanoparticles were researched at the animal level. Results As anticipated, Ce/Zr-MOF@Cur-Lf demonstrated efficient BBB penetration and uptake by PC12 cells, leading to attenuation of H2O2-induced oxidative damage. Moreover, intravenous administration of Ce/Zr-MOF@Cur-Lf resulted in rapid brain access and improvement of various pathological features of AD, including neuronal damage, amyloid-β deposition, dysregulated central cholinergic system, oxidative stress, and neuroinflammation. Conclusion Overall, Ce/Zr-MOF@Cur-Lf represents a promising approach for precise brain targeting and multi-target mechanisms in AD therapy, potentially serving as a viable option for future clinical treatment.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yiling Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xinran Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jiahao Mi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Dizhang Ge
- Department of Pharmacy, People’s Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Aba, 624000, People’s Republic of China
| | - Yuna Tong
- Department of Nephrology, The Third People’s Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, People’s Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
- Department of Pharmacy, People’s Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Aba, 624000, People’s Republic of China
| |
Collapse
|
6
|
Esfahani HJ, Ghaemi A, Shahhosseini S. Improving CO 2 adsorption efficiency of an amine-modified MOF-808 through the synthesis of its graphene oxide composites. Sci Rep 2024; 14:18871. [PMID: 39143144 PMCID: PMC11325030 DOI: 10.1038/s41598-024-69767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
This research developed a novel composite of MOF-NH2 and graphene oxide (GO) for enhanced CO2 capture. Employing the response surface methodology-central composite design (RSM-CCD) for experiments design, various MOF-NH2/GO samples with GO loadings from 0 to 30 wt% were synthesized. The results of SEM, XRD, EDS, and BET analysis revealed that the materials maintained their MOF crystal structure, confirmed by X-ray diffraction, and exhibited unique texture, high porosity, and oxygen-enriched surface chemistry. The influence of temperature (25-65 °C) and pressure (1-9 bar) on CO2 adsorption capacity was assessed using a volumetric adsorption system. Optimum conditions were obtained at weight percent of 22.6 wt% GO, temperature of 25 °C, and pressure of 9 bar with maximum adsorption capacity of 303.61 mg/g. The incorporation of amino groups enhanced the CO2 adsorption capacity. Isotherm and kinetic analyses indicated that Freundlich and Fractional-order models best described CO2 adsorption behavior. Thermodynamic analysis showed the process was exothermic, spontaneous, and physical, with enthalpy changes of - 16.905 kJ/mol, entropy changes of - 0.030 kJ/mol K, and Gibs changes energy of - 7.904 kJ/mol. Mass transfer diffusion coefficients increased with higher GO loadings. Regenerability tests demonstrated high performance and resilience, with only a 5.79% decrease in efficiency after fifteen cycles. These findings suggest significant potential for these composites in CO2 capture technologies.
Collapse
Affiliation(s)
- Heidar Javdani Esfahani
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Shahrokh Shahhosseini
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
7
|
Li B, Liu X, He X, Liu J, Mao S, Tao W, Li Z. Amidation-Reaction Strategy Constructs Versatile Mixed Matrix Composite Membranes towards Efficient Volatile Organic Compounds Adsorption and CO 2 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310644. [PMID: 38386306 DOI: 10.1002/smll.202310644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Mixed matrix composite membranes (MMCMs) have shown advantages in reducing VOCs and CO2 emissions. Suitable composite layer, substrate, and good compatibility between the filler and the matrix in the composite layer are critical issues in designing MMCMs. This work develops a high-performance UiO-66-NA@PDMS/MCE for VOCs adsorption and CO2 permea-selectivity, based on a simple and facile fabrication of composite layer using amidation-reaction approach on the substrate. The composite layer shows a continuous morphological appearance without interface voids. This outstanding compatibility interaction between UiO-66-NH2 and PDMS is confirmed by molecular simulations. The Si─O functional group and UiO-66-NH2 in the layer leads to improved VOCs adsorption via active sites, skeleton interaction, electrostatic interaction, and van der Waals force. The layer and ─CONH─ also facilitate CO2 transport. The MMCMs show strong four VOCs adsorption and high CO2 permeance of 276.5 GPU with a selectivity of 36.2. The existence of VOCs in UiO-66-NA@PDMS/MCE increases the polarity and fine-tunes the pore size of UiO-66-NH2, improving the affinity towards CO2 and thus promoting the permea-selectivity for CO2, which is further verified by GCMC and EMD methods. This work is expected to offer a facile composite layer manufacturing method for MMCMs with high VOC adsorption and CO2 permea-selectivity.
Collapse
Affiliation(s)
- Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaohui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
8
|
Liu S, Wang L, Zhang H, Fang H, Yue X, Wei S, Liu S, Wang Z, Lu X. Efficient CO 2 Capture and Separation in MOFs: Effect from Isoreticular Double Interpenetration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7152-7160. [PMID: 38294350 DOI: 10.1021/acsami.3c16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Severe CO2 emissions has posed an increasingly alarming threat, motivating the development of efficient CO2 capture materials, one of the key parts of carbon capture, utilization, and storage (CCUS). In this study, a series of metal-organic frameworks (MOFs) named Sc-X (X = S, M, L) were constructed inspired by recorded MOFs, Zn-BPZ-SA and MFU-4l-Li. The corresponding isoreticular double-interpenetrating MOFs (Sc-X-IDI) were subsequently constructed via the introduction of isoreticular double interpenetration. Grand canonical Monte Carlo (GCMC) simulations were adopted at 298 K and 0.1-1.0 bar to comprehensively evaluate the CO2 capture and separation performances in Sc-X and Sc-X-IDI, with gas distribution, isothermal adsorption heat (Qst), and van der Waals (vdW)/Coulomb interactions. It is showed that isoreticular double interpenetration significantly improved the interactions between adsorbed gases and frameworks by precisely modulating pore sizes, particularly observed in Sc-M and Sc-M-IDI. Specifically, the Qst and Coulomb interactions exhibited a substantial increase, rising from 28.38 and 22.19 kJ mol-1 in Sc-M to 43.52 and 38.04 kJ mol-1 in Sc-M-IDI, respectively, at 298 K and 1.0 bar. Besides, the selectivity of CO2 over CH4/N2 was enhanced from 55.36/107.28 in Sc-M to 3308.61/7021.48 in Sc-M-IDI. However, the CO2 capture capacity is significantly influenced by the pore size. Sc-M, with a favorable pore size, exhibits the highest capture capacity of 15.86 mmol g-1 at 298 K and 1.0 bar. This study elucidated the impact of isoreticular double interpenetration on the CO2 capture performance in MOFs.
Collapse
Affiliation(s)
- Sen Liu
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Lu Wang
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Huili Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Hongxu Fang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Xiaokun Yue
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| |
Collapse
|
9
|
Figueroa-Quintero L, Villalgordo-Hernández D, Delgado-Marín JJ, Narciso J, Velisoju VK, Castaño P, Gascón J, Ramos-Fernández EV. Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications. SMALL METHODS 2023; 7:e2201413. [PMID: 36789569 DOI: 10.1002/smtd.202201413] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) are porous hybrid materials with countless potential applications. Most of these rely on their porous structure, tunable composition, and the possibility of incorporating and expanding their functions. Although functionalization of the inner surface of MOF crystals has received considerable attention in recent years, methods to functionalize selectively the outer crystal surface of MOFs are developed to a lesser extent, despite their importance. This article summarizes different types of post-synthetic modifications and possible applications of modified materials such as: catalysis, adsorption, drug delivery, mixed matrix membranes, and stabilization of porous liquids.
Collapse
Affiliation(s)
- Leidy Figueroa-Quintero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - David Villalgordo-Hernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - José J Delgado-Marín
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Vijay Kumar Velisoju
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jorge Gascón
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| |
Collapse
|
10
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
11
|
Ma L, Wan Y, Wang T, Liu Y, Yin Y, Zhang L. Self-Assembled CMC/UiO-66-NH 2 Membrane with Anti-Crude Oil Adhesion Property for Highly Efficient Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12499-12509. [PMID: 36194832 DOI: 10.1021/acs.langmuir.2c01905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing the high-anti-fouling membrane has kept continuous attention in oil/water emulsion treatment. However, the majority of works on anti-fouling membranes mainly focused on low-viscosity oils, which greatly limited the development and application of a membrane to face the real crude oil wastewater. Inspired by the hydrophilicity of sodium carboxymethyl cellulose (CMC) and zirconium base metal-organic frame (Zr-MOF), an anti-oil-fouling CMC/UiO-66-NH2 composite membrane was constructed by a self-assembly method. Profiting from the hydrophilicity and micro-nanostructure of the CMC/UiO-66-NH2 layer, the obtained CMC/UiO-66-NH2 membranes displayed underwater superoleophobicity and desired oil resistance. It could display the effective separation capability with 1282 ± 62 to 6160 ± 81 L/(m2·h·bar) and above 99.08% toward the different light oil emulsions. More importantly, the CMC/UiO-66-NH2 membrane displayed ultralow crude oil adhesion behaviors toward the crude oil emulsions, which could achieve a considerably high flux (746 ± 60 to 5224 ± 87 L/(m2·h·bar)). Furthermore, electrostatic interaction and physical enwinding-wrapping between CMC and UiO-66-NH2 also endowed the composite membranes with outstanding stability. After immersing the as-prepared membranes into the harsh environments for 24 h, the membranes still maintained high underwater-oil contact angles (UWOCA > 155°) and separation ability (oil rejection was above 99.0%). Therefore, CMC/UiO-66-NH2 composite membranes could demonstrate promising prospects in real oily emulsion treatment.
Collapse
Affiliation(s)
- Lan Ma
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan610039, China
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan610500, China
| | - Yan Wan
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan610039, China
| | - Teng Wang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan610039, China
| | - Yaling Liu
- Sichuan Special Equipment Inspection and Research Institute, Chenglong Avenue, Chengdu, Sichuan610500, China
| | - Ying Yin
- Sichuan Special Equipment Inspection and Research Institute, Chenglong Avenue, Chengdu, Sichuan610500, China
| | - Liyun Zhang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan610039, China
| |
Collapse
|
12
|
Schukraft GEM, Itskou I, Woodward RT, Van Der Linden B, Petit C, Urakawa A. Evaluation of CO 2 and H 2O Adsorption on a Porous Polymer Using DFT and In Situ DRIFT Spectroscopy. J Phys Chem B 2022; 126:8048-8057. [PMID: 36170038 PMCID: PMC9574916 DOI: 10.1021/acs.jpcb.2c03912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous hyper-cross-linked polymers (HCPs) have been developed as CO2 adsorbents and photocatalysts. Yet, little is known of the CO2 and H2O adsorption mechanisms on amorphous porous polymers. Gaining a better understanding of these mechanisms and determining the adsorption sites are key to the rational design of improved adsorbents and photocatalysts. Herein, we present a unique approach that combines density functional theory (DFT), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and multivariate spectral analysis to investigate CO2 and H2O adsorption sites on a triazine-biphenyl HCP. We found that CO2 and H2O adsorb on the same HCP sites albeit with different adsorption strengths. The primary amines of the triazines were identified as favoring strong CO2 binding interactions. Given the potential use of HCPs for CO2 photoreduction, we also investigated CO2 and H2O adsorption under transient light irradiation. Under irradiation, we observed partial CO2 and H2O desorption and a redistribution of interactions between the H2O and CO2 molecules that remain adsorbed at HCP adsorption sites.
Collapse
Affiliation(s)
- Giulia E M Schukraft
- Barrer Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| | - Ioanna Itskou
- Barrer Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| | - Robert T Woodward
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Bart Van Der Linden
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Camille Petit
- Barrer Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K
| | - Atsushi Urakawa
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
13
|
Roohollahi H, Zeinalzadeh H, Kazemian H. Recent Advances in Adsorption and Separation of Methane and Carbon Dioxide Greenhouse Gases Using Metal–Organic Framework-Based Composites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Roohollahi
- Department of Chemical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, 7718897111, Iran
| | - Hossein Zeinalzadeh
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Hossein Kazemian
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Northern Analytical Lab Services, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Department of Chemistry, Faculty of Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| |
Collapse
|
14
|
Musa SG, Aljunid Merican ZM, Haruna A. Investigation of isotherms and isosteric heat of adsorption for PW11@HKUST-1 composite. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Hu J, Xu S, Ding CJ, Liu ZH, Yan WJ, Hu Y, Zhong CZ, Cui XX, Wu K, Zeng HY. Novel carbon microspheres prepared by xylose decorated with layered double hydroxide as an effective eco-friendly flame retardant for polypropylene. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ghamari kargar P, Bagherzade G, Beyzaei H. A porous metal-organic framework (Ni-MOF): An efficient and recyclable catalyst for cascade oxidative amidation of alcohols by amines under ultrasound-irradiations. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Yun Y, Fang Y, Fu W, Du W, Zhu Y, Sheng H, Astruc D, Zhu M. Exploiting the Fracture in Metal-Organic Frameworks: A General Strategy for Bifunctional Atom-Precise Nanocluster/ZIF-8(300 °C) Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107459. [PMID: 35306723 DOI: 10.1002/smll.202107459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Atom-precise nanoclusters-metal-organic framework (APNC/MOF) composites, as bifunctional material with well-defined structures, have attracted considerable attention in recent years. Despite the progress made to date, there is an urgent need to develop a generic and scalable approach for all APNCs. Herein, the authors present the Exploiting Fracture Strategy (EFS) and successfully construct a super-stable bifunctional APNC/ZIF-8(300 °C) composite overcoming the limitations of previous strategies in selecting APNCs. The EFS utilizes the fracture of ZnN in ZIF-8 after annealing at 300 °C. This method is suitable for all kinds of S/P protected APNCs with different sizes, including uncharged clusters Au1 Ag39 , Ag40 , negatively charged Au12 Ag32 , positively charged Ag46 Au24 , Au4 Cu4 and P-ligand-protected Pd3 Cl. Importantly, the generated APNC/MOF show significantly improved performances, for example, the activities of Au12 Ag32 /ZIF-8(300°C), Au4 Cu4 /ZIF-8(300°C), and Au1 Ag39 /ZIF-8(300°C) in the corresponding reactions are higher than those of Au12 Ag32 , Au4 Cu4 , and Au1 Ag39 , respectively. In particular, Au12 Ag32 /ZIF-8(300 °C) shows higher activity than Au12 Ag32 @ZIF-8. Therefore, this work offers guidance for the design of bifunctional APNC/MOF composites with excellent optimization of properties and opens up new horizons for future related nanomaterial studies and nanocatalyst designs.
Collapse
Affiliation(s)
- Yapei Yun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Yaping Fang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Wengang Fu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Wenjun Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Yanan Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Didier Astruc
- Université de Bordeaux, Talence Cedex, 33405, France
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
18
|
Nechvátalová M, Urban J. Current trends in the development of polymer-based monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2022; 3:154-164. [PMID: 38715639 PMCID: PMC10989626 DOI: 10.1002/ansa.202100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
Collapse
Affiliation(s)
| | - Jiří Urban
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
19
|
Atinafu DG, Yun BY, Yang S, Kang Y, Kim S. Updated results on the integration of metal-organic framework with functional materials toward n-alkane for latent heat retention and reliability. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127147. [PMID: 34560485 DOI: 10.1016/j.jhazmat.2021.127147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Phase change composites are in high demand in thermal management systems. Various supporting materials, including nanocomposites, have been employed to develop shape-stable phase change materials (PCMs). As the reliability of most composite materials has mostly been studied right after the preparation with specific thermal cycling measurements, it is difficult to analyze the long-term leakage-resistance capability and energy retention capacity. Additionally, achieving multifunctional phase change composites is a significant challenge for single supporting materials. Herein, we provide a follow-up report on the thermal performance of hybrid material-supported n-alkane after a storage time of one year and 50 heating/cooling cycles. The interconnected hybrid material composed of a metal-organic framework (MOF) and graphite improved the shape/thermal stability of tetradecane (TD). The as-synthesized MOF/graphite/TD composites exhibited a high latent heat retention capacity of 84.2%, low leakage rate of 1.25%, and high PCM loading capacity, making them suitable for thermal management applications, such as industrial waste heat recovery systems. Furthermore, the intermolecular interactions and capillary forces between the hybrid materials and TD provided high stability and compatibility. Therefore, the as-prepared hybrid material fabricated in this study can be important in the development of multidirectional composite PCMs with comprehensive thermal characteristics.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungwoong Yang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
20
|
Li X, Zhang J, Su F, Wang D, Yao D, Zheng Y. Construction and Application of Porous Ionic Liquids. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Xin Y, Wang D, Yao D, Ning H, Li X, Ju X, Zhang Y, Yang Z, Xu Y, Zheng Y. Post-synthetic modification of UiO-66-OH toward porous liquids for CO 2 capture. NEW J CHEM 2022. [DOI: 10.1039/d1nj04829e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rather simple and feasible strategy to construct MOF porous liquids with low viscosities for CO2 capture.
Collapse
Affiliation(s)
- Yangyang Xin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Dechao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Hailong Ning
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710021, P. R. China
| | - Xiaoqian Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Xiaoqian Ju
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710021, P. R. China
| | - Yichi Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Zhiyuan Yang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710021, P. R. China
| | - Yahong Xu
- Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| |
Collapse
|
22
|
Li Y, Jiao J, Wu Q, Song Q, Xie W, Liu B. Environmental applications of graphene oxide composite membranes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Hwang KJ, Balathanigaimani MS, Choi YH, Yoon SD, Shim WG. Influence of ultra-micropore volume of activated carbons prepared from noble mung bean on the adsorption properties of CO 2, CH 4, and N 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj02600g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, mung bean-based nanoporous activated carbons with different pore properties were prepared by varying the mass ratio of activating agent (KOH) and activation temperature.
Collapse
Affiliation(s)
- Kyung-Jun Hwang
- Gangwon Regional Agency for Science & Technology, Gangneung Science & Industry Promotion Agency, Gangneung-si, Gangwon-do, 25440, Republic of Korea
| | - M. S. Balathanigaimani
- Department of Chemical and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, 229304, India
| | - Young Hyeon Choi
- Department of Material Engineering, Gangneung-Wonju National University, Gangneung-si, Gangwon-do, 25457, Republic of Korea
| | - Soon-Do Yoon
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu-si, Jeollanam-do, 59626, Republic of Korea
| | - Wang-Geun Shim
- Department of Chemical Engineering, Sunchon National University, Suncheon-si, Jeollanam-do, 57922, Republic of Korea
| |
Collapse
|
24
|
Li X, Wang D, Ning H, Xin Y, He Z, Su F, Wang Y, Zhang J, Wang H, Qian L, Zheng Y, Yao D, Li M. An electrostatic repulsion strategy construct ZIFs based liquids with permanent porosity for efficient CO2 capture. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gas sensing materials, such as semiconducting metal oxides (SMOx), carbon-based materials, and polymers have been studied in recent years. Among of them, SMOx-based gas sensors have higher operating temperatures; sensors crafted from carbon-based materials have poor selectivity for gases and longer response times; and polymer gas sensors have poor stability and selectivity, so it is necessary to develop high-performance gas sensors. As a porous material constructed from inorganic nodes and multidentate organic bridging linkers, the metal-organic framework (MOF) shows viable applications in gas sensors due to its inherent large specific surface area and high porosity. Thus, compounding sensor materials with MOFs can create a synergistic effect. Many studies have been conducted on composite MOFs with three materials to control the synergistic effects to improve gas sensing performance. Therefore, this review summarizes the application of MOFs in sensor materials and emphasizes the synthesis progress of MOF composites. The challenges and development prospects of MOF-based composites are also discussed.
Collapse
|
26
|
Yang Z, Ju X, Liao H, Meng Z, Ning H, Li Y, Chen Z, Long J. Preparation of Activated Carbon Doped with Graphene Oxide Porous Materials and Their High Gas Adsorption Performance. ACS OMEGA 2021; 6:19799-19810. [PMID: 34368567 PMCID: PMC8340399 DOI: 10.1021/acsomega.1c02416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
It is still a great challenge to develop a new porous carbon adsorbent with excellent separation performance and to recover low-concentration CH4 in coal mine gas. This work provides a new idea for the study of CH4 adsorption on activated carbon (AC) composites. Composite materials with microporous structures were prepared from coconut-shell activated carbon (CAC) doped with graphene oxide (GO) by a chemical activation process in this paper. The expansion and dissociation of GO at high temperatures indirectly improve the specific surface area (SSA) of the composite. The interlayer aggregation is reduced, the activation effect is improved, and a new low-cost adsorption material is prepared. The SSA of CAC-50 is more than 3000 m2·g-1. A high SSA and a narrow pore size distribution lead to a higher total adsorption capacity of CH4. The breakthrough test also confirmed that AC/GOs had a better adsorption capacity for CH4. The separation performance of the CH4/N2 mixture is not good at room temperature, which is due to the influence of a high SSA and average pore size. As a low-cost and rich material, CAC has a wide range of application prospects. The composite is a potential material for recovering low-concentration CH4 from the coal mine, which is worthy of attention. In the future, the selectivity of AC/GOs to CH4 can be increased by loading functional groups or modification.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
- Key
Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an, Shaanxi 710021, China
| | - Xiaoqian Ju
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Hongbin Liao
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Zhuoyue Meng
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Hailong Ning
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Yinyan Li
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Zhiping Chen
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Jiang Long
- Key
Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an, Shaanxi 710021, China
| |
Collapse
|
27
|
Liu S, Meng L, Fan J. Hollow Silica‐Based Porous Liquids Functionalized Mixed Matrix Membranes for CO
2
Capture. ChemistrySelect 2021. [DOI: 10.1002/slct.202100664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuo Liu
- College of chemical engineering Shaanxi Institute of Technology Xi'an 710300 P. R. China
| | - Long Meng
- College of chemical engineering Shaanxi Institute of Technology Xi'an 710300 P. R. China
| | - Jinwen Fan
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an 710021 P. R. China
| |
Collapse
|
28
|
Sarkar FK, Gupta A, Jamatia R, Anal JMH, Pal AK. A green and sustainable approach for the synthesis of 1,5-benzodiazepines and spirooxindoles in one-pot using a MIL-101(Cr) metal–organic framework as a reusable catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj03176g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Green and efficient protocols for the synthesis of 1,5-benzodiazepines and spirooxindoles were developed utilizing MIL-101(Cr) in SFRC and water as solvent respectively.
Collapse
Affiliation(s)
- Fillip Kumar Sarkar
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
- Department of Chemistry, St. Joseph's College (Autonomous), #36 Lal Bagh Main Road, Shanti Nagar, Bangaluru 560027, Karnataka, India
| | - Ramen Jamatia
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India
| | - Jasha Momo H. Anal
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Canal Road, Jammu 180001, India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|