1
|
Zhao Y, Li J, He Y, Wang X, Ma C, Zhan T, Chen L, Wang J, Ling Q, Wu X, Xiao Z, Cai J, Wu P. Efficient Hydrogen Production over Molybdenum Tungsten Bimetallic Oxide NF/PMo nW 12-n Catalyst on Nickel Foam. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12089-12096. [PMID: 38804669 DOI: 10.1021/acs.langmuir.4c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Developing inexpensive, efficient, and stable catalysts is crucial for reducing the cost of electrolytic hydrogen production. Recently, polyoxometalates (POMs) have gained attention and widespread use due to their excellent electrocatalytic properties. This study designed and synthesized three composite materials, NF/PMonW12-n, by using phosphomolybdic-tungstic heteropolyacids as precursors to grow in situ on nickel foam via the hydrothermal process and subsequent calcination. Then, their catalytic performances are systematically investigated. This work demonstrates that the NF/PMonW12-n catalysts generate more low valent oxides under the synergistic effect of Mo and W, further enhancing activity for hydrogen evolution reaction (HER). Among these electrocatalysts, NF/PMo6W6 exhibits the perfect HER performance, η10 is only 74 mV. It also shows great stability during long-term electrolysis. The current study introduces a fresh approach for producing electrocatalysts that are both cost-effective and highly efficient.
Collapse
Affiliation(s)
- Yanchao Zhao
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jincheng Li
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Yuzhou He
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Xingyue Wang
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Chunhui Ma
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Taozhu Zhan
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Lihong Chen
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jiani Wang
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Qian Ling
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Xuefei Wu
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co, Ltd., Dalian 116045, Liaoning, China
| | - Zicheng Xiao
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jinlong Cai
- Department of Electronic Science and Technology, School of Science, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Pingfan Wu
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| |
Collapse
|
2
|
Hou ZQ, Hu WP, Yang GH, Zhang ZX, Cheng TY, Huang KJ. Improving the electrocatalytic hydrogen evolution reaction through a magnetic field and hydrogen peroxide production co-assisted Ni/Fe 3O 4@poly(3,4-ethylene-dioxythiophene)/Ni electrode. J Colloid Interface Sci 2024; 654:1303-1311. [PMID: 37913719 DOI: 10.1016/j.jcis.2023.10.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The production of high-purity hydrogen using surplus electrical energy and abundant water resources has immense potential in mitigating the fossil energy crisis, as hydrogen fuel holds clean, pollution-free, and high-energy characteristics. However, the practical application of large-scale hydrogen production from water faces challenges such as high overpotentials, sluggish dynamics, and limited electrocatalytic lifetime associated with the hydrogen evolution reaction (HER). Here, we fabricated the sandwich structure of a Ni/Fe3O4@poly(3,4-ethylene-dioxythiophene)/Ni (Ni/Fe3O4@PEDOT/Ni) electrode and employed a strong magnet to obtain a magnetic electrode capable of achieving high-activity and durability for HER. Electrochemical analysis reveals that the activated magnetic electrode displays a significantly reduced overpotential and an extended electrocatalytic lifetime of 10 days. Notably, its stability is higher than that of non-magnetic Ni/Fe3O4/Ni and Ni/Fe3O4@PEDOT/Ni electrodes, primarily due to the support from magnetic force and the protective PEDOT layer. Moreover, the minute atomized droplets can form the H2O2 species in a moist environment, facilitating the formation of the NiO layer on the Ni surface, which plays a vital role in boosting catalytic activity. In conclusion, our magnetic electrode strategy, combined with the emergence of the NiO layer, offers valuable insights for the development of advanced HER electrodes.
Collapse
Affiliation(s)
- Zhi-Qiang Hou
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Wen-Ping Hu
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Guo-Hua Yang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Zi-Xuan Zhang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Tian-Yi Cheng
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
3
|
Muthukutty B, Doan TC, Yoo H. Binary metal oxide (NiO/SnO 2) composite with electrochemical bifunction: Detection of neuro transmitting drug and catalysis for hydrogen evolution reaction. ENVIRONMENTAL RESEARCH 2024; 241:117655. [PMID: 37980995 DOI: 10.1016/j.envres.2023.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The synergetic effect between dual oxides in binary metal oxides (BMO) makes them promising electrode materials for the detection of toxic chemicals, and biological compounds. In addition, the interaction between the cations and anions of diverse metals in BMO tends to create more oxygen vacancies which are beneficial for energy storage devices. However, specifically targeted synthesis of BMO is still arduous. In this work, we prepared a nickel oxide/tin oxide composite (NiO/SnO2) through a simple solvothermal technique. The crystallinity, specific surface area, and morphology were fully characterized. The synthesized BMO is used as a bifunctional electrocatalyst for the electrochemical detection of dopamine (DPA) and for the hydrogen evolution reaction (HER). As expected, the active metals in the NiO/SnO2 composite afforded a higher redox current at a reduced redox potential with a nanomolar level detection limit (4 nm) and excellent selectivity. Moreover, a better recovery rate is achieved in the real-time detection of DPA in human urine and DPA injection solution. Compared to other metal oxides, NiO/SnO2 composite afforded lower overpotential (157 mV @10 mA cm-2), Tafel slope (155 mV dec-1), and long-term durability, with a minimum retention rate. These studies conclude that NiO/SnO2 composite can act as a suitable electrode modifier for electrochemical sensing and the HER.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Thang Cao Doan
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
4
|
Zhang B, Qiu X, Chen T, Huang C, Yue X, Huang S. Construction of Heterostructure between Ni 17W 3 and WO 2 to Boost the Hydrogen Oxidation Reaction in Alkaline Medium. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38214041 DOI: 10.1021/acsami.3c13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The inferior intrinsic performance of Ni-based catalysts for the hydrogen oxidation reaction (HOR) in an alkaline medium seriously restricts the utilization of emerging anion-exchange membrane fuel cells (AEMFCs). This is because the hydrogen and hydroxyl binding energies on Ni need to be optimized. Although electrocatalysts obtained by alloying Ni with Mo or W reportedly exhibit enhanced activity, they are still far from industrial requirements based on unbalanced HBE and OHBE. Herein, we report to further enhance alkaline HOR activity by constructing a heterostructure between NiW alloy and metal oxide (Ni17W3/WO2), which is synthesized through solvothermal treatment combined with annealing. The as-fabricated reduced graphene oxide (rGO)-supported Ni17W3/WO2 (Ni17W3/WO2/rGO) exhibits state-of-the-art catalytic activity (current density of 2.9 mA cm-2 at 0.1 V vs RHE), faster kinetics (geometric kinetics current density of 4.0 mA cm-2 that can be comparable to Pt/C), and high stability (maintaining the current density for more than 80 h) toward HOR in alkaline media. The detailed characterizations reveal that the charge transfer across the boundary arising from constructing the as-prepared heterostructure tunes the electronic structures, ultimately facilitating the HOR process.
Collapse
Affiliation(s)
- Bin Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xinzhuo Qiu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Tingzhao Chen
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Churong Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Wang Y, Wang R, Duan S. Optimization Methods of Tungsten Oxide-Based Nanostructures as Electrocatalysts for Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111727. [PMID: 37299630 DOI: 10.3390/nano13111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Electrocatalytic water splitting, as a sustainable, pollution-free and convenient method of hydrogen production, has attracted the attention of researchers. However, due to the high reaction barrier and slow four-electron transfer process, it is necessary to develop and design efficient electrocatalysts to promote electron transfer and improve reaction kinetics. Tungsten oxide-based nanomaterials have received extensive attention due to their great potential in energy-related and environmental catalysis. To maximize the catalytic efficiency of catalysts in practical applications, it is essential to further understand the structure-property relationship of tungsten oxide-based nanomaterials by controlling the surface/interface structure. In this review, recent methods to enhance the catalytic activities of tungsten oxide-based nanomaterials are reviewed, which are classified into four strategies: morphology regulation, phase control, defect engineering, and heterostructure construction. The structure-property relationship of tungsten oxide-based nanomaterials affected by various strategies is discussed with examples. Finally, the development prospects and challenges in tungsten oxide-based nanomaterials are discussed in the conclusion. We believe that this review provides guidance for researchers to develop more promising electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Yange Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Sibin Duan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Shelte AR, Patil RD, Karan S, Bhadu GR, Pratihar S. Nanoscale Ni-NiO-ZnO Heterojunctions for Switchable Dehydrogenation and Hydrogenation through Modulation of Active Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24329-24345. [PMID: 37186804 DOI: 10.1021/acsami.3c00985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Catalysts consisting of metal-metal hydroxide/oxide interfaces are highly in demand for advanced catalytic applications as their multicomponent active sites will enable different reactions to occur in close proximity through synergistic cooperation when a single component fails to promote it. To address this, herein we disclosed a simple, scalable, and affordable method for synthesizing catalysts consisting of nanoscale nickel-nickel oxide-zinc oxide (Ni-NiO-ZnO) heterojunctions by a combination of complexation and pyrolytic reduction. The modulation of active sites of catalysts was achieved by varying the reaction conditions of pyrolysis, controlling the growth, and inhibiting the interlayer interaction and Ostwald ripening through the efficient use of coordinated acetate and amide moieties of Zn-Ni materials (ZN-O), produced by the reaction between hydrazine hydrate and Zn-Ni-acetate complexes. We found that the coordinated organic moieties are crucial for forming heterojunctions and their superior catalytic activity. We analyzed two antagonistic reactions to evaluate the performance of the catalysts and found that while the heterostructure of Ni-NiO-ZnO and their cooperative synergy were crucial for managing the effectiveness and selectivity of the catalyst for dehydrogenation of aryl alkanes/alkenes, they failed to enhance the hydrogenation of nitro arenes. The hydrogenation reaction was influenced by the shape, surface properties, and interaction of the hydroxide and oxide of both zinc and nickel, particularly accessible Ni(0). The catalysts showed functional group tolerance, multiple reusabilities, broad substrate applicability, and good activity for both reactions.
Collapse
Affiliation(s)
- Amishwar Raysing Shelte
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Daga Patil
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Karan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gopala R Bhadu
- Analytical and Environmental Science Division & Centralized Instrument Facility, Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Pratihar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Guo L, Xu W, Sun Z, Feng Y, Li C, Li H, Liang Q, Xu J, Sun HB. Highly dispersed Rh prepared by the in-situ etching-growth strategy for energy-saving hydrogen evolution. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Xu W, Ni X, Zhang L, Yang F, Peng Z, Huang Y, Liu Z. Tuning the electronic structure of tungsten oxide for enhanced hydrogen evolution reaction in alkaline electrolyte. ChemElectroChem 2022. [DOI: 10.1002/celc.202101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Xu
- Shanghai Institute of Microsystem and Information Technology state key laboratory of functional materials for informatics 865 Changning Road Shanghai CHINA
| | - Xingming Ni
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University school of physical science and technology CHINA
| | - Lunjia Zhang
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University school of physical science and technology CHINA
| | - Fan Yang
- ShanghaiTech University School of Physical Science and Technology school of Physical Science and Technology CHINA
| | - Zheng Peng
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University school of physical science and technology CHINA
| | - Yifan Huang
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University school of physical science and technology CHINA
| | - Zhi Liu
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Physical Science and Technology 393 Middle Huaxia Road, Pudong, Shanghai, 201210 201210 Shanghai CHINA
| |
Collapse
|
9
|
Moi CT, Bhowmick S, Qureshi M. Hierarchical FeO(OH)-CoCeV (Oxy)hydroxide as a Water Cleavage Promoter. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51151-51160. [PMID: 34693708 DOI: 10.1021/acsami.1c17470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The search for a bifunctional electrocatalyst having water cleavage promoting ability along with the operational stability to efficiently generate oxygen and hydrogen could lead to robust systems for applications. These fundamental ideas can be achieved by designing the morphology, tuning the electronic structure, and using dopants in their higher oxidation states. Herein, we have fabricated a binder-free FeO(OH)-CoCeV-layered triple hydroxide (LTH) bifunctional catalyst by a two-step hydrothermal method, in which the nanograin-shaped FeO(OH) coupled with CoCeV-LTH nanoflakes provides more electrocatalytically active sites and enhances the charge-transfer kinetics for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The composition-optimized electrocatalyst (FeO(OH)-Co0.5Ce0.05V0.15-LTH) acts as an efficient water cleavage composite by virtue of its favorable oxidation states leading to cyclic redox couples, which yields an overpotential of 53 mV for HER and 227 mV for OER to drive 10 mA/cm2 current density in 1 M KOH with a corresponding Tafel slope of 70 mV/dec for HER and 52 mV/dec for OER. Furthermore, for the overall water splitting reaction, the heterostructure FeO(OH)-Co0.5Ce0.05V0.15-LTH acts as a dual-functional electrocatalyst, which requires a cell voltage of 1.52 V versus RHE to drive 10 mA/cm2 current density.
Collapse
Affiliation(s)
- Ching Thian Moi
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sourav Bhowmick
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Mohammad Qureshi
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|