1
|
Fan W, Li C, Yu B, Liang T, Li J, Wei D, Meng K. Core-Sheath Structured Yarn for Biomechanical Sensing in Health Monitoring. Biomimetics (Basel) 2025; 10:304. [PMID: 40422134 DOI: 10.3390/biomimetics10050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
The rapidly evolving field of functional yarns has garnered substantial research attention due to their exceptional potential in enabling next-generation electronic textiles for wearable health monitoring, human-machine interfaces, and soft robotics. Despite notable advancements, the development of yarn-based strain sensors that simultaneously achieve high flexibility, stretchability, superior comfort, extended operational stability, and exceptional electrical performance remains a critical challenge, hindered by material limitations and structural design constraints. Here, we present a bioinspired, hierarchically structured core-sheath yarn sensor (CSSYS) engineered through an efficient dip-coating process, which synergistically integrates the two-dimensional conductive MXene nanosheets and one-dimensional silver nanowires (AgNWs). Furthermore, the sensor is encapsulated using a yarn-based protective layer, which not only preserves its inherent flexibility and wearability but also effectively mitigates oxidative degradation of the sensitive materials, thereby significantly enhancing long-term durability. Drawing inspiration from the natural architecture of plant stems-where the inner core provides structural integrity while a flexible outer sheath ensures adaptive protection-the CSSYS exhibits outstanding mechanical and electrical performance, including an ultralow strain detection limit (0.05%), an ultrahigh gauge factor (up to 744.45), rapid response kinetics (80 ms), a broad sensing range (0-230% strain), and exceptional cyclic stability (>20,000 cycles). These remarkable characteristics enable the CSSYS to precisely capture a broad spectrum of physiological signals, ranging from subtle arterial pulsations and respiratory rhythms to large-scale joint movements, demonstrating its immense potential for next-generation wearable health monitoring systems.
Collapse
Affiliation(s)
- Wenjing Fan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Cheng Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Bingping Yu
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Te Liang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Junrui Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Dapeng Wei
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Keyu Meng
- School of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
2
|
Meng F, Gao Y, Tao Q, Hu J, Yang X. Braided Coaxial Two-Electrode Triboelectric Thread with a Mesh Spacer for Highly Sensitive Respiration Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20013-20021. [PMID: 40107996 DOI: 10.1021/acsami.4c23075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Wearable medical devices play an increasingly important role in disease diagnosis and health management, and self-powered sensors based on the triboelectric principle provide new ideas for the development of wearable respiratory monitoring devices. To overcome the unstable shortage of reported triboelectric yarn with a single electrode and two freestanding electrodes, this work designed a coaxially braided triboelectric-sensing thread (CBTT) with a braided mesh spacer separating two-electrodes, which potentially meets the daily and long-term stable monitoring of human respiratory movements, and the effects of the braiding parameters of the mesh spacer on the performance of the CBTT were discussed. The results show that both the braiding process parameters of the mesh spacer and the specification of the mesh-braiding yarn affect the performance of the prepared CBTT. Among them, CBTT prepared by nylon monofilaments with a diameter of 0.2 mm and a 30° on-machine braiding angle had the best sensing performance under the designed strain range. In addition, for the respiratory state monitoring, the output response and the accuracy of CBTT with a mesh spacer are highest among three kinds of the studied sensing yarns with coaxially braiding structure. These results indicated the stable structure advantage of the seamless integration of a mesh spacer into the coaxially braiding two-electrodes triboelectric sensing yarn and brings new tools for user-friendly health monitoring.
Collapse
Affiliation(s)
- Fenye Meng
- Fashion & Art Design School, Jiaxing Vocational & Technical College, Jiaxing 314036, China
- Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University Shanghai 201620, China
| | - Yue Gao
- Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University Shanghai 201620, China
| | - Qingyun Tao
- Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University Shanghai 201620, China
| | - Jiyong Hu
- Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University Shanghai 201620, China
| | - Xudong Yang
- Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University Shanghai 201620, China
| |
Collapse
|
3
|
Divya S, Ramasundaram S, Aruchamy K, Oh TH, Levingstone T, Dunne N. Piezoelectric nanogenerators from sustainable biowaste source: Power harvesting and respiratory monitoring with electrospun crab shell powder-poly(vinylidene fluoride) composite nanofibers. J Colloid Interface Sci 2025; 679:324-334. [PMID: 39366262 DOI: 10.1016/j.jcis.2024.09.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Wearable piezoelectric nanogenerators (PENGs) are increasingly significant in healthcare and energy harvesting applications due to their ability to convert mechanical energy into electrical signals. In this study, we developed PENGs by incorporating crab shell powder (CS-NFs) into electrospun polyvinylidene fluoride (PVDF) nanofibers to enhance their piezoelectric properties. The PVDF-CS-NFs (PC-NFs) composites were evaluated for structural, thermal, and piezoelectric performance. The 1.5 wt% CS-NFs composite exhibited a notable improvement, with a maximum output voltage of 19 V under mechanical deformation, significantly higher than pristine PVDF NFs. Furthermore, the device demonstrated excellent sensitivity in real-time respiratory monitoring when applied to various body locations, including the chest, throat, and mask. Additionally, the PC-NFs-based PENGs were capable of charging a 2.2 µF capacitor to 2 V within 180 s and powering 56 LEDs. These results underscore the potential of using sustainable crab shell waste in biocompatible, eco-friendly piezoelectric devices for wearable sensors and energy harvesting applications.
Collapse
Affiliation(s)
- S Divya
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, India.
| | | | - Kanakaraj Aruchamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| | - Tanya Levingstone
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55, Dublin, Ireland; Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55, Dublin, Ireland; Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| |
Collapse
|
4
|
Wei Q, Cao Y, Yang X, Jiao G, Qi X, Wen G. Recent Developments in Electrospun Nanofiber-Based Triboelectric Nanogenerators: Materials, Structure, and Applications. MEMBRANES 2024; 14:271. [PMID: 39728721 DOI: 10.3390/membranes14120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs. It begins with an exploration of the fundamental principles behind electrospinning and triboelectricity, followed by a detailed examination of the application and performance of various polymer materials, including poly (vinylidene fluoride) (PVDF), polyamide (PA), thermoplastic polyurethane (TPU), polyacrylonitrile (PAN), and other significant polymers. Furthermore, this review analyzes the influence of diverse structural designs-such as fiber architectures, bionic configurations, and multilayer structures-on the performance of TENGs. Applications across self-powered devices, environmental energy harvesting, and wearable technologies are discussed. The review concludes by highlighting current challenges and outlining future research directions, offering valuable insights for researchers and engineers in the field.
Collapse
Affiliation(s)
- Qinglong Wei
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuying Cao
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiao Yang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guosong Jiao
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiaowen Qi
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guilin Wen
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Lu W, Wu G, Gan L, Zhang Y, Li K. Functional fibers/textiles for smart sensing devices and applications in personal healthcare systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39037195 DOI: 10.1039/d4ay01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Personalized medical diagnostics and monitoring have become increasingly important due to inefficient and delayed medical services of traditional centralized healthcare systems. To enhance the comfort and portability, flexible health monitoring systems have been developed in recent years. In particular, smart fiber/textile-based sensing devices show superiority for continuously monitoring personal health and vital physiological parameters owing to their light weight, good flexibility and inherent miniaturization. This review focuses on the recent advances in smart fiber/textile-based sensing devices for wearable electronic applications. First, fabrication strategies of smart sensing fibers/textiles are introduced in detail. In addition, sensing performances, working principles and applications of smart sensing fibers/textiles such as pressure sensing fibers/textiles, stretchable strain sensing fibers/textiles, temperature sensing fibers/textiles, and biofluid, gas and humidity sensing fibers/textiles in health monitoring are also reviewed systematically. Finally, we propose current challenges and future prospects in the area of fiber/textile-based sensors for wearable healthcare monitoring and diagnosis systems. In general, this review aims to give an overall perspective of the promising field by reviewing various fiber/textile-based sensing devices and highlighting the importance for researchers to keep up with the sequential exploration of soft sensing fibers/textiles for applications in wearable smart systems.
Collapse
Affiliation(s)
- Wangdong Lu
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China.
| | - Guoxin Wu
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China.
| | - Linli Gan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Li
- College of Science, China University of Petroleum, Beijing, Beijing 102249, China
| |
Collapse
|
6
|
Zhao H, Zhang L, Deng T, Li C. Microfluidic Sensing Textile for Continuous Monitoring of Sweat Glucose at Rest. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19605-19614. [PMID: 38568178 DOI: 10.1021/acsami.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.
Collapse
Affiliation(s)
- He Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tianbo Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Yao J, Zang W, Wang Y, Yu B, Jiang Y, Ning N, Tian M. Largely Enhanced Service Life and Energy Harvesting Stability of Dielectric Elastomer Generator by Designing and Optimizing Compliance of Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11595-11604. [PMID: 38381554 DOI: 10.1021/acsami.3c19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dielectric elastomer generator (DEG), which consists of a dielectric elastomer (DE) film sandwiched between two flexible electrodes (FEs), has the advantages of lightweight, high energy density, and high energy conversion efficiency, providing a simple and feasible solution for harvesting energy from human motion or nature. As crucial constituents of DEG, FEs are expected to possess excellent conductivity and compliance. Nevertheless, there is currently no quantitative characterization method for FE compliance. In addition, the impact mechanism of FE compliance on the energy harvesting performance and fatigue life of the DEG remains unclear. In this study, the dynamic mechanical property (DMP) was used to assess the compliance of FEs, and the quantitative characterization method of FE compliance was proposed. A series of silicone rubber electrodes (SREs) with different DMPs and compliance were designed and prepared, and the impact mechanism of FE compliance on the energy harvesting stability and fatigue life of the DEG was investigated. The results indicate that the key to achieving excellent FE compliance lies in reducing the difference in the magnitude of the complex modulus and phase angle between the FEs and DE, which can significantly reduce interfacial friction and extend the fatigue life of DEG. Benefiting from the enhanced FE compliance, the fatigue life and full-life energy density of the DEG device increase by 20.3 times and 26.4 times, respectively, compared with those of the commonly used carbon-based electrodes.
Collapse
Affiliation(s)
- Jiashuai Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenpeng Zang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Dinuwan
Gunawardhana KRS, Simorangkir RBVB, McGuinness GB, Rasel MS, Magre Colorado LA, Baberwal SS, Ward TE, O’Flynn B, Coyle SM. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems. ACS NANO 2024; 18:2649-2684. [PMID: 38230863 PMCID: PMC10832067 DOI: 10.1021/acsnano.3c09077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed.
Collapse
Affiliation(s)
- K. R. Sanjaya Dinuwan
Gunawardhana
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | | | | | - M. Salauddin Rasel
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | - Luz A. Magre Colorado
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Sonal S. Baberwal
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Tomás E. Ward
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
- School
of Computing, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Brendan O’Flynn
- Tyndall
National Institute, Lee Maltings Complex
Dyke Parade, T12R5CP Cork, Ireland
| | - Shirley M. Coyle
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| |
Collapse
|
9
|
Szewczyk PK, Busolo T, Kar-Narayan S, Stachewicz U. Wear-Resistant Smart Textiles Using Nylon-11 Triboelectric Yarns. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56575-56586. [PMID: 37985370 DOI: 10.1021/acsami.3c14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The ever-increasing demand for self-powered systems such as glucose biosensors and mixed reality devices has sparked significant interest in triboelectric generators, which hold large potential as renewable energy solutions. Our study explores new methods for integrating energy-harvesting capabilities into smart textiles by developing strong and efficient yarns that can convert mechanical energy into electrical energy through a triboelectric effect. Specifically, we focused on Nylon-11 (PA11), a material known for its crystalline structure well-suited for generating a powerful triboelectric response. To achieve this, we created triboelectric yarns by electrospinning PA11 fibers onto conductive carbon yarns, enabling energy-harvesting applications. Extensive testing demonstrated that these yarns possess exceptional durability, surpassing real-life usage requirements while experiencing minimal degradation. Additionally, we developed a prototype haptic device by interweaving tribopositive PA11 and tribonegative poly(vinylidene fluoride) (PVDF) triboelectric yarns. Our research has successfully yielded durable and efficient yarns with strong energy-harvesting capabilities, opening up possibilities for integrating smart textiles into practical scenarios. These technologies are promising steps to achieve greener and more reliable self-powered systems.
Collapse
Affiliation(s)
- Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Tommaso Busolo
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Sohini Kar-Narayan
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| |
Collapse
|
10
|
Zou S, Li D, He C, Wang X, Cheng D, Cai G. Scalable Fabrication of an MXene/Cotton/Spandex Yarn for Intelligent Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10994-11003. [PMID: 36789744 DOI: 10.1021/acsami.2c18425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable sensors based on MXene have attracted attention, but the large-scale production of MXene-based textile materials is still a huge challenge. Hereby, we report a facile way of incorporating MXene into the traditional yarn manufacturing process by dipping and drying MXene into cotton rovings followed by fabricating an MXene/cotton/spandex yarn (MCSY) using friction spinning. The MXene in the MCSY brings electrical conductivity to the MCSY with well-preserved mechanical properties. Due to its wide sensing range from 408 Pa to 10.2 kPa, the MCSY can be used to monitor human motions in real time, such as writing, walking, and wrist bending. In addition, the MCSY exhibits a stable compression sensing performance even under different strains. Furthermore, the MCSY can be sewn into clothing or onto a mask as an embroidery pattern to develop sensing device prototypes capable of detecting touching or breathing. The reported manufacturing technology of the MCSY will lead to an industrial-scale development of MXene-based e-textiles for wearable applications.
Collapse
Affiliation(s)
- Sizhuo Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Daiqi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Chengen He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Xin Wang
- Centre for Materials Innovation and Future Fashion, School of Fashion and Textiles, RMIT University, Brunswick 3056, Australia
| | - Deshan Cheng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Guangming Cai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| |
Collapse
|
11
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
12
|
Peng Y, Wang Z, Shao Y, Xu J, Wang X, Hu J, Zhang KQ. A Review of Recent Development of Wearable Triboelectric Nanogenerators Aiming at Human Clothing for Energy Conversion. Polymers (Basel) 2023; 15:polym15030508. [PMID: 36771809 PMCID: PMC9918950 DOI: 10.3390/polym15030508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Research in the field of wearable triboelectric generators is increasing, and pioneering research into real applications of this technology is a growing need in both scientific and industry research. In addition to the two key characteristics of wearable triboelectric generators of flexibility and generating friction, features such as softness, breathability, washability, and wear resistance have also attracted a lot of attention from the research community. This paper reviews wearable triboelectric generators that are used in human clothing for energy conversion. The study focuses on analyzing fabric structure and examining the integration method of flexible generators and common fibers/yarns/textiles. Compared to the knitting method, the woven method has fewer restrictions on the flexibility and thickness of the yarn. Remaining challenges and perspectives are also investigated to suggest how to bring fully generated clothing to practical applications in the near future.
Collapse
Affiliation(s)
- Yu Peng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- College of Advanced Material Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Zheshan Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yunfei Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jingjing Xu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou 215123, China
| | - Xiaodong Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianchen Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Correspondence: (J.H.); (K.-Q.Z.)
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Correspondence: (J.H.); (K.-Q.Z.)
| |
Collapse
|
13
|
Cross-Linked Gamma Polyglutamic Acid/Human Hair Keratin Electrospun Nanofibrous Scaffolds with Excellent Biocompatibility and Biodegradability. Polymers (Basel) 2022; 14:polym14245505. [PMID: 36559871 PMCID: PMC9781754 DOI: 10.3390/polym14245505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, human hair keratin has been widely studied and applied in clinical fields due to its good histocompatibility, biocompatibility, and biodegradability. However, the regenerated keratin from human hair cannot be electrospun alone because of its low molecular weight. Herein, gamma polyglutamic acid (γ-PGA) was first selected to fabricate smooth and uniform γ-PGA/keratin composite scaffolds with excellent biocompatibility and biodegradability by electrospinning technology and a chemical cross-linking method in this study. The effect of electrospinning parameters on the structure and morphology, the mechanism of chemical cross-linking, biocompatibility in vitro cell culture experiments, and biodegradability in phosphate-buffered saline buffer solution and trypsin solution of the γ-PGA/keratin electrospun nanofibrous scaffolds (ENS) was studied. The results show that the cross-linked γ-PGA/keratin ENSs had excellent water stability and biodegradability. The γ-PGA/keratin ENSs showed better biocompatibility in promoting cell adhesion and cell growth compared with the γ-PGA ENSs. It is expected that γ-PGA/keratin ENSs will be easily and significantly used in tissue engineering to repair or regenerate materials.
Collapse
|
14
|
Chen Y, Ling Y, Yin R. Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:9716. [PMID: 36560085 PMCID: PMC9781987 DOI: 10.3390/s22249716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
With the demand of a sustainable, wearable, environmentally friendly energy source, triboelectric nanogenerators (TENGs) were developed. TENG is a promising method to convert mechanical energy from motion into electrical energy. The combination of textile and TENG successfully enables wearable, self-driving electronics and sensor systems. As the primary unit of textiles, fiber and yarn become the focus of research in designing of textile-TENGs. In this review, we introduced the preparation, structure, and design strategy of fiber/yarn TENGs in recent research. We discussed the structure design and material selection of fiber/yarn TENGs according to the different functions it realizes. The fabrication strategy of fiber/yarn TENGs into textile-TENG are provided. Finally, we summarize the main applications of existing textile TENGs and give forward prospects for their subsequent development.
Collapse
Affiliation(s)
| | | | - Rong Yin
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2039. [PMID: 35745378 PMCID: PMC9229712 DOI: 10.3390/nano12122039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Flexible electronic textiles are the future of wearable technology with a diverse application potential inspired by the Internet of Things (IoT) to improve all aspects of wearer life by replacing traditional bulky, rigid, and uncomfortable wearable electronics. The inherently prominent characteristics exhibited by textile substrates make them ideal candidates for designing user-friendly wearable electronic textiles for high-end variant applications. Textile substrates (fiber, yarn, fabric, and garment) combined with nanostructured electroactive materials provide a universal pathway for the researcher to construct advanced wearable electronics compatible with the human body and other circumstances. However, e-textiles are found to be vulnerable to physical deformation induced during repeated wash and wear. Thus, e-textiles need to be robust enough to withstand such challenges involved in designing a reliable product and require more attention for substantial advancement in stability and washability. As a step toward reliable devices, we present this comprehensive review of the state-of-the-art advances in substrate geometries, modification, fabrication, and standardized washing strategies to predict a roadmap toward sustainability. Furthermore, current challenges, opportunities, and future aspects of durable e-textiles development are envisioned to provide a conclusive pathway for researchers to conduct advanced studies.
Collapse
Affiliation(s)
| | - Eglė Kumpikaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Str. 56, LT-51424 Kaunas, Lithuania;
| |
Collapse
|
16
|
Aazem I, Mathew DT, Radhakrishnan S, Vijoy KV, John H, Mulvihill DM, Pillai SC. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics. RSC Adv 2022; 12:10545-10572. [PMID: 35425002 PMCID: PMC8987949 DOI: 10.1039/d2ra01088g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023] Open
Abstract
Stretchable Triboelectric Nanogenerators (TENGs) for wearable electronics are in significant demand in the area of self-powered energy harvesting and storage devices. Designing a suitable electrode is one of the major challenges in developing a fully wearable TENG device and requires research aimed at exploring new materials and methods to develop stretchable electrodes. This review article is dedicated to presenting recent developments in exploring new materials for flexible TENGs with special emphasis on electrode components for wearable devices. In addition, materials that can potentially deliver properties such as transparency, self-healability and water-resistance are also reviewed. Inherently stretchable materials and a combination of soft and rigid materials including polymers and their composites, inorganic and ceramic materials, 2D materials and carbonaceous nanomaterials are also addressed. Additionally, various fabrication strategies and geometrical patterning techniques employed for designing highly stretchable electrodes for wearable TENG devices are also explored. The challenges reflected in the present approaches as well as feasible suggestions for future advancements are discussed. Schematic illustration of the general requirements of components of a wearable TENG.![]()
Collapse
Affiliation(s)
- Irthasa Aazem
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo Ash Lane, Sligo F91 YW50 Ireland .,Health and Biomedical (HEAL) Strategic Research Centre, Atlantic Technological University, ATU Sligo Ash Lane Sligo F91 YW50 Ireland
| | - Dhanu Treasa Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - Sithara Radhakrishnan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - K V Vijoy
- International School of Photonics, Cochin University of Science and Technology Kerala 682022 India
| | - Honey John
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - Daniel M Mulvihill
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow Glasgow G12 8QQ UK
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo Ash Lane, Sligo F91 YW50 Ireland .,Health and Biomedical (HEAL) Strategic Research Centre, Atlantic Technological University, ATU Sligo Ash Lane Sligo F91 YW50 Ireland
| |
Collapse
|
17
|
Stachewicz U. Application of Electrospun Polymeric Fibrous Membranes as Patches for Atopic Skin Treatments. ADVANCES IN POLYMER SCIENCE 2022. [DOI: 10.1007/12_2022_139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Liu Z, Fan J, Zou M, Ma X, Niu Y, Gong G. Preparation of Polyvinyl alcohol Hydrogel Braided Wire Reinforced by Soluble starch Granules Based on Magnetoionic induction and Piezoelectric sensing. ChemistrySelect 2021. [DOI: 10.1002/slct.202102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiqiang Liu
- School of Materials Science and Chemical Engineering Harbin University of Science and Technology 150080 Harbin China
| | - Jinqiang Fan
- School of Materials Science and Chemical Engineering Harbin University of Science and Technology 150080 Harbin China
| | - Minggui Zou
- School of Materials Science and Chemical Engineering Harbin University of Science and Technology 150080 Harbin China
| | - Xu Ma
- School of Materials Science and Chemical Engineering Harbin University of Science and Technology 150080 Harbin China
| | - Yan Niu
- School of Materials Science and Chemical Engineering Harbin University of Science and Technology 150080 Harbin China
| | - Guifen Gong
- School of Materials Science and Chemical Engineering Harbin University of Science and Technology 150080 Harbin China
| |
Collapse
|
19
|
Knapczyk-Korczak J, Stachewicz U. Biomimicking spider webs for effective fog water harvesting with electrospun polymer fibers. NANOSCALE 2021; 13:16034-16051. [PMID: 34581383 DOI: 10.1039/d1nr05111c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fog is an underestimated source of water, especially in regions where conventional methods of water harvesting are impossible, ineffective, or challenging for low-cost water resources. Interestingly, many novel methods and developments for effective water harvesting are inspired by nature. Therefore, in this review, we focused on one of the most researched and developing forms of electrospun polymer fibers, which successfully imitate many fascinating natural materials for instance spider webs. We showed how fiber morphology and wetting properties can increase the fog collection rate, and also observed the influence of fog water collection parameters on testing their efficiency. This review summarizes the current state of the art on water collection by fibrous meshes and offers suggestions for the testing of new designs under laboratory conditions by classifying the parameters already reported in experimental set-ups. This is extremely important, as fog collection under laboratory conditions is the first step toward creating a new water harvesting technology. This review summarizes all the approaches taken so far to develop the most effective water collection systems based on electrospun polymer fibers.
Collapse
Affiliation(s)
- Joanna Knapczyk-Korczak
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
20
|
Dolez PI. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. SENSORS (BASEL, SWITZERLAND) 2021; 21:6297. [PMID: 34577509 PMCID: PMC8470160 DOI: 10.3390/s21186297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022]
Abstract
A major challenge with current wearable electronics and e-textiles, including sensors, is power supply. As an alternative to batteries, energy can be harvested from various sources using garments or other textile products as a substrate. Four different energy-harvesting mechanisms relevant to smart textiles are described in this review. Photovoltaic energy harvesting technologies relevant to textile applications include the use of high efficiency flexible inorganic films, printable organic films, dye-sensitized solar cells, and photovoltaic fibers and filaments. In terms of piezoelectric systems, this article covers polymers, composites/nanocomposites, and piezoelectric nanogenerators. The latest developments for textile triboelectric energy harvesting comprise films/coatings, fibers/textiles, and triboelectric nanogenerators. Finally, thermoelectric energy harvesting applied to textiles can rely on inorganic and organic thermoelectric modules. The article ends with perspectives on the current challenges and possible strategies for further progress.
Collapse
Affiliation(s)
- Patricia I Dolez
- Department of Human Ecology, University of Alberta, Edmonton, AB T6G 2N1, Canada
| |
Collapse
|
21
|
Yan T, Shi Y, Zhuang H, Lin Y, Lu D, Cao S, Zhu L. Electrospinning Mechanism of Nanofiber Yarn and Its Multiscale Wrapping Yarn. Polymers (Basel) 2021; 13:polym13183189. [PMID: 34578090 PMCID: PMC8471309 DOI: 10.3390/polym13183189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
To analyze the feasibility of electrospinning nanofiber yarn using a wrapping yarn forming device, electrospun nanofiber-wrapped yarns and multiscale yarns were prepared by self-made equipment. The relationship between the surface morphology and properties of yarn and its preparation process was studied. The process parameters were adjusted, and it was found that some nanofibers formed Z-twisted yarns, while others showed exposed cores. To analyze the forming mechanism of electrospun nanofiber-wrapped yarn, the concept of winding displacement difference in the twisted yarn core A was introduced. The formation of nanofiber-wrapped structural yarns was discussed using three values of A. The starting point of each twist was the same position when A = 0 with a constant corner angle β. However, the oriented nanofiber broke or was pulled out from the gripping point when it was twisted, and it appeared disordered. The forming process of electrospun nanofiber-wrapped yarn displayed some unique phenomena, including the emission of directional nanofibers during collection, fiber non-continuity, and twist angle non-uniformity. The conclusions of this research have theoretical and practical value to guide the industrial preparation of nanofiber yarns and their wrapped yarns.
Collapse
Affiliation(s)
- Taohai Yan
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; (Y.S.); (H.Z.); (Y.L.)
- Correspondence: ; Tel.: +86-0591-8376-0411
| | - Yajing Shi
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; (Y.S.); (H.Z.); (Y.L.)
| | - Huimin Zhuang
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; (Y.S.); (H.Z.); (Y.L.)
| | - Yu Lin
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; (Y.S.); (H.Z.); (Y.L.)
| | - Dongdong Lu
- Key Lab for Sport Shoes Upper Materials of Fujian Province, Fujian Huafeng New Material Co., Ltd., Putian 351199, China;
| | - Shengbin Cao
- School of Materials Science, Shanghai Dianji University, Shanghai 200003, China;
| | - Lvtao Zhu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
22
|
Khoso NA, Jiao X, GuangYu X, Tian S, Wang J. Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat. RSC Adv 2021; 11:16675-16687. [PMID: 35479176 PMCID: PMC9032048 DOI: 10.1039/d0ra10783b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/22/2021] [Indexed: 01/11/2023] Open
Abstract
The demand for highly flexible and self-powered wearable textile devices has increased in recent years. Graphene coated textile-based wearable devices have been used for energy harvesting and storage due to their outstanding mechanical, electrical and electronic properties. However, the use of metal based nanocomposites is limited in textiles, due to their poor bending, fixation, and binding on textiles. We present here reduced graphene oxide (rGO) as an n-type and conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a p-type material for a wearable thermoelectric nanogenerator (TEG) using a (pad-dry-cure) technique. We developed a reduced graphene oxide (rGO) coated textile-based wearable TEG for energy harvesting from low-grade human body heat. The conductive polymer (PEDOT:PSS) and (rGO) nanocomposite were coated using a layer by layer approach. The resultant fabric showed higher weight pickup of 60-80%. The developed textile based TEG device showed an enhanced Seebeck coefficient of (25-150 μV K-1), and a power factor of (2.5-60 μW m-1 K-1). The developed TE device showed a higher potential to convert the low-grade body heat into electrical energy, between the human body temperature of (36.5 °C) and an external environment of (20.0 ± 5 °C) with a temperature difference of (2.5-16.5 °C). The wearable textile-based TEG is capable of producing an open circuit output voltage of 12.5-119.5 mV at an ambient fixed temperature of (20 °C). The rGO coated textile fabric also showed reduced electrical sheet resistance by increasing the number of dyeing cycles (10) and increased with the number of (20) washing cycles. The developed reduced graphene oxide (rGO) coated electrodes showed a sheet resistance of 185-45 kΩ and (15 kΩ) for PEDOT:PSS-rGO nanocomposites respectively. Furthermore, the mechanical performance of the as coated textile fabric was enhanced from (20-80 mPa) with increasing number of padding cycles. The thermoelectric performance was significantly improved, without influencing the breath-ability and comfort properties of the resultant fabric. This study presents a promising approach for the fabrication of PEDOT:PSS/rGO nano-hybrids for textile-based wearable thermoelectric generators (TEGs) for energy harvesting from low-grade body heat.
Collapse
Affiliation(s)
- Nazakat Ali Khoso
- College of Materials and Textiles, Zhejiang Sci-Tech University Hangzhou Zhejiang PR China
| | - Xie Jiao
- College of Materials and Textiles, Zhejiang Sci-Tech University Hangzhou Zhejiang PR China
| | - Xu GuangYu
- College of Materials and Textiles, Zhejiang Sci-Tech University Hangzhou Zhejiang PR China
| | - Sun Tian
- Shanghai Institute of Ceramics, Chinese Academy Sciences (CAS) Shanghai PR China
| | - JiaJun Wang
- School of Art and Design, Zhejiang Sci-Tech University Hangzhou Zhejiang PR China
| |
Collapse
|