1
|
d’Alessandro N, Coccia F, Vitali LA, Rastelli G, Cinosi A, Mascitti A, Tonucci L. Cu-ZnO Embedded in a Polydopamine Shell for the Generation of Antibacterial Surgical Face Masks. Molecules 2024; 29:4512. [PMID: 39339506 PMCID: PMC11434467 DOI: 10.3390/molecules29184512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
A new easy protocol to functionalize the middle layer of commercial surgical face masks (FMs) with Zn and Cu oxides is proposed in order to obtain antibacterial personal protective equipment. Zinc and copper oxides were synthesized embedded in a polydopamine (PDA) shell as potential antibacterial agents; they were analyzed by XRD and TEM, revealing, in all the cases, the formation of metal oxide nanoparticles (NPs). PDA is a natural polymer appreciated for its simple and rapid synthesis, biocompatibility, and high functionalization; it is used in this work as an organic matrix that, in addition to stabilizing NPs, also acts as a diluent in the functionalization step, decreasing the metal loading on the polypropylene (PP) surface. The functionalized middle layers of the FMs were characterized by SEM, XRD, FTIR, and TXRF and tested in their bacterial-growth-inhibiting effect against Klebsiella pneumoniae and Staphylococcus aureus. Among all functionalizing agents, Cu2O-doped-ZnO NPs enclosed in PDA shell, prepared by an ultrasound-assisted method, showed the best antibacterial effect, even at low metal loading, without changing the hydrophobicity of the FM. This approach offers a sustainable solution by prolonging FM lifespan and reducing material waste.
Collapse
Affiliation(s)
- Nicola d’Alessandro
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesca Coccia
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Luca Agostino Vitali
- School of Pharmacy, University of Camerino via Gentile III da Varano, 62032 Camerino, Italy;
| | - Giorgia Rastelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Amedeo Cinosi
- G.N.R. s.r.l., Via Torino 7, 28010 Agrate Conturbia, Italy;
| | - Andrea Mascitti
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
| | - Lucia Tonucci
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
3
|
Idriss H, Kutová A, Rimpelová S, Elashnikov R, Kolská Z, Lyutakov O, Švorčík V, Slepičková Kasálková N, Slepička P. Polymer-Metal Bilayer with Alkoxy Groups for Antibacterial Improvement. Polymers (Basel) 2024; 16:508. [PMID: 38399886 PMCID: PMC10892951 DOI: 10.3390/polym16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Many bio-applicable materials, medical devices, and prosthetics combine both polymer and metal components to benefit from their complementary properties. This goal is normally achieved by their mechanical bonding or casting only. Here, we report an alternative easy method for the chemical grafting of a polymer on the surfaces of a metal or metal alloys using alkoxy amine salt as a coupling agent. The surface morphology of the created composites was studied by various microscopy methods, and their surface area and porosity were determined by adsorption/desorption nitrogen isotherms. The surface chemical composition was also examined by various spectroscopy techniques and electrokinetic analysis. The distribution of elements on the surface was determined, and the successful bonding of the metal/alloys on one side with the polymer on the other by alkoxy amine was confirmed. The composites show significantly increased hydrophilicity, reliable chemical stability of the bonding, even interaction with solvent for thirty cycles, and up to 95% less bacterial adhesion for the modified samples in comparison with pristine samples, i.e., characteristics that are promising for their application in the biomedical field, such as for implants, prosthetics, etc. All this uses universal, two-step procedures with minimal use of energy and the possibility of production on a mass scale.
Collapse
Affiliation(s)
- Hazem Idriss
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Anna Kutová
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Roman Elashnikov
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Zdeňka Kolská
- Faculty of Science, J. E. Purkyně University, 400 96 Usti nad Labem, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Petr Slepička
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
4
|
Kafkopoulos G, Karakurt E, Martinho RP, Duvigneau J, Vancso GJ. Engineering of Adhesion at Metal-Poly(lactic acid) Interfaces by Poly(dopamine): The Effect of the Annealing Temperature. ACS APPLIED POLYMER MATERIALS 2023; 5:5370-5380. [PMID: 37469884 PMCID: PMC10353006 DOI: 10.1021/acsapm.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/21/2023]
Abstract
Control over adhesion at interfaces from strong bonding to release between thermoplastic polymers (TPs) and metal oxides is highly significant for polymer composites. In this work, we showcase a simple and inexpensive method to tune adhesion between a TP of growing interest, poly(lactic acid) (PLA), and two commercial metal alloys, based on titanium and stainless steel. This is realized by coating titanium and stainless steel wires with polydopamine (PDA), thermally treating them under vacuum at temperatures ranging from 25 to 250 °C, and then comolding them with PLA to form pullout specimens for adhesion tests. Pullout results indicate that PDA coatings treated at low temperatures up to a given threshold significantly improve adhesion between PLA and the metals. Conversely, at higher PDA annealing temperatures beyond the threshold, interfacial bonding gradually declines. The excellent control over interfacial adhesion is attributed to the thermally induced transformation of PDA. In this work, we show using thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transform infrared, and 13C solid-state NMR that the extent of the thermal transformation is dependent on the annealing temperature. By selecting the annealing temperature, we vary the concentration of primary amine and hydroxyl groups in PDA, which influences adhesion at the metal/PLA interface. We believe that these findings contribute to optimizing and broadening the applications of PDA in composite materials.
Collapse
Affiliation(s)
- Georgios Kafkopoulos
- Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC), University of Twente, Enschede 7522 NB, The Netherlands
| | - Ezgi Karakurt
- Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC), University of Twente, Enschede 7522 NB, The Netherlands
| | - Ricardo P Martinho
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Joost Duvigneau
- Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC), University of Twente, Enschede 7522 NB, The Netherlands
| | - G Julius Vancso
- Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC), University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
5
|
Milatz R, Duvigneau J, Vancso GJ. Dopamine-Based Copolymer Bottlebrushes for Functional Adhesives: Synthesis, Characterization, and Applications in Surface Engineering of Antifouling Polyethylene. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37392471 PMCID: PMC10360033 DOI: 10.1021/acsami.3c05124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Nonpolar materials like polyolefins are notoriously challenging substrates for surface modification. However, this challenge is not observed in nature. Barnacle shells and mussels, for example, utilize catechol-based chemistry to fasten themselves onto all kinds of materials, such as boat hulls or plastic waste. Here, a design is proposed, synthesized, and demonstrated for a class of catechol-containing copolymers (terpolymers) for surface functionalization of polyolefins. Dopamine methacrylamide (DOMA), a catechol-containing monomer, is incorporated into a polymer chain together with methyl methacrylate (MMA) and 2-(2-bromoisobutyryloxy)ethyl methacrylate (BIEM). DOMA serves as adhesion points, BIEM provides functional sites for subsequent "grafting from" reactions, and MMA provides the possibility for concentration and conformation adjustment. First, the adhesive capabilities of DOMA are demonstrated by varying its content in the copolymer. Then, terpolymers are spin-coated on model Si substrates. Subsequently, the atom transfer initiator (ATRP) initiating group is used to graft a poly(methyl methacrylate) (PMMA) layer from the copolymers, with 40% DOMA content providing a coherent PMMA film. To demonstrate functionalization on a polyolefin substrate, the copolymer is spin-coated on high-density polyethylene (HDPE) substrates. A POEGMA layer is grafted from the ATRP initiator sites on the terpolymer chain on the HDPE films to provide antifouling characteristics. Static contact angle values and Fourier transform infrared (FTIR) spectra confirm the presence of POEGMA on the HDPE substrate. Finally, the anticipated antifouling functionality of grafted POEGMA is demonstrated by observing the inhibition of nonspecific adsorption of the fluorescein-modified bovine serum albumin (BSA) protein. The poly(oligoethylene glycol methacrylate) POEGMA layers grafted on 30% DOMA-containing copolymers on HDPE show optimal antifouling performance exhibiting a 95% reduction of BSA fluorescence compared to nonfunctionalized and surface-fouled polyethylene. These results demonstrate the successful utilization of catechol-based materials for functionalizing polyolefin surfaces.
Collapse
Affiliation(s)
- Roland Milatz
- Department of Materials Science and Technology of Polymers, and Department of Sustainable Polymer Chemistry, University of Twente, Enschede 7522 NB, The Netherlands
- DPI, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Joost Duvigneau
- Department of Materials Science and Technology of Polymers, and Department of Sustainable Polymer Chemistry, University of Twente, Enschede 7522 NB, The Netherlands
| | - Gyula Julius Vancso
- Department of Materials Science and Technology of Polymers, and Department of Sustainable Polymer Chemistry, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
6
|
Melnikov P, Bobrov A, Marfin Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers (Basel) 2022; 14:polym14204448. [PMID: 36298026 PMCID: PMC9611646 DOI: 10.3390/polym14204448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles (at least in one dimension) are dispersed in the polymer matrix. These properties include increased mechanical strength and durability, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. The materials created can have a wide range of applications, such as biomimetic materials and technologies, smart materials, renewable energy sources, packaging, etc. This article reviews the usage of composites as a matrix for the optical sensors and biosensors. It highlights several methods that have been used to enhance performance and properties by optimizing the filler. It shows the main methods of combining indicator dyes with the material of the sensor matrix. Furthermore, the role of co-fillers or a hybrid filler in a polymer composite system is discussed, revealing the great potential and prospect of such matrixes in the field of fine properties tuning for advanced applications.
Collapse
Affiliation(s)
- Pavel Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
- Correspondence:
| | - Alexander Bobrov
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
| | - Yuriy Marfin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
- Pacific National University, 136 Tikhookeanskaya Street, 680035 Khabarovsk, Russia
| |
Collapse
|
7
|
Wang H, Li Y, Chi Y, Wang C, Ma Q, Yang X. A novel Cu:Al nanocluster-based electrochemiluminescence system with CeO2 NPs/polydopamine biomimetic film for BRCA detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Krapivko AL, Ryabkov YD, Drozdov FV, Yashtulov NA, Zaitsev NK, Muzafarov AM. Chemical Structural Coherence Principle on Polymers for Better Adhesion. Polymers (Basel) 2022; 14:polym14142829. [PMID: 35890604 PMCID: PMC9325137 DOI: 10.3390/polym14142829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Composite materials are the most variative type of materials employed in almost every task imaginable. In the present study, a synthesis of a novel perfluoroalkyltriethoxysilane is reported to be used in creating composites with polyhexafluoropropylene—one of the most indifferent and adhesion-lacking polymers existing. The mechanism of adhesion of hexafluoropropylene is proved to be due to chemical structural coherence of perfluoroalkyltriethoxysilane to a link of polyhexafluoropropylene chain. The ability of perfluoroalkyltriethoxysilane to attach to surfaces was studied by FT-IR spectroscopy of modified glass microspheres. Although the perfluoroalkyltriethoxysilane surface modifier allowed partial adhesion of polyhexafluoropropylene, some detachment took place; therefore, the surface nanostructuring was used to increase its specific area by aluminum foil anodizing. An anodized aluminum surface was studied by scanning electron microscopy. The resulting composite consisting of anodized aluminum, perfluoroalkyl surface modifier, and polyhexafluoropropylene layer was proved to be stable, showed no signs of detachment, and is a promising material for usage in harsh environments.
Collapse
Affiliation(s)
- Alena L. Krapivko
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Prospect, 86, 119571 Moscow, Russia; (Y.D.R.); (N.A.Y.)
- Correspondence:
| | - Yegor D. Ryabkov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Prospect, 86, 119571 Moscow, Russia; (Y.D.R.); (N.A.Y.)
| | - Fedor V. Drozdov
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya St., 70, 117393 Moscow, Russia; (F.V.D.); (A.M.M.)
| | - Nikolay A. Yashtulov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Prospect, 86, 119571 Moscow, Russia; (Y.D.R.); (N.A.Y.)
| | | | - Aziz M. Muzafarov
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya St., 70, 117393 Moscow, Russia; (F.V.D.); (A.M.M.)
| |
Collapse
|
9
|
Augustine N, Putzke S, Janke A, Simon F, Drechsler A, Zimmerer CA. Dopamine-Supported Metallization of Polyolefins─A Contribution to Transfer to an Eco-friendly and Efficient Technological Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5921-5931. [PMID: 35040627 DOI: 10.1021/acsami.1c19575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metallization is a common method to produce functional or decorative coatings on plastic surfaces. State-of-the-art technologies require energy-intensive process steps and the use of organic solvents or hazardous substances to achieve sufficient adhesion between the polymer and the metal layer. The present study introduces a facile bio-inspired "green" approach to improve this technology: the use of dopamine, a small-molecule mimic of the main structural component of adhesive mussel proteins, as an adhesion promoter. To understand dopamine adhesion and identify conditions for successful metallization, polyethylene surfaces were dip-coated with dopamine and metallized with nickel by electroless metallization; essential parameters such as temperature, pH value, concentration of dopamine and buffer, and the deposition time were systematically varied. Effects of adding oxidants to the dopamine bath, cross-linking, thermal and UV post-treatment of the polydopamine film, and plasma pretreatment of the substrate were investigated. The properties of the polydopamine layer and the quality of the metal film were studied by physico-chemical, optical, and mechanical techniques. It was shown that simple dip-coating of the substrate with dopamine under optimal conditions is sufficient to support metal layers with a good optical quality. Technologically relevant metal layer quality and adhesion were obtained with annealed and UV-treated polydopamine films and enhanced by plasma pretreatment of the substrate. The study shows that dopamine provides a new interfacial design for plastic metallization that can reduce energy consumption, use of hazardous substances, and reject rate during manufacturing. The results are essential findings for further technological developments of a universal platform to promote adhesion between plastics and metal or potentially also other material classes, enabling economic material development and more eco-friendly applications.
Collapse
Affiliation(s)
- Nithyarani Augustine
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Sascha Putzke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Frank Simon
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Astrid Drechsler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Cordelia A Zimmerer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
10
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|