1
|
Chen LD, Zhang D, Li ZH, Li Z, Cai S, Cao SH, Li YQ. Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410237. [PMID: 39831821 DOI: 10.1002/smll.202410237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement. Upon binding with the target analyte, the sensor produces homologous yet independent optoelectronic dual-signal responses that cross-validate one another, providing highly accurate analysis even in the presence of multiple interferences. The platform demonstrates precise, adaptable detection with linear responses to extracellular pH changes at the single-cell level, making it a versatile tool for a range of biosensing applications. By enabling the functionalization of fluorescent interfaces in the "hotspots" of metal nanopores, this interface design strategy efficiently exploits the enhancement of electromagnetic fields to achieve high-precision dual-signal measurements and greatly improves the sensitivity of biosensing applications.
Collapse
Affiliation(s)
- Li-Dong Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Di Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zi-Hui Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhao Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shenglin Cai
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Department of Electronic Science, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
2
|
Mazaheri O, Lin Z, Xu W, Mohankumar M, Wang T, Zavabeti A, McQuillan RV, Chen J, Richardson JJ, Mumford KA, Caruso F. Assembly of Silicate-Phenolic Network Coatings with Tunable Properties for Controlled Release of Small Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413349. [PMID: 39535829 DOI: 10.1002/adma.202413349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Engineered coatings are pivotal for tailoring the surface properties and release profiles of materials for applications across diverse areas. However, developing robust coatings that can both encapsulate and controllably release cargo is challenging. Herein, a dynamic covalent coordination assembly strategy is used to engineer robust silicate-based coatings, termed silicate-phenolic networks (SPNs), using sodium metasilicate and phenolic ligands (tannic acid, gallic acid, pyrogallol). The coatings are pH-responsive (owing to the dynamic covalent bonding), and their hydrophobicity can be tuned upon their post-functionalization with hydrophobic gallates (propyl, octyl, lauryl gallates). The potential of the SPN coatings for the controlled release of small molecules, such as urea (a widely used fertilizer), is demonstrated-controlled release of urea in soil is achieved in response to different pHs (up to 7 days) and different hydrophobicity (up to 14 days). Furthermore, leveraging the presence of silicon (within the coating) and post-functionalization of the SPN coatings with metal ions (Fe3+, Cu2+, Zn2+) generates a multipurpose delivery system for the sustained release of micronutrient fertilizers, and silicon and metal ions, over 28 and 14 days, respectively. These SPN coatings have potential applications beyond agriculture, including nutrient delivery, separations, food packaging, and medical device fabrication.
Collapse
Affiliation(s)
- Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mirudula Mohankumar
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Rebecca V McQuillan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
3
|
Chen YF, Pruthi V, Lee LR, Liu YC, Chang MH, Théato P, Chen JT. Illuminating Biomimetic Nanochannels: Unveiling Macroscopic Anticounterfeiting and Photoswitchable Ion Conductivity via Polymer Tailoring. ACS NANO 2024; 18:26948-26960. [PMID: 39302690 PMCID: PMC11447919 DOI: 10.1021/acsnano.4c08801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Artificial photomodulated channels represent a significant advancement toward practical photogated systems because of their remote noncontact stimulation. Ion transport behaviors in artificial photomodulated channels, however, still require further investigation, especially in multiple nanochannels that closely resemble biological structures. Herein, we present the design and development of photoswitchable ion nanochannels inspired by natural channelrhodopsins (ChRs), utilizing photoresponsive polymers grafted anodic aluminum oxide (AAO) membranes. Our approach integrates spiropyran (SP) as photoresponsive molecules into nanochannels through surface-initiated atom transfer radical polymerization (SI-ATRP), creating a responsive system that modulates ionic conductivity and hydrophilicity in response to light stimuli. A key design feature is the reversible ring-opening photoisomerization of spiropyran groups under UV irradiation. This transformation, observable at the molecular level and macroscopically, allows the surface inside the nanochannels to switch between hydrophobic and hydrophilic states, thus efficiently modulating ion transport via changing water wetting behaviors. The patternable and erasable polySP-grafted AAO, based on a controllable and reversible photochromic effect, also shows potential applications in anticounterfeiting. This study pioneers achieving macroscopic anticounterfeiting and photoinduced photoswitching through reversible surface chemistry and expands the application of polymer-grafted structures in multiple nanochannels.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Vaishali Pruthi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Yu-Chun Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Ming-Hsuan Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Patrick Théato
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
4
|
Zhang X, Wang Y, Zheng J, Yang C, Wang D. Scan-Rate-Dependent Ion Current Rectification in Bipolar Interfacial Nanopores. MICROMACHINES 2024; 15:1176. [PMID: 39337836 PMCID: PMC11433788 DOI: 10.3390/mi15091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
This study presents a theoretical investigation into the voltammetric behavior of bipolar interfacial nanopores due to the effect of potential scan rate (1-1000 V/s). Finite element method (FEM) is utilized to explore the current-voltage (I-V) properties of bipolar interfacial nanopores at different bulk salt concentrations. The results demonstrate a strong impact of the scan rate on the I-V response of bipolar interfacial nanopores, particularly at relatively low concentrations. Hysteresis loops are observed in bipolar interfacial nanopores under specific scan rates and potential ranges and divided by a cross-point potential that remains unaffected by the scan rate employed. This indicates that the current in bipolar interfacial nanopores is not just reliant on the bias potential that is imposed but also on the previous conditions within the nanopore, exhibiting history-dependent or memory effects. This scan-rate-dependent current-voltage response is found to be significantly influenced by the length of the nanopore (membrane thickness). Thicker membranes exhibit a more pronounced scan-rate-dependent phenomenon, as the mass transfer of ionic species is slower relative to the potential scan rate. Additionally, unlike conventional bipolar nanopores, the ion current passing through bipolar interfacial nanopores is minimally affected by the membrane thickness, making it easier to detect.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| | - Jiahui Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China; (J.Z.); (C.Y.)
| | - Chen Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China; (J.Z.); (C.Y.)
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| |
Collapse
|
5
|
Jiang Y, Wang R, Ye C, Wang X, Wang D, Du Q, Liang H, Zhang S, Gao P. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35666-35674. [PMID: 38924711 DOI: 10.1021/acsami.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Responsive regulation of ion transport through nanochannels is crucial in the design of smart nanofluidic devices for sequencing, sensing, and water-energy nexus. Functionalization of the inner wall of the nanochannel enhances interaction with ions and fluid but restricts versatile chemical approaches and accurate characterizations of fluidic interfaces. Herein, we reveal a responsive regulating mechanism of ion transport through nanochannels by polydopamine (PDA)-induced functionalization on the macroscopic outer surface of nanochannels. Responsive molecules were codeposited with PDA on the outer surface of nanochannels and formed a valve of nanometer thickness to manually manipulate ion transport by changing its gap spacing, surface charge, and wettability under external stimulus. The response ratio can be up to 100-fold by maximizing the proportion of responsive molecules on the outer surface. Laminating the codepositions of different responsive molecules with PDA on the channel's outer surface produces multiple responses. A nearly universal adhesion of PDA with responsive molecules on the open outer surface induces nanochannels responsive to different external stimuli with variable response ratios and arbitrary combinations. The results challenge the primary role of functionalization on the nanoconfined interface of nanofluidics and open opportunities for developing new-style nanofluidic devices through the functionalization of macroscopic interface.
Collapse
Affiliation(s)
- You Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Rongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chunxi Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
7
|
Qian R, Wu M, Yang Z, Wu Y, Guo W, Zhou Z, Wang X, Li D, Lu Y. Rectifying artificial nanochannels with multiple interconvertible permeability states. Nat Commun 2024; 15:2051. [PMID: 38448408 PMCID: PMC10918189 DOI: 10.1038/s41467-024-46312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Transmembrane channels play a vital role in regulating the permeation process, and have inspired recent development of biomimetic channels. Herein, we report a class of artificial biomimetic nanochannels based on DNAzyme-functionalized glass nanopipettes to realize delicate control of channel permeability, whereby the surface wettability and charge can be tuned by metal ions and DNAzyme-substrates, allowing reversible conversion between different permeability states. We demonstrate that the nanochannels can be reversibly switched between four different permeability states showing distinct permeability to various functional molecules. By embedding the artificial nanochannels into the plasma membrane of single living cells, we achieve selective transport of dye molecules across the cell membrane. Finally, we report on the advanced functions including gene silencing of miR-21 in single cancer cells and selective transport of Ca2+ into single PC-12 cells. In this work, we provide a versatile tool for the design of rectifying artificial nanochannels with on-demand functions.
Collapse
Affiliation(s)
- Ruocan Qian
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Mansha Wu
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zerui Zhou
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaoyuan Wang
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Dawei Li
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Rahmaninejad H, Parnell AJ, Chen WL, Duzen N, Sexton T, Dunderdale G, Ankner JF, Bras W, Ober CK, Ryan AJ, Ashkar R. Synthesis and Characterization of Stimuli-Responsive Polymer Brushes in Nanofluidic Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54942-54951. [PMID: 37973616 PMCID: PMC10695172 DOI: 10.1021/acsami.3c12744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Nanochannels with controllable gating behavior are attractive features in a wide range of nanofluidic applications including viral detection, particle sorting, and flow regulation. Here, we use selective sidewall functionalization of nanochannels with a polyelectrolyte brush to investigate the channel gating response to variations in solution pH and ionic strength. The conformational and structural changes of the interfacial brush layer within the channels are interrogated by specular and off-specular neutron reflectometry. Simultaneous fits of the specular and off-specular signals, using a dynamical theory model and a fitting optimization protocol, enable detailed characterization of the brush conformations and corresponding channel geometry under different solution conditions. Our results indicate a collapsed brush state under basic pH, equivalent to an open gate, and an expanded brush state representing a partially closed gate upon decreasing the pH and salt concentration. These findings open new possibilities in noninvasive in situ characterization of tunable nanofluidics and lab-on-chip devices with advanced designs and improved functionality.
Collapse
Affiliation(s)
- Hadi Rahmaninejad
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Andrew J. Parnell
- Department
of Physics, The University of Sheffield, Sheffield S3 7RH, U.K.
| | - Wei-Liang Chen
- Department
of Material Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nilay Duzen
- Department
of Material Science and Engineering, Cornell
University, Ithaca, New York 14850, United States
| | - Thomas Sexton
- Department
of Physics, The University of Sheffield, Sheffield S3 7RH, U.K.
| | - Gary Dunderdale
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - John F. Ankner
- Second
Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Wim Bras
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Christopher K. Ober
- Department
of Material Science and Engineering, Cornell
University, Ithaca, New York 14850, United States
| | - Anthony J. Ryan
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Rana Ashkar
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecular Innovation Institute, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Mutlutürk E, Tamer U, Caykara T. Photo‐ and pH‐Responsive Hybrid Colloidal Particles. ChemistrySelect 2023. [DOI: 10.1002/slct.202204497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Esma Mutlutürk
- Department of Chemistry Polatlı Faculty of Art and Science Ankara Hacı Bayram Veli University 06900 Polatlı Ankara Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry Faculty of Pharmacy Gazi University 06330 Ankara Turkey
| | - Tuncer Caykara
- Department of Chemistry Faculty of Science Gazi University,Ankara 06500 Besevler, Ankara/ Turkey
| |
Collapse
|
10
|
Chen L, Wu Y, Zhang D, Cao S, Xu L, Li Y. Smart Nano‐switch with Flexible Modulation of Ion Transport Using Multiple Environmental Stimuli. Chem Asian J 2022; 17:e202200884. [DOI: 10.1002/asia.202200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Li‐Dong Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Yuan‐Yi Wu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Di Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Shuo‐Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
- Department of Electronic Science Xiamen University Xiamen 361005 P. R. China
| | - Lin‐Tao Xu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Yao‐Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
11
|
Lu B, Xiao T, Zhang C, Jiang J, Wang Y, Diao X, Zhai J. Brain Wave-Like Signal Modulator by Ionic Nanochannel Rectifier Bridges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203104. [PMID: 35931455 DOI: 10.1002/smll.202203104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Smart modulation of bioelectric signals is of great significance for the development of brain-computer interfaces, bio-computers, and other technologies. The regulation and transmission of bioelectrical signals are realized through the synergistic action of various ion channels in organisms. The bionic nanochannels, which have similar physiological working environment and ion rectification as their biological counterparts, can be used to construct ion rectifier bridges to modulate the bioelectric signals. Here, the artificial smart ionic rectifier bridge with light response is constructed by anodic aluminum oxide (AAO)/poly (spiropyran acrylate) (PSP) nanochannels. The output ion current of the rectifier bridge can be switched between "ON" and "OFF" states by irradiation with UV and visible (Vis) light, and the conversion efficiency (η) of the system in "ON" state is ≈70.5%. The controllable modulation of brain wave-like signal can be realized by ionic rectifier bridge. The ion transport properties and processes of ion rectifier bridges are explained using theoretical calculations based on Poisson-Nernst-Planck (PNP) equations. These findings have significant implications for the understanding of the intelligent ionic circuit and combination of artificial smart ionic channels to organisms, which provide new avenues for development of intelligent ion devices.
Collapse
Affiliation(s)
- Bingxin Lu
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Caili Zhang
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Jiaqiao Jiang
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Yuting Wang
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xungang Diao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| |
Collapse
|
12
|
Yang L, Zhang F, Chen C, Liu Z, Liu L, Li H. An Ultraviolet/Visible Light Regulated Protein Transport Gate Constructed by Pillar[6]arene-based Host-Guest System. Chem Asian J 2022; 17:e202200455. [PMID: 35532204 DOI: 10.1002/asia.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/06/2022] [Indexed: 11/08/2022]
Abstract
Protein transport is an interesting and intrinsic life feature that is highly relevant to physiology and disease in living beings. Herein, inspired by nature, based on the supramolecular host-guest interaction, we have introduced the classical azobenzene light switches and L-phenylalanine derived pillar[6]arene (L-Phe-P6) into the artificial nanochannel to construct light-responsive nanochannels that could regulate protein transport effectively under the control of ultraviolet (UV) and visible (Vis) light. The light-controlled distribution of L-Phe-P6 in the channel led to the difference in surface charges in the nanochannel, which eventually brought the difference in protein transport. This research may not only provide a convenient theoretical model for biological research, but also a flexible light-responsive protein transport model, which will play a crucial role in light-controlled release of protein drugs and so on.
Collapse
Affiliation(s)
- Lei Yang
- Central China Normal University, College of Chmistry, CHINA
| | - Fan Zhang
- Hubei University, College of Chemistry and Chemical Engineering, CHINA
| | - Chunxiu Chen
- Central China Normal University, College of Chemistry, CHINA
| | - Zhisheng Liu
- Central China Normal University, College of Chemistry, CHINA
| | - Lu Liu
- Central China Normal University, College of Chemistry, CHINA
| | - Haibing Li
- Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA
| |
Collapse
|
13
|
Numerical Investigation of Diffusioosmotic Flow in a Tapered Nanochannel. MEMBRANES 2022; 12:membranes12050481. [PMID: 35629807 PMCID: PMC9143036 DOI: 10.3390/membranes12050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
Abstract
Diffusioosmosis concerns ionic flow driven by a concentration difference in a charged nano-confinement and has significant applications in micro/nano-fluidics because of its nonlinear current-voltage response, thereby acting as an active electric gating. We carry out a comprehensive computation fluid dynamics simulation to investigate diffusioosmotic flow in a charged nanochannel of linearly varying height under an electrolyte concentration gradient. We analyze the effects of cone angle (α), nanochannel length (l) and tip diameter (dt), concentration difference (Δc = 0–1 mM), and external flow on the diffusioosmotic velocity in a tapered nanochannel with a constant surface charge density (σ). External flow velocity (varied over five orders of magnitude) shows a negligible influence on the diffusioosmotic flow inside the tapered nanochannel. We observed that a cone angle causes diffusioosmotic flow to move towards the direction of increasing gap thickness because of stronger local electric field caused by the overlapping of electric double layers near the smaller orifice. Moreover, the magnitude of average nanoflow velocity increases with increasing |α|. Flow velocity at the nanochannel tip increases when dt is smaller or when l is greater. In addition, the magnitude of diffusioosmotic velocity increases with increasing Δc. Our numerical results demonstrate the nonlinear dependence of tapered, diffusioosmotic flow on various crucial control parameters, e.g., concentration difference, cone angle, tip diameter, and nanochannel length, whereas an insignificant relationship on flow rate in the low Peclet number regime is observed.
Collapse
|
14
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
15
|
Zhang X, Xie L, Zhou S, Zeng H, Zeng J, Liu T, Liang Q, Yan M, He Y, Liang K, Zhang L, Chen P, Jiang L, Kong B. Interfacial Superassembly of Mesoporous Titania Nanopillar-Arrays/Alumina Oxide Heterochannels for Light- and pH-Responsive Smart Ion Transport. ACS CENTRAL SCIENCE 2022; 8:361-369. [PMID: 35350602 PMCID: PMC8949629 DOI: 10.1021/acscentsci.1c01402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 05/13/2023]
Abstract
Stimuli-responsive nanochannels have attracted extensive attention in various fields owing to their precise regulation ability of ionic transportation. However, the poor controllability and functionality as well as responding to only one type of external stimulus still impede the development of the smart nanochannels. Here, we demonstrate a novel heterogeneous membrane composed of ordered mesoporous titania nanopillar-arrays/anodic aluminum oxide (MTI/AAO) using an interfacial superassembly strategy, which can achieve intelligent light and pH multimodulation ion transport. The MTI/AAO membranes are generated through the self-assembly of templates, followed by interfacial superassembly of micelles on AAO, and then the nanostructure and phase transformation of titania. The presence of the MTI layer with anatase crystal endows the heterogeneous membrane with an excellent light-responsive current density of 219.2 μA·cm-2, which is much higher than that of a reported traditional light-responsive nanofluidic device. Furthermore, the MTI/AAO heterogeneous membranes with an asymmetric structure exhibit excellent rectification performance. Moreover, pH-regulated surface charge polarity leads to a reversal of current rectification polarity. This light and pH multiresponsive membrane realizes efficient, sensitive, and stable ion regulation, extending the traditional nanochannel from single modulation to smart multimodulation.
Collapse
Affiliation(s)
- Xin Zhang
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Lei Xie
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Hui Zeng
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jie Zeng
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Tianyi Liu
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Miao Yan
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanjun He
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| | - Kang Liang
- School
of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Zhang
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pu Chen
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Lei Jiang
- Laboratory
of Bio-inspired Materials and Interfacial Science, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Biao Kong
- Department
of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative
Materials and Collaborative Innovation Center of Chemistry for Energy
Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
16
|
Li M, Zhang N, Cui Z, Wang W, Wang C, Wang D, Li M, Lu W, Qing G, Liu Y. Biomimetic ion nanochannels for sensing umami substances. Biomaterials 2022; 282:121418. [DOI: 10.1016/j.biomaterials.2022.121418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/03/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022]
|
17
|
Shao Y, He P, Yu Z, Liang X, Shao Y. Modulation of ionic current behaviors based on a dual-channel micro/nano-pipette with ternary-form-charged model. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Zhao Y, Li Z, Ma J, Jia Q. Design of a Spiropyran-Based Smart Adsorbent with Dual Response: Focusing on Highly Efficient Enrichment of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55806-55814. [PMID: 34786943 DOI: 10.1021/acsami.1c14739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart responsive materials have attractive application prospects due to their tunable behaviors. In this work, we design novel spiropyran (SP)-based magnetic nanoparticles (MNP-SP) with dual response to ultraviolet light and pH and apply them to the enrichment of phosphopeptides. SP is modified on the surface of magnetic nanoparticles through a simple esterification reaction, based on which an MNP-SP-MS phosphopeptide identification platform is established. The capture and release of phosphopeptides are facilely adjusted by changing external light and the pH of the solution. The smart responsive MNP-SP has fast magnetic response performance, high sensitivity (detection limit of 0.4 fmol), and good reusability (6 cycles). In addition, MNP-SP is used for the enrichment of phosphopeptides in skimmed milk, human saliva, and human serum samples, indicating that it is an ideal adsorbent for enriching low-abundance phosphopeptides in complex biological environments.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Zhao L, Gong M, Yang J, Gu J. Switchable Ionic Transportation in the Nanochannels of the MOFs Triggered by Light and pH. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13952-13960. [PMID: 34788532 DOI: 10.1021/acs.langmuir.1c02579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of a biomimetic ionic channel is of great significance for the fabrication of smart biodevices or logic circuit. Inspired by the selective permeability of the cell membrane toward bioions, a light-induced and pH-modulated artificial nanochannel is herein prepared by integrating the multistimuli-response molecule of carboxylated spiropyran (SP-COOH) into the frameworks of NU-1000 (Zr-based MOFs defined by Northwestern University). The loading density of the SP-COOH could reach as high as 7 wt % while keeping unchanged crystallinity and high porosity. Thanks to the precise matching of pore size of NU-1000 and molecular dimensions of SP-COOH, the loaded molecules could proceed free and reversible for isomerization between the hydrophilic and hydrophobic states. The ion-switchable characteristics of the channel are implemented by the amphiphilic change of the light-controlled gate molecule. Additionally, in the hydrophilic state, the channel presents reversible affinity toward cations or anions due to the reverse charge state induced by pH, thus constructing a pH-controlled subgate. Taking [Ru(NH3)6]3+ and [Fe(NH3)]3- as the model cation and anion, their redox peak currents occur as reversible change under different signal combinations of light and pH. Moreover, in accordance with the ionic selective permeability, several logic circuits/devices are designed to display the relationships between exogenous stimuli and ionic transportations in a computer language, prefiguring their wide application prospects in electronic devices and life sciences.
Collapse
Affiliation(s)
- Liwei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Gong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., Putian, Fujian 351100, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|