1
|
Wu K, Zhao W, Huang L, Zeng WT, Zhu Q, Wang HB, Wang QH, Shi X, Li H, Lu W, Ning GH, Zhao D, Li D. Aqueous-Phase Synthesis of Cyclic Trinuclear Cluster-Based Metal-Organic Frameworks. J Am Chem Soc 2025; 147:13711-13720. [PMID: 40207526 DOI: 10.1021/jacs.5c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The synthesis of metal-organic frameworks (MOFs) often involves high-boiling-point organic solvents, which can have extensive environmental impact and limit their large-scale applications. Here, we present a one-pot aqueous-phase approach for the rapid preparation of 33 trinuclear-copper-cluster-based MOFs (1 to 33) with different pyrazoles under ultrasonic irradiation. To address the water-solubility challenge of organic linkers, we employ aromatic amines/aldehydes and pyrazole aldehydes/amines to in situ generate imine-based pyrazoles. This linker dismantling strategy enables the formation of low-concentration pyrazoles, which are essential for the assembly of trinuclear-copper-cluster-based MOFs in the aqueous phase. The use of preassembled trinuclear gold complexes instead of aromatic amines affords an Au-Cu-based MOF (34) of alternating gold and copper clusters, a rare example of MOFs with mixed yet precise arrangement of metal compositions. Additionally, the direct addition of pyruvic acid to the reaction mixture results in the facile synthesis of a carboxylic-acid-functionalized MOF (35), eliminating the need for preinstallation or postmodification steps in traditional MOF synthesis. Furthermore, we demonstrate 11-AA as an efficient photocatalyst for cross-dehydrogenative coupling (CDC) reactions, exploiting the synergetic effect of substrate activation on the copper sites and subsequent coupling initiated by the photosensitive organic linkers. This work offers a simple solution for making MOFs with minimal environmental impact; it also opens up possibilities for developing multifunctional MOFs for diverse applications.
Collapse
Affiliation(s)
- Kun Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Ling Huang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Ting Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Qiang Zhu
- Materials Innovation Factory and Department of Chemistry and Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Hao-Bo Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Qin-Hong Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
2
|
Wei LQ, Li CL, Wen CJ, Lai HF. Dual-linker Ir-Zr-MOF shows improved porosity to enhance aqueous sulfide photooxidation. Dalton Trans 2025; 54:1986-1993. [PMID: 39676712 DOI: 10.1039/d4dt02649g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The hetero photooxidation of sulfide under aqueous conditions is of great importance in the green synthesis of sulfoxide. This process requires a type of solid photocatalyst with the properties of high porosity and water stability, as well as photosensitivity. Herein, a stable Ir-Zr-MOF material (compound 1) with high porosity is assembled from two linear linkers of a 2-phenylquinoline-4-carboxylic acid-Ir(III) complex (Irphen) and 4,4'-stilbenedicarboxylic acid (H2SDC), and a Zr6 cluster. 1 is isostructural to JLU-Liu34 with a composition of [Zr6O4.78(OH)3.22(SDC)3.82(Irphen)0.78TFA2.8]·2.8MeOH and permanent porosity with a BET surface area of 1507 m2 g-1. 1 exhibits improved activity for the photocatalytic aerobic oxidation of sulfide to sulfoxide via blue light irradiation under aqueous conditions. Mechanism studies demonstrate that a superoxide radical is the reactive oxygen species in the sulfide photooxidation. 1 can be readily recycled and reused at least 5 times without loss of catalytic activity. This work not only provides a good strategy for the assembly of an Ir(III) complex into MOFs but also an efficient method for the green synthesis of sulfoxide.
Collapse
Affiliation(s)
- Lian-Qiang Wei
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Cheng-Li Li
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Chun-Jian Wen
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Hong-Fang Lai
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| |
Collapse
|
3
|
Liu X, Si C, Xu J, Sun H, Li J, Han Q. Constructing a Polyoxometalate-Based Metal-Organic Framework for Photocatalytic Oxidation of Thioethers to Sulfoxides Utilizing In Situ-Generated Superoxide Radicals. Inorg Chem 2025; 64:1263-1271. [PMID: 39812524 DOI: 10.1021/acs.inorgchem.4c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Developing new photocatalysts for the selective oxidation of thioethers to high-value-added sulfoxides under low-oxygen mild conditions is a promising but challenging strategy. Here, a new polyoxometalate-based metal-organic framework (POMOF), CoBW12-TPT, was successfully synthesized, wherein continuous π···π stacking interactions and direct coordination bonds not only strengthen the framework's stability but also accelerate electron transfer. A series of experiments and theoretical studies, including control experiments, kinetic studies, electrochemical spectroscopic analyses, and electron paramagnetic resonance, revealed the synergistic catalytic effect among Co(II) metal centers, BW12O405-, and the photosensitizer TPT. CoBW12-TPT was applied in the photocatalytic oxidation of thioethers to sulfoxides. Under irradiation, the photoinduced electron transfer of POMOF leads to the generation of superoxide radicals from O2, which controls the selective generation of sulfoxide compounds in the photocatalytic desulfurization reaction and shows good activity. In particular, it can be applied to the construction of some drug molecules such as Modafinil and Albendazole Oxide.
Collapse
Affiliation(s)
- Xueling Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chen Si
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Junjie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hui Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jie Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
4
|
Xu Y, Mu BS, Tu Z, Liang W, Li J, Sang Z, Liu Z. Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals. Chem Sci 2025; 16:1867-1875. [PMID: 39720132 PMCID: PMC11665616 DOI: 10.1039/d4sc05558f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Oxidation is a fundamental transformation in synthesis. Developing facile and effective aerobic oxidation processes under ambient conditions is always in high demand. Benefiting from its high energy and good penetrability, ionizing radiation can readily produce various reactive species to trigger chemical reactions, offering another option for synthesis. Here, we report an ionizing radiation-induced aerobic oxidation strategy to synthesize oxygen-containing compounds. We discovered that molecular oxygen (O2) could be activated by reactive particles generated from solvent radiolysis to produce solvent-derived peroxyl radicals (RsolOO·), which facilitated the selective oxidation of sulfides and phosphorus(iii) compounds at room temperature without catalysts. Density functional theory (DFT) calculations further revealed that multiple RsolOO· enable the oxidation reaction through an oxygen atom transfer process. This aerobic oxidation strategy broadens the research scope of radiation-induced chemical transformations while offering an opportunity to convert nuclear energy into chemical energy.
Collapse
Affiliation(s)
- Yang Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Weiqiu Liang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jiahao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Ziyang Sang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking University-Tsinghua University Center for Life Sciences, Peking University Beijing 100871 China
- Changping Laboratory Beijing 102206 China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute Beijing 100142 China
| |
Collapse
|
5
|
Polivanovskaia DA, Abdulaeva IA, Birin KP, Gorbunova YG, Tsivadze AY. Phosphonate-Substituted Pyrazinoporphyrin - a General Photocatalyst for Efficient Sulfoxidation. Chempluschem 2025; 90:e202400469. [PMID: 39259034 DOI: 10.1002/cplu.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
An exceptional efficiency of pyrazine-annelated porphyrin as a general photocatalyst for the oxidation of organic sulfides is demonstrated. It is shown that phosphonate-substituted pyrazinoporphyrin 2H-1 brings together sufficient photostability and high efficiency in the aerobic photooxidation of a series of various sulfides. The influence of the reaction conditions onto the efficiency of homogeneous sulfide photooxidation in the presence of the photosensitizer (PS) was investigated and strong dependence on the solvent system was observed. The use of methanol is required for the photocatalytic sulfoxidation and the ratio of the alcohol/other solvent can significantly affect the conversion and selectivity of the reaction. The application of the prepared PS in 0.001 mol % loading allowed achieving complete conversion (97-100 %, turnover number up to 1,00,000, turnover frequency up to 6250 h-1) of substrates bearing substituents of different nature, namely aromatic and aliphatic sulfides with donor or acceptor substituents and substituents prone to oxidation, as well as cyclic sulfides. The selectivity of the of the corresponding sulfoxides formation of 96-100 % was revealed. Finally, a gram-scale synthesis of several sulfoxides was successfully performed with the PS under investigation, providing desired products in 66-96 % yield with over 98 % purity.
Collapse
Affiliation(s)
- Daria A Polivanovskaia
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Inna A Abdulaeva
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Kirill P Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky pr., 31, Moscow, 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky pr., 31, Moscow, 119991, Russia
| |
Collapse
|
6
|
Li K, Ma T, Hu J, Gu Q, Xin Y, He J, Peng YK, Xu Z. Self-Similar Ligand for 2D Zr(IV)-Based Metal-Organic Frameworks: Fluorescent Sensing and Catalysis. Inorg Chem 2024; 63:23894-23906. [PMID: 39636016 DOI: 10.1021/acs.inorgchem.4c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Two-dimensional (2D) metal-organic framework sheets, in comparison to the 3D analogues, offer potential advantages for intercalation of guest components between the layers, exfoliation/dispersion into solutions, and processing into thin films. As a versatile platform for leveraging organic functions, the 2D Zr(IV)-carboxylate net here features a dendritic Sierpinski tritopic linker with conjugated alkyne branches and a photoactive triphenylamine core. The 2D solid can be easily dispersed in water and many other solvents, resulting in stable and fluorescent suspension for sensing nitro aromatic compounds and Fe3+ ions with high quenching efficiencies and ultralow limits of detection. Also, the neighboring alkyne units of the coordination solid undergo thermal cyclization (e.g., at 320 °C) to form cross-linked nanographene-like components to afford robust porosity, which substantially takes up PdCl2 (atomic ratio of Zr/Pd, 2.4:1) to afford a heterogeneous catalyst for Suzuki-Miyaura coupling reactions─direct in air and without the need for phosphine ligands.
Collapse
Affiliation(s)
- Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tengrui Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 Guangdong, China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 Guangdong, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| |
Collapse
|
7
|
Thaggard GC, Kankanamalage BKPM, Park KC, Lim J, Quetel MA, Naik M, Shustova NB. Switching from Molecules to Functional Materials: Breakthroughs in Photochromism With MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410067. [PMID: 39374006 DOI: 10.1002/adma.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Photochromic materials with properties that can be dynamically tailored as a function of external stimuli are a rapidly expanding field driven by applications in areas ranging from molecular computing, nanotechnology, or photopharmacology to programable heterogeneous catalysis. Challenges arise, however, when translating the rapid, solution-like response of stimuli-responsive moieties to solid-state materials due to the intermolecular interactions imposed through close molecular packing in bulk solids. As a result, the integration of photochromic compounds into synthetically programable porous matrices, such as metal-organic frameworks (MOFs), has come to the forefront as an emerging strategy for photochromic material development. This review highlights how the core principles of reticular chemistry (on the example of MOFs) play a critical role in the photochromic material performance, surpassing the limitations previously observed in solution or solid state. The symbiotic relationship between photoresponsive compounds and porous frameworks with a focus on how reticular synthesis creates avenues toward tailorable photoisomerization kinetics, directional energy and charge transfer, switchable gas sorption, and synergistic chromophore communication is discussed. This review not only focuses on the recent cutting-edge advancements in photochromic material development, but also highlights novel, vital-to-pursue pathways for multifaceted functional materials in the realms of energy, technology, and biomedicine.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Molly A Quetel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Mamata Naik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
8
|
Hosseini S, Azizi N. New insight into highly efficient CSA@g-C 3N 4 for photocatalytic oxidation of benzyl alcohol and thioanisole: NAEDS as a promoter of photoactivity under blue LED irradiation. Photochem Photobiol 2024; 100:1214-1234. [PMID: 37974382 DOI: 10.1111/php.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
An open new perspective has been established toward synthesizing eco-friendly CSA@g-C3N4 employing surface engineering. The carbon nitride modified through camphorsulfonic acid was designed and developed in a category of the new generation of photocatalysts for the oxidation of benzyl alcohol and thioanisole in the existence of a natural deep eutectic solvent (NADES). In comparison with pure g-C3N4, not only does CSA@g-C3N4 exhibit an extraordinarily higher ability for harvesting visible light stemming from declining the recombination rate of electrons/holes dependent on PL results but it also reveals notable photocatalytic oxidation capability in the transformation of alcohols as well as thiols into relevant compounds. In addition, non-metal compound (CSA) incorporation would result in considerably diminishing the energy band gap value from 2.8 to 2.28 eV to escalate the visible-light absorption of g-C3N4. While the conventional consensus implies that inherent properties of photocatalysts bring on high photoactivity, this study indicates that deploying choline chloride-urea deep eutectic solvent as an external factor plays the role of photoactivity accelerator. Furthermore, readily recycling and reusability can be achieved for the photocatalytic setup of CSA@g-C3N4 ascribed to its heterogeneous nature with no drop in the photoactivity.
Collapse
Affiliation(s)
- Saber Hosseini
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
9
|
Chai S, Zhao S, Su J, Zhang J, Chen X, Sprick RS, Fang Y. Films of linear conjugated polymer as photoanodes for oxidation reactions. Chem Sci 2024:d4sc03512g. [PMID: 39246357 PMCID: PMC11376065 DOI: 10.1039/d4sc03512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Photoelectrochemical (PEC) devices hold huge potential to convert solar energy into chemical energy. However, the high cost of raw materials and film processing has hindered its practical use. In this study, we attempt to tackle this issue by fabricating straightforward semiconducting polymer films. These films function as photoanodes for various oxidation reactions, including water oxidation and oxidative organosynthesis. The structures of the polymer were assessed by incorporating electron-rich and electron-deficient co-monomers into dibenzo[b,d]thiophene sulfone materials. Furthermore, to gain comprehensive insight into the performance, we conducted both steady-state and in operando investigations, revealing that the active site on the polymer surface determines the rate of the conversion process. This study marks a significant stride towards leveraging economically viable semiconductors in PEC systems for efficient solar-to-chemical conversions. It addresses the challenges of high material costs and complex film processing, paving the way for the scaled-up application of this burgeoning technology.
Collapse
Affiliation(s)
- Shuming Chai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University 350002 P. R. China
| | - Shun Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University 350002 P. R. China
| | - Jiaxin Su
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University 350002 P. R. China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University 350002 P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University 350002 P. R. China
| | | | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University 350002 P. R. China
- Sino-UK International Joint Laboratory on Photocatalysis for Clean Energy and Advanced Chemical & Materials, Fuzhou University Fuzhou 350002 P. R. China
| |
Collapse
|
10
|
Guo Z, Liu X, Che Y, Xing H. Crystal-Defect-Induced Longer Lifetime of Excited States in a Metal-Organic Framework Photocatalyst to Enhance Visible-Light-Mediated CO 2 Reduction. Inorg Chem 2024; 63:13005-13013. [PMID: 38954791 DOI: 10.1021/acs.inorgchem.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We report the structural defects in Zr-metal-organic framework (MOFs) for achieving highly efficient CO2 reduction under visible light irradiation. A series of defective Zr-MOF-X (X = 160, 240, 320, or 400) are synthesized by acid-regulated defect engineering. Compared to pristine defect-free Zr-MOF (NNU-28), N2 uptake increases for Zr-MOF-X synthesized with the HAc modulator, producing a larger pore space and Brunauer-Emmett-Teller surface area. The pore size distribution demonstrates that defective Zr-MOF-X exhibits mesoporous structures. Electrochemistry tests show that defective Zr-MOF-X possesses a more negative reduction potential and a higher photocurrent responsive signal than that of pristine NNU-28. Consequently, the defective samples exhibit a significantly higher efficiency in the photoreduction of CO2 to formate. Transient absorption spectroscopies manifest that structural defects modulate the excited-state behivior of Zr-MOF-X and improve the photogenerated charge separation of Zr-MOF-X. Furthermore, electron paramagnetic resonance and in-suit X-ray photoelectron spectroscopy provide additional evidence of the high photocatalytic performance exhibited by defective Zr-MOF-X. Results demonstrate that structural defects in Zr-MOF-X also improve the charge transfer, producing abundant Zr(III) catalytically active sites, exhibiting a slower decay process than defect-free Zr-MOF. The long-lifetime Zr(III) species in defective Zr-MOF-X are fully exposed to a high-concentration CO2 atmosphere, thereby enhancing the photocatalytic efficiency of CO2 reduction.
Collapse
Affiliation(s)
- Zhifen Guo
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xin Liu
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yan Che
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
11
|
Huang T, Chen Q, Jiang H, Zhang K. Research Progress in the Degradation of Chemical Warfare Agent Simulants Using Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1108. [PMID: 38998714 PMCID: PMC11243471 DOI: 10.3390/nano14131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Chemical warfare agents primarily comprise organophosphorus nerve agents, saliva alkaloids, cyanides, and mustard gas. Exposure to these agents can result in severe respiratory effects, including spasms, edema, and increased secretions leading to breathing difficulties and suffocation. Protecting public safety and national security from such threats has become an urgent priority. Porous metal-organic framework (MOF) materials have emerged as promising candidates for the degradation of chemical warfare agents due to their large surface area, tunable pore size distribution, and excellent catalytic performance. Furthermore, combining MOFs with polymers can enhance their elasticity and processability and improve their degradation performance. In this review, we summarize the literature of the past five years on MOF-based composite materials and their effectiveness in degrading chemical warfare agents. Moreover, we discuss key factors influencing their degradation efficiency, such as MOF structure, pore size, and functionalization strategies. Furthermore, we highlight recent developments in the design of MOF-polymer composites, which offer enhanced degradation performance and stability for practical applications in CWA degradation. These composite materials exhibit good performance in degrading chemical warfare agents, playing a crucial role in protecting public safety and maintaining national security. We can expect to see more breakthroughs in the application of metal-organic framework porous materials for degrading chemical warfare agents. It is hoped that these innovative materials will play a positive role in achieving social stability and security.
Collapse
Affiliation(s)
- Taotao Huang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| |
Collapse
|
12
|
Khosroshahi N, Doaee S, Safarifard V, Rostamnia S. A comprehensive study about functionalization and de-functionalization of MOF-808 as a defect-engineered Zr-MOFs for selective catalytic oxidation. Heliyon 2024; 10:e31254. [PMID: 38813201 PMCID: PMC11133824 DOI: 10.1016/j.heliyon.2024.e31254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
In metal-organic frameworks (MOFs), confined space as a chemical nanoreactor is as essential as coordinatively unsaturated metal site catalysis. The properties of MOFs can be adjusted through the incorporation of functional groups and open metal sites in frameworks that can modify the catalytic performance. In this regard, a set of defect-engineered MOFs, Ex-MOF-808(NH2, NO2, H) and Mix-MOF-808(NH2, NO2, H), were synthesized by ultrasonic-assisted linker exchange approach (Ex-MOFs) and solvothermal mixing ligand method (Mix-MOFs), respectively. Further, the relationship between the preparation method, structural properties, and catalytic efficiency of the prepared materials in the selective oxidation of methyl phenyl sulfide (MPS) has been investigated. By analyzing zeta potential, it was found that in the exchange method, the amount of defect and functional groups on the surface of MOFs are more than in the mixing method, which also affects the catalytic activity. In our contribution, mix-MOF-808(NO2) carrying nitro groups at their organic linkers, which has a well-dispersion of nitro groups at the framework exhibits selective conversion of MPS to sulfone (91 %). Furthermore, the performance of stable heterogeneous catalysts was investigated for three cycles, which demonstrated their great potential for advanced catalytic oxidation.
Collapse
Affiliation(s)
- Negin Khosroshahi
- Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Samira Doaee
- Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Sadegh Rostamnia
- Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
13
|
Lei L, Luan TX, Li PZ, Qiu Y, Su J, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B, Liu Y. Strong Second-Harmonic Generation Induced by a Triphenylamine-Based Bismuth-Organic Framework for Photocatalytic Activity Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603468 DOI: 10.1021/acsami.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Taking advantage of the well-defined geometry of metal centers and highly directional metal-ligand coordination bonds, metal-organic frameworks (MOFs) have emerged as promising candidates for nonlinear optical (NLO) materials. In this work, taking a photoresponsive carboxylate triphenylamine derivative as an organic ligand, a bismuth-based MOF, Bi-NBC, NBC = 4',4‴,4‴″-nitrilotris(([1,1'-biphenyl]-4-carboxylic acid)) is obtained. Structure determination reveals that it is a potential NLO material derived from its noncentrosymmetric structure, which is finally confirmed by its rarely strong second harmonic generation (SHG) effect. Theoretical calculations reveal that the potential difference around Bi atoms is large; therefore, it leads to a strong local built-in electric field, which greatly facilitates the charge separation and transfer and finally improves the photocatalytic performance. Our results provide a reference for the exploration of MOFs with NLO properties.
Collapse
Affiliation(s)
- Longfei Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Ying Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
14
|
Al-Zubaidi UZI, Bahrami K, Khodamorady M. Fe 3O 4@SiO 2@CSH +VO 3- as a novel recyclable heterogeneous catalyst with core-shell structure for oxidation of sulfides. Sci Rep 2024; 14:8175. [PMID: 38589430 PMCID: PMC11001875 DOI: 10.1038/s41598-024-58552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Iron nanoparticles, with low toxicity and many active sites, are among the materials that not only reduce waste along with green chemistry but also increase the separation power and recover the catalyst from the reaction environment. In this study, first, the surface of iron nanoparticles was silanized, and in the next step, the complex of chitosan HCl.VO3 was placed on the surface of Fe3O4 (Fe3O4@SiO2@CSH+VO3-). This nanocatalyst is a novel, recoverable, and potent nanocatalyst with high selectivity for the oxidation of sulfides to sulfoxides. Various physicochemical techniques such as IR, XRD, TGA, SEM, EDX, mapping, TEM, and VSM were used to affirm the well synthesis of the catalyst. Oxidation of sulfides in the presence of hydrogen peroxide as a green oxidant and in ethanol was catalyzed by the Fe3O4@SiO2@CSH+VO3-. All sulfoxides were achieved with high efficiency and in a short time. The notable privileges of this method include facile and economic catalyst synthesis, proper catalyst durability, great performance, simple catalyst isolation, good recovery capability, at least up to 5 times without an index drop in catalytic power.
Collapse
Affiliation(s)
| | - Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran.
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67144-14971, Iran.
| | - Minoo Khodamorady
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran
| |
Collapse
|
15
|
Si X, Zhang Y, Zhang X, Pan X, Wang F, Shao X, Yao Q, Duan W, Huang X, Su J. A Porous Carbazolic Al-MOF for Efficient Aerobic Photo-Oxidation of Sulfides into Sulfoxides under Air. Inorg Chem 2024; 63:4707-4715. [PMID: 38410082 DOI: 10.1021/acs.inorgchem.3c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A robust, microporous, and photoactive aluminum-based metal-organic framework (Al-MOF, LCU-600) has been assembled by an in situ-formed [Al3O(CO2)6] trinuclear building unit and a tritopic carbazole ligand. LCU-600 shows a high water stability and permanent porosity for N2 and CO2 adsorption. Notably, the incorporation of photoresponsive carbazole moieties into LCU-600 makes it a highly efficient and recyclable photocatalyst for aerobic photo-oxidation of sulfides into sulfoxides under an air atmosphere at room temperature. Mechanism investigations unveil that photogenerated holes (h+), superoxide radical anion (O2•-), and singlet oxygen (1O2) are critical active spices for the photo-oxidation reaction performed in an air atmosphere.
Collapse
Affiliation(s)
- Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yanjun Zhang
- Luxi Chemical Group Co., Ltd., New Chemical Materials Industrial Park, Liaocheng 252000, P. R. China
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Fudong Wang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xiaodong Shao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
16
|
Chen JQ, Zhang KY, Zhang XD, Huang ZQ, Deng H, Zhao Y, Shi ZZ, Sun WY. A Green Environmental Protection Photocatalytic Molecular Reactor for Aerobic Oxidation of Sulfide to Sulfoxide. Chemistry 2024; 30:e202303725. [PMID: 38032028 DOI: 10.1002/chem.202303725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
The design and synthesis of metal-organic frameworks (MOFs) as photocatalytic molecular reactors for varied reactions have drawn great attention. In this work, we designed a novel photoactive perylenediimides-based (PDI) carboxylate ligand N,N'-di(3',3",5',5"-tetrakis(4-carboxyphenyl))-1,2,6,7-tetrachloroperylene-3,4,9,10-tetracarboxylic acid diimide (Cl-PDI-TA) and use it to successfully synthesize a novel Zr(IV)-based MOF 1 constructed from [Zr6 O8 (H2 O)8 ]8+ clusters bridged by Cl-PDI-TA ligands. Structural analysis revealed that Zr-MOF 1 manifests a 3D framework with (4,8)-connected csq topology and possesses triangular channels of ~17 Å and mesoporous hexagonal channels of ~26 Å along c-axis. Moreover, the synthesized Zr-MOF 1 exhibits visible-light absorption and efficient photoinduced free radical generation property, making it a promising photocatalytic molecular reactor. When Zr-MOF 1 was used as a photocatalyst for the aerobic oxidation of sulfides under irradiation of visible light, it could afford the corresponding sulfoxides with high yield and selectivity. Experimental results demonstrated that the substrate sulfides could be fixed in the pores of 1 and directly transformed to the products sulfoxides in the solid state. Furthermore, the mechanism for the photocatalytic transformation was also investigated and the results revealed that the singlet oxygen (1 O2 ) and superoxide radical (O2 ⋅- ) generated by the energy transfer and electron transfer from the photoexcited Zr-MOF to oxidants were the main active species for the catalytic reactions. This work offers a perceptive comprehension of the mechanism in PDI-based MOFs for further study on photocatalytic reactions.
Collapse
Affiliation(s)
- Jia-Qi Chen
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Kai-Yang Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiu-Du Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zi-Qing Huang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Deng
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhuang-Zhi Shi
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
17
|
Chen Z, Wang JC, Du JQ, Kan X, Sun T, Kan JL, Dong YB. Construction of Multifunctional Covalent Organic Frameworks for Photocatalysis. Chemistry 2024; 30:e202303497. [PMID: 38017237 DOI: 10.1002/chem.202303497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Covalent organic frameworks (COFs) have recently drawn intense attention due to their potential applications in photocatalysis. Herein, we report a multifunctional COF which consists of triphenylamine (TPA) and 2,2'-bipyridine (2, 2'-bipy) entities. The obtained TAPA-BPy-COF is a heterogeneous photocatalyst and can efficiently catalyze the oxidative coupling of thiols to disulfides. In addition, TAPA-BPy-COF can be further metalated by Pd(II) via 2,2'-bipy-metal coordination. The generated Pd@TAPA-BPy-COF can highly promote photocatalytic synthesis of 3-cyanopyridines via cascade addition/cyclization of arylboronic acids with γ-ketodinitriles in heterogeneous way. This work has demonstrated the way for the rational design and preparation of more efficient photoactive COFs for photocatalysis.
Collapse
Affiliation(s)
- Zhi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Jia-Qi Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Xuan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Ting Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| |
Collapse
|
18
|
Wang J, Liu Y, Yuan Z, Li L, Ma P, Wang J, Niu J. Visible-Light-Responsive Polyoxometalate@Metal-Organic Frameworks Involving Ir Metalloligands for Highly Selective Photocatalytic Oxidation of Sulfides to Sulfoxide. Chemistry 2024; 30:e202303401. [PMID: 38057690 DOI: 10.1002/chem.202303401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan, 457000, P. R. China
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
19
|
Wang JR, Song K, Luan TX, Cheng K, Wang Q, Wang Y, Yu WW, Li PZ, Zhao Y. Robust links in photoactive covalent organic frameworks enable effective photocatalytic reactions under harsh conditions. Nat Commun 2024; 15:1267. [PMID: 38341421 DOI: 10.1038/s41467-024-45457-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Developing heterogeneous photocatalysts for the applications in harsh conditions is of high importance but challenging. Herein, by converting the imine linkages into quinoline groups of triphenylamine incorporated covalent organic frameworks (COFs), two photosensitive COFs, namely TFPA-TAPT-COF-Q and TFPA-TPB-COF-Q, are successfully constructed. The obtained quinoline-linked COFs display improved stability and photocatalytic activity, making them suitable photocatalysts for photocatalytic reactions under harsh conditions, as verified by the recyclable photocatalytic reactions of organic acid involving oxidative decarboxylation and organic base involving benzylamine coupling. Under strong oxidative condition, the quinoline-linked COFs show a high efficiency up to 11831.6 μmol·g-1·h-1 and a long-term recyclable usability for photocatalytic production of H2O2, while the pristine imine-linked COFs are less catalytically active and easily decomposed in these harsh conditions. The results demonstrate that enhancing the linkage robustness of photoactive COFs is a promising strategy to construct heterogeneous catalysts for photocatalytic reactions under harsh conditions.
Collapse
Affiliation(s)
- Jia-Rui Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Ke Cheng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Qiurong Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| |
Collapse
|
20
|
Lei L, Zhao B, Pei X, Gao L, Wu Y, Xu X, Wang P, Wu S, Yuan S. Optimizing Porous Metal-Organic Layers for Stable Zinc Anodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:485-495. [PMID: 38150633 DOI: 10.1021/acsami.3c12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) have been considered as alternative stationary energy storage systems, but the dendrite and corrosion issues of Zn anodes hinder their practical applications. Here we report a series of two-dimensional (2D) metal-organic frameworks (MOFs) with Zr12 clusters, which act as artificial solid electrolyte interphase (SEI) layers to prevent dendrites and corrosion of Zn anodes. The Zr12-based 2D MOF layers were formed by incubating 3D layer-pillared Zr-MOFs in ZnSO4 aqueous electrolytes, which replaced the pillar ligands with terminal SO42-. Furthermore, the pore sizes of Zr12-based 2D MOF layers were systematically tuned, leading to optimized Zn2+ conduction properties and protective performance for Zn anodes. In contrast to the traditional 2D-MOFs with Zr6 clusters, Zr12-based 2D MOF layers as artificial SEI significantly reduced the polarization and increased the stability of Zn anodes in MOF@Zn||MOF@Zn symmetric cells and MOF@Zn||MnO2 full cells. In situ experiments and DFT computations reveal that the enhanced cell performance is attributed to the unique Zr12-based layered structure with intrinsic pores to allow fast Zn2+ diffusion, surface Zr-SO4 zincophilic sites to induce uniform Zn deposition, and inhibited hydrogen evolution by 2D MOF Zr12 layers.
Collapse
Affiliation(s)
- Liling Lei
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Binghua Zhao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Xudong Pei
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yulun Wu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Peng Wang
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Shishan Wu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
21
|
Li QQ, Pan PH, Liu H, Zhou L, Zhao SY, Deng B, He YJ, Song JX, Liu P, Wang YY, Li JL. Incorporating a D-A-D-Type Benzothiadiazole Photosensitizer into MOFs for Photocatalytic Oxidation of Phenylsulfides and Benzylamines. Inorg Chem 2023; 62:17182-17190. [PMID: 37815498 DOI: 10.1021/acs.inorgchem.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Oxidation and removal of highly toxic sulfides and amines are particularly important for environmental and human security but remain challenging. Here, incorporating an excellent photosensitizer, donor-acceptor-donor (D-A-D)-type 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic (H2L), into metal-organic frameworks (MOFs) has been manifested to promote the charge separation, affording four three-dimensional (3D) MOFs (isostructural 1-Co/1-Zn with Co2/Zn2 units, and 2-Gd/2-Tb with Gd/Tb-cluster chains) as photocatalysts in the visible light-driven air-O2-mediated catalytic oxidation and removal of hazardous phenylsulfides and benzylamines. Impressively, structure-property correlation illustrated that the transition metal centers assembled in MOFs play an important role in the photocatalytic activity, and we can conclude that 1-Zn can be a robust heterogeneous catalyst possessing good light adsorption and fast charge separation in oxidation removal reactions of both benzylamines and phenylsulfides under visible light irradiation and room temperature with excellent activity/selectivity, stability, and reusability.
Collapse
Affiliation(s)
- Quan-Quan Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Peng-Hui Pan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Hua Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Li Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Shu-Ya Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Bing Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yu-Jie He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jin-Xi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
22
|
Wang C, Ren G, Tan Q, Che G, Luo J, Li M, Zhou Q, Guo DY, Pan Q. Detection of organic arsenic based on acid-base stable coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122812. [PMID: 37167746 DOI: 10.1016/j.saa.2023.122812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Organic arsenic, usually found in animal feed and livestock farm wastewater, is a carcinogenic and life-threatening substance. Hence, for the rapid and sensitive detection of organic arsenic, the development of new fluorescent sensors is quite essential. Here, an acid-base stable coordination polymer (HNU-62) was constructed by the introduction of hydrophobic fluorescence ligand, which can be used as a highly selective sensor for the detection of roxarsone (ROX) in water. The limit of detection (LOD) of HNU-62 for ROX was 4.5 × 10-6 M. Furthermore, HNU-62 also exhibits good anti-interference and recyclability, which can be used in detecting ROX in real samples of pig feed. This work provides an alternative approach for the construction of water-stable coordination polymer-based fluorescence sensors.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Guojian Ren
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China.
| | - Qinyue Tan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China
| | - Guang Che
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Jian Luo
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Qi Zhou
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd, Xiamen, China.
| | - Qinhe Pan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
23
|
Zhao Z, Liu M, Zhou K, Guo L, Shen Y, Lu D, Hong X, Bao Z, Yang Q, Ren Q, Schreiner PR, Zhang Z. Visible-Light-Induced Phenoxyl Radical-based Metal-Organic Framework for Selective Photooxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6982-6989. [PMID: 36715584 DOI: 10.1021/acsami.2c21304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phenoxyl radicals originating from phenols through oxidation or photoinduction are relatively stable and exhibit mild oxidative activity, which endows them with the potential for photocatalysis. Herein, a stable and recyclable metal-organic framework Zr-MOF-OH constructed of a binaphthol derivative ligand has been synthesized and functions as an efficient heterogeneous photocatalyst. Zr-MOF-OH shows fairly good catalytic activity and substrate compatibility toward the selective oxidation of sulfides to sulfoxides under visible light irradiation. Such irradiation of Zr-MOF-OH converts the phenolic hydroxyl groups of the binaphthol derivative ligand to phenoxyl radicals through excited state intramolecular proton transfer, and the excited state photocatalyst triggers the single-electron oxidation of the sulfide. No reactive oxygen species are produced in the photocatalytic process, and triplet O2 directly participates in the reaction, endowing Zr-MOF-OH with wide substrate compatibility and high selectivity, which also proposes a promising pathway for the direct activation of substrates via phenoxyl radicals.
Collapse
Affiliation(s)
- Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Yajing Shen
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Dan Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
24
|
A 8-fold interpenetrated metal-organic framework: Luminescent property and photocatalytic dye degradation performance. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
25
|
Wang Z, Wen B, Zhou J, Zhao X, Zhang X, Su Z. Heterostructured ZnCdS@ZIF-67 as a Photocatalyst for Fluorescent Dye Degradation and Selectively Nonenzymatic Sensing of Dopamine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7683. [PMID: 36363274 PMCID: PMC9655990 DOI: 10.3390/ma15217683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Dopamine (DA) plays the role of the transmitter of information in the brain. Neurological diseases and depression are in close relationship with DA release. In this study, we developed a co-catalyst Zn0.2Cd0.8S@zeolitic imidazolate framework-67 (Zn0.2Cd0.8S@ZIF-67) to improve the photocatalyst efficacy of Rhodamine B (RhB) and electrochemical sensing of DA. Results show that Zn0.2Cd0.8S@ZIF-67 exhibits optimal photocatalytic activity with the addition of 80 mg ZIF-67. The degradation percentage of RhB by Zn0.2Cd0.8S@ZIF-67 reached 98.40% when the co-catalyst was 50 mg. Radical trapping experiments show that ·O2- played a significant role in the photocatalytic degradation of RhB. The catalytic mechanism of the Zn0.2Cd0.8S@ZIF-67 was found as a Z-type photocatalysis. Finally, a DA biosensor was constructed and displayed a high response and selectivity to DA. This can be attributed to the heterojunction between Zn0.2Cd0.8S and ZIF-67, which can significantly enhance the separation of e-/h+ and improve charge transfer. These findings will play a positive role in the in-situ monitoring of neurological diseases and depression.
Collapse
Affiliation(s)
- Zhichao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China
| | - Bianying Wen
- Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
26
|
Forchetta M, Sabuzi F, Stella L, Conte V, Galloni P. KuQuinone as a Highly Stable and Reusable Organic Photocatalyst in Selective Oxidation of Thioethers to Sulfoxides. J Org Chem 2022; 87:14016-14025. [PMID: 36219841 DOI: 10.1021/acs.joc.2c01648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A chemoselective photocatalytic system to perform thioether oxidation to sulfoxide is presented. The light-induced oxidation process is here promoted by a metal-free quinoid catalyst, namely 1-hexylKuQuinone (KuQ). Reactions performed in a fluorinated solvent (i.e., HFIP), using O2 as the oxidant, at room temperature, lead to complete thioanisole conversion to methyl phenyl sulfoxide in 60 min. Remarkably, the system can be recharged and recycled without a loss of activity and selectivity, reaching turnover numbers (TONs) higher than 4000. Excellent catalytic performances and full selectivity have also been obtained for the photocatalytic oxidation of substituted thioanisole derivatives, aliphatic, cyclic, and diaryl thioethers. Likewise, the oxidation of heteroaromatic organosulfur compounds can be accomplished, with longer reaction times.
Collapse
Affiliation(s)
- Mattia Forchetta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
27
|
Liu JJ, Fu JJ, Shen X, Liu T, Cheng FX. The effect of dicarboxylic acid isomer on the photochromism of naphthalenediimide-based metal-organic frameworks. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Li JH, Jiang XF, Wei Q, Xue ZZ, Wang GM, Yang GY. Dual-Ligand-Oriented Design of Noncentrosymmetric Complexes with Nonlinear-Optical Activity. Inorg Chem 2022; 61:16509-16514. [PMID: 36179365 DOI: 10.1021/acs.inorgchem.2c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When the N- and O-donor ligands are combined as coligands, two noncentrosymmetric (NCS) complexes of [Ni(p-bdc)(tipa)(H2O)2]2·H2O (1) and Ni(npdc)(tipa)H2O (2) [tipa = tris[4-(1H-imidazol-1-yl)phenyl]amine, p-H2bdc = 1,4-benzenedicarboxylic acid, and H2npdc = 2,6-naphthalenedicarboxylic acid] were achieved under solvothermal conditions. For both structures, N-donor ligands are responsible for the generation of a layered structure, while the O-donor ligands are hung on the layers and are responsible for enhancing the polarity, giving rise to the NCS structures. Because of the different connection modes between the metal centers and different carboxylate ligands (p-bdc2- in 1 and npdc2- in 2), 1 and 2 show some structural differences. The p-bdc2- ligands in 1 are suspended on the upper and lower sides of the [Ni(tipa)]n layers, while all of the npdc2- ligands in 2 hang on one side of the [Ni(tipa)]n layers and point in the same direction, which makes the two NCS complexes show phase-matchable behavior with different second-harmonic-generation (SHG) responses of about 0.9 and 1.5 times that of KH2PO4 (KDP), respectively. Theoretical studies reveal that charge transfers between Ni2+ and carboxylate ligands make the dominant contribution to the optical properties. It is expected that a dual-ligand strategy may guide the design of novel superior-performing NCS complexes.
Collapse
Affiliation(s)
- Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xiao-Fan Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Yu Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.,MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
29
|
Single walled carbon nanotubes with encapsulated Pt(II) photocatalyst for the oxidation of sulfides in water. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Han H, Zheng X, Qiao C, Xia Z, Yang Q, Di L, Xing Y, Xie G, Zhou C, Wang W, Chen S. A Stable Zn-MOF for Photocatalytic C sp3–H Oxidation: Vinyl Double Bonds Boosting Electron Transfer and Enhanced Oxygen Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haitao Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Xiangyu Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, People’s Republic of China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Ling Di
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, People’s Republic of China
| | - Yang Xing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, People’s Republic of China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Chunsheng Zhou
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, People’s Republic of China
| | - Wenyuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| |
Collapse
|
31
|
Zhang D, Zou XN, Wang XG, Su J, Luan TX, Fan W, Li PZ, Zhao Y. Highly Effective Photocatalytic Radical Reactions Triggered by a Photoactive Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23518-23526. [PMID: 35537034 DOI: 10.1021/acsami.2c04331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On account of their inherent reactive properties, radical reactions play an important role in organic syntheses. The booming photochemistry provides a feasible approach to trigger the generation of radical intermediates in organic reaction processes. Thus, developing effective photocatalysts becomes the key step in radical reactions. In this work, the triphenylamine moiety with photoactivity is successfully embedded in a highly porous and stable metal-organic framework (MOF), and the obtained MOF, namely, Zr-TCA, naturally displays a photoactive property derived from the triphenylamine-based ligand. In photocatalytic studies, the triphenylamine-based Zr-TCA not only exhibits a high catalytic activity on the aerobic oxidation of sulfides via the generation of the superoxide radical anion (O2•-) under light irradiation but also shows good efficiency in the trifluoromethylation of arenes and heteroarenes by the formation of the trifluoromethyl radical (CF3•) as an intermediate. Moreover, the high performance of Zr-TCA can be well maintained over a wide range of substrates in these radical reactions, and the recycled Zr-TCA still retains its excellent photocatalytic activity. The high recyclability and catalytic efficiency to various substrates make the constructed triphenylamine-based Zr-TCA a promising photocatalyst in diverse radical reactions.
Collapse
Affiliation(s)
- Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xiao-Ge Wang
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237 Shandong Province, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
32
|
Dong X, Xu H, Hao H, Sheng W, Lang X. Selective photocatalytic oxidation of sulfides with dioxygen over carbazole-fluorene conjugated microporous polymers. J Colloid Interface Sci 2022; 608:882-892. [PMID: 34785463 DOI: 10.1016/j.jcis.2021.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022]
Abstract
One sustainable concept emerges to implement the selective oxidation of sulfides with dioxygen (O2) at ambient conditions and has received increasing attention. As such, three donor-acceptor (D-A) type conjugated microporous polymers (CMPs) were connected via robust CC bonds prepared from FeCl3-promoted polymerization of monomers of 3,6-di(9H-carbazol-9-yl)-9H-fluorene with the 9H position of the fluorene moiety occupied by 1,1'-biphenyl-, difluoro-, or keto- group, furnishing 9,9'-(9,9'-spirobi[fluorene]-2,7-diyl)-bis-9H-carbazole-CMP (SFC-CMP), 9,9'-(9,9-difluoro-9H-fluorene-2,7-diyl)bis(9H-carbazole)-CMP (FFC-CMP), and 2,7-di(carbazol-9-yl)-fluoren-9-one-CMP (OFC-CMP), respectively. These three carbazole-fluorene CMPs could implement blue light-driven highly selective oxidation of sulfides into sulfoxides with O2 in methanol (CH3OH). Intriguingly, the SFC-CMP imparted the best photocatalytic activity for selective oxidation of sulfides in a broad scope. Besides, the SFC-CMP photocatalyst could be fully recovered even outperforming the fresh one. This work highlights that the properties of CMPs could be regulated by the D-A units like carbazole-fluorene to execute selective chemical transformations ambiently.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Xu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huimin Hao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wenlong Sheng
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
33
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Wu T, Shi Y, Wang Z, Liu C, Bi J, Yu Y, Wu L. Unsaturated Ni II Centers Mediated the Coordination Activation of Benzylamine for Enhancing Photocatalytic Activity over Ultrathin Ni MOF-74 Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61286-61295. [PMID: 34904825 DOI: 10.1021/acsami.1c20128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Creating accessible unsaturated active sites in metal-organic frameworks (MOFs) holds great promise for developing highly efficient catalysts. Herein, ultrathin Ni MOF-74 nanosheets (NMNs) with high-density coordinatively unsaturated NiII centers are prepared as a photocatalyst. The results of in situ ATR-IR, Raman, UV-vis DRS, and XPS suggest that abundant NiII centers can act as the active sites for boosting benzylamine (BA) activation via forming -Ni-NH2- coordination intermediates. The generation of coordination intermediates assists the transfer of photo-generated holes to BA molecules for producing BA cation free radicals, better impelling the breaking of N-H bonds and the photooxidation of BA molecules. The photo-generated electrons further activate O2 molecules to O2•- radicals for triggering the reaction. The experiments reveal that the coordination activation of BA molecules may be a rate-determining step on NMNs rather than the adsorption and activation of O2 molecules. Moreover, NMNs possess a better ability for the separation of photo-generated carriers in comparison with bulk Ni MOF-74 (NMBs). As a result, NMNs achieve a kinetic rate constant of 0.538 h-1 for the photocatalytic oxidative coupling of BA under visible light, about 50 times higher than that of NMBs (0.0011 h-1). Finally, a probable synergetic catalytic mechanism with coordination activation and photocatalysis is discussed on a molecular level. This study not only highlights the importance of coordination activation for heterogeneous photocatalysis but also affords an inspiration for building ultrathin MOF nanosheets.
Collapse
Affiliation(s)
- Taikang Wu
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yingzhang Shi
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhiwen Wang
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Cheng Liu
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jinhong Bi
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ling Wu
- Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
35
|
Chen H, Zhang Z, Lv H, Liu S, Zhang X. Investigation on the catalytic behavior of a novel thulium-organic framework with a planar tetranuclear {Tm 4} cluster as the active center for chemical CO 2 fixation. Dalton Trans 2021; 51:532-540. [PMID: 34927659 DOI: 10.1039/d1dt03646g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein, the exquisite combination of coplanar [Tm4(CO2)10(μ3-OH)2(μ2-HCO2)(OH2)2] clusters ({Tm4}) and structure-oriented functional BDCP5- leads to the highly robust nanoporous {Tm4}-organic framework {(Me2NH2)[Tm4(BDCP)2(μ3-OH)2(μ2-HCO2)(H2O)2]·7DMF·5H2O}n (NUC-37, H5BDCP = 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine). To the best of our knowledge, NUC-37 is the first anionic {Ln4}-based three-dimensional framework with embedded hierarchical microporous and nanoporous channels, among which each larger one is shaped by six rows of coplanar {Tm4} clusters and characterized by plentiful coexisting Lewis acid-base sites on the inner wall including open TmIII sites, Npyridine atoms, μ3-OH and μ2-HCO2. Catalytic experimental studies exhibit that NUC-37 possesses highly selective catalytic activity on the cycloaddition of epoxides with CO2 as well as high recyclability under gentle conditions, which should be ascribed to its nanoscale channels, rich bifunctional active sites, and stable physicochemical properties. This work offers an effective means for synthesizing productive cluster-based Ln-MOF catalysts by employing structure-oriented ligands and controlling the solvothermal reaction conditions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| |
Collapse
|
36
|
Li ZJ, Lei M, Bao H, Ju Y, Lu H, Li Y, Zhang ZH, Guo X, Qian Y, He MY, Wang JQ, Liu W, Lin J. A cationic thorium-organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chem Sci 2021; 12:15833-15842. [PMID: 35024107 PMCID: PMC8672715 DOI: 10.1039/d1sc03709a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Single-crystal-to-single-crystal transformation of metal-organic frameworks has been met with great interest, as it allows for the creation of new materials in a stepwise manner and direct visualization of structural transitions when subjected to external stimuli. However, it remains a peculiarity among numerous metal-organic frameworks, particularly for the ones constructed from tetravalent metal cations. Herein, we present a cationic thorium-organic framework displaying unprecedented triple single-crystal-to-single-crystal transformations in organic solvents, water, and NaIO3 solution. Notably, both the interpenetration conversion and topological change driven by the SC-SC transformation have remained elusive for thorium-organic frameworks. Moreover, the single-crystal-to-single-crystal transition in NaIO3 solution can efficiently and selectively turn the ligand-based emission off, leading to the lowest limit of detection (0.107 μg kg-1) of iodate, one of the primary species of long-lived fission product 129I in aqueous medium, among all luminescent sensors.
Collapse
Affiliation(s)
- Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Min Lei
- School of Environmental and Material Engineering, Yantai University Yantai 264005 P. R. China
| | - Hongliang Bao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Yu Ju
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 637371 Singapore
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University Pullman WA 99164-4630 USA
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University Yantai 264005 P. R. China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- School of Nuclear Science and Technology, Xi'an Jiaotong University No. 28, Xianning West Road Xi'an 710049 P. R. China
| |
Collapse
|
37
|
Chen H, Zhang Z, Hu T, Zhang X. Nanochannel {InZn}-Organic Framework with a High Catalytic Performance on CO 2 Chemical Fixation and Deacetalization-Knoevenagel Condensation. Inorg Chem 2021; 60:16429-16438. [PMID: 34644055 DOI: 10.1021/acs.inorgchem.1c02262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rare combination of InIII 5p and ZnII 3d in the presence of a structure-oriented TDP6- ligand led to a robust hybrid material of {(Me2NH2)[InZn(TDP)(OH2)]·4DMF·4H2O}n (NUC-42) with the interlaced hierarchical nanochannels (hexagonal and cylindrical) shaped by six rows of undocumented [InZn(CO2)6(OH2)] clusters, which represented the first 5p-3d nanochannel-based heterometallic metal-organic framework. With respect to the multifarious symbiotic Lewis acid-base and Brønsted acid sites in the high porous framework, the catalytic performance of activated NUC-42a upon CO2 cycloaddition with styrene oxide was evaluated under solvent-free conditions with 1 atm of CO2 pressure, which exhibited that the reaction could be well completed at ambient temperature within 48 h or at 60 °C within 4 h with high yield and selectivity. Moreover, because of the acidic function of metal sites and a central free pyridine in the TDP6- ligand, deacetalization-Knoevenagel condensation of acetals and malononitrile could be efficiently facilitated by an activated sample of NUC-42a under lukewarm conditions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
38
|
Chen H, Zhang Z, Hu T, Zhang X. An NH 2-modified {EuIII2}–organic framework for the efficient chemical fixation of CO 2 and highly selective sensing of 2,4,6-trinitrophenol. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00762a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An amino-functionalized microporous material of {(Me2NH2)4[Eu4(DDAC)3(HCO2)(OH2)2]·8DMF·9H2O}n with hierarchical pore voids displays efficient chemical fixation of CO2 and highly selective sensing of 2,4,6-trinitrophenol.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|