1
|
Su M, Yang S, Xu M, Du S, Zheng L, Wang X, Qu C, Liu H. Intrinsic SERS Fingerprints of Aptamer-Peptide Conjugates for Direct High-Specific Profiling Abnormal Protein Levels in Cancer Patients. Anal Chem 2023; 95:12398-12405. [PMID: 37559187 DOI: 10.1021/acs.analchem.3c01988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) with ultrasensitive vibrational fingerprints enables quick identification and trace detection of various kinds of molecules. But proteins usually have low Raman cross sections and are difficult to generate recognizable signals in direct SERS detection. Recently, nucleic acid-peptide conjugates are emerging with great potential in structuring, assembling, catalyzing, sensing, etc., and the coupling of aptamers further enables superior biological recognition and programmability. Here, we develop the aptamer-peptide conjugates as a new kind of SERS probe for direct high-specific profiling abnormal protein levels in cancer patients. The aptamer conjugated with glutathione (GSH) functions as both the recognition element and the SERS reporters that can simultaneously generate SERS fingerprints of both peptides and nucleic acids. This kind of biocompatible probe appears to have excellent performance in high-salt environments and realizes rapid, simple, and multisignal detection of thrombin (TB). Data-driven soft independent modeling of class analogy (DD-SIMCA) is used to distinguish SERS profiles of actual blood samples and realize the identification and classification of cancer patients. Furthermore, the effect of low-temperature storage time on blood samples is analyzed by tracking the changes of SERS profiles; the results hint that plasma samples stored under 4 °C for more than 2 days could generate false negative results due to TB hydrolysis, which has important implications for clinical sample analysis. This kind of nucleic acid-peptide conjugate provides new ideas for SERS sensing strategy in the future.
Collapse
Affiliation(s)
- Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Shixuan Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Min Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Shanshan Du
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Liqin Zheng
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xian Wang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Cheng Qu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
2
|
Gray BP, Kelly L, Steen-Burrell KA, Layzer JM, Rempel RE, Nimjee SM, Cooley BC, Tarantal AF, Sullenger BA. Rapid molecular imaging of active thrombi in vivo using aptamer-antidote probes. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:440-451. [PMID: 36817726 PMCID: PMC9930157 DOI: 10.1016/j.omtn.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Pathological blood clotting, or thrombosis, limits vital blood flow to organs; such deprivation can lead to catastrophic events including myocardial infarction, pulmonary embolism, and ischemic stroke. Prompt restoration of blood flow greatly improves outcomes. We explored whether aptamers could serve as molecular imaging probes to rapidly detect thrombi. An aptamer targeting thrombin, Tog25t, was found to rapidly localize to and visualize pre-existing clots in the femoral and jugular veins of mice using fluorescence imaging and, when circulating, was able to image clots as they form. Since free aptamer is quickly cleared from circulation, contrast is rapidly developed, allowing clot visualization within minutes. Moreover, administration of an antidote oligonucleotide further enhanced contrast development, causing the unbound aptamer to clear within 5min while impacting the clot-bound aptamer more slowly. These findings suggest that aptamers can serve as imaging agents for rapid detection of thrombi in acute care and perioperative settings.
Collapse
Affiliation(s)
- Bethany Powell Gray
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Linsley Kelly
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Juliana M. Layzer
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rachel E. Rempel
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shahid M. Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Brian C. Cooley
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7525, USA
| | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California Davis, Davis, CA 95616-8542, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pharmacology & Cancer Biology and Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Zhang W, Li M, Wang X, Zhang W, Wang H, Li P, Tang B. Precision Navigation of Venous Thrombosis Guided by Viscosity-Activatable Near-Infrared Fluorescence. Anal Chem 2023; 95:2382-2389. [PMID: 36653196 DOI: 10.1021/acs.analchem.2c04395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thrombus are blood clots formed by abnormal hemostasis in blood vessels and are closely associated with various diseases such as pulmonary embolism, myocardial infarction and stroke. Early diagnosis and treatment of thrombus is the key to reducing the high risk of thrombotic disease. Given that early thrombus is small in early size, free instability, wide regional distribution and fast formation, it is urgent to develop all-inclusive detection methods that combine high signal-to-noise ratio, in situ dynamic and rapid in-depth tissue imaging. Near-infrared (NIR) fluorescence imaging, with its excellent high spatiotemporal resolution and tissue penetration depth, is a powerful technique for direct visualization of thrombotic events in situ. Considering the fibrin highly expressed in the thrombus is a typical thrombotic target. Moreover, the viscosity of the thrombus is markedly higher than its surroundings. Therefore, we developed a fibrin-targeting and viscosity-activating thrombus NIR fluorescent probe (TIR-V) for high-resolution and high-sensitivity in situ lighten-up thrombus. TIR-V has the advantages of good thrombus targeting, significant "off-on" fluorescence specific response to viscosity, bright NIR fluorescence and good biocompatibility. The thrombus is clearly delineated by a high signal-to-noise ratio NIR fluorescence imaging, enabling imaging detection and precise navigation of thrombotic regions. This work demonstrates the potential of TIR-V as a bifunctional probe for definitive diagnostic imaging and direct navigation of thrombotic lesions in clinical applications.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Berkowitz S, Gofrit SG, Aharoni SA, Golderman V, Qassim L, Goldberg Z, Dori A, Maggio N, Chapman J, Shavit-Stein E. LPS-Induced Coagulation and Neuronal Damage in a Mice Model Is Attenuated by Enoxaparin. Int J Mol Sci 2022; 23:ijms231810472. [PMID: 36142385 PMCID: PMC9499496 DOI: 10.3390/ijms231810472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Due to the interactions between neuroinflammation and coagulation, the neural effects of lipopolysaccharide (LPS)-induced inflammation (1 mg/kg, intraperitoneal (IP), n = 20) and treatment with the anti-thrombotic enoxaparin (1 mg/kg, IP, 15 min, and 12 h following LPS, n = 20) were studied in C57BL/6J mice. Methods. One week after LPS injection, sensory, motor, and cognitive functions were assessed by a hot plate, rotarod, open field test (OFT), and Y-maze. Thrombin activity was measured with a fluorometric assay; hippocampal mRNA expression of coagulation and inflammation factors were measured by real-time-PCR; and serum neurofilament-light-chain (NfL), and tumor necrosis factor-α (TNF-α) were measured by a single-molecule array (Simoa) assay. Results. Reduced crossing center frequency was observed in both LPS groups in the OFT (p = 0.02), along with a minor motor deficit between controls and LPS indicated by the rotarod (p = 0.057). Increased hippocampal thrombin activity (p = 0.038) and protease-activated receptor 1 (PAR1) mRNA (p = 0.01) were measured in LPS compared to controls, but not in enoxaparin LPS-treated mice (p = 0.4, p = 0.9, respectively). Serum NfL and TNF-α levels were elevated in LPS mice (p < 0.05) and normalized by enoxaparin treatment. Conclusions. These results indicate that inflammation, coagulation, neuronal damage, and behavior are linked and may regulate each other, suggesting another pharmacological mechanism for intervention in neuroinflammation.
Collapse
Affiliation(s)
- Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
| | - Shay Anat Aharoni
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
| | - Valery Golderman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lamis Qassim
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zehavit Goldberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Goldschleger Eye Institute, Sheba Medical Center, Ramat Gan 52626202, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
A separated type cathode photoelectrochemical aptasensor for thrombin detection based on novel organic polymer heterojunction photoelectric material. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Wang W, He X, Du M, Xie C, Zhou W, Huang W, Fan Q. Organic Fluorophores for 1064 nm Excited NIR-II Fluorescence Imaging. Front Chem 2021; 9:769655. [PMID: 34869217 PMCID: PMC8634436 DOI: 10.3389/fchem.2021.769655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
Second near-infrared window (NIR-II) fluorescence imaging has shown great potential in the field of bioimaging. However, the excitation wavelengths of most NIR-II fluorescence dyes are in the first near-infrared (NIR-I) region, which leads to limited imaging depth and resolution. To address such issue, NIR-II fluorescence dyes with 1,064 nm excitation have been developed and applied for in vivo imaging. Compared with NIR-I wavelength excited dyes, 1,064 nm excited dyes exhibit a higher tissue penetration depth and resolution. The improved performance makes these dyes have much broader imaging applications. In this mini review, we summarize recent advances in 1,064 nm excited NIR-II fluorescence fluorophores for bioimaging. Two kinds of organic fluorophores, small molecule dye and semiconducting polymer (SP), are reviewed. The general properties of these fluorophores are first introduced. Small molecule dyes with different chemical structures for variety of bioimaging applications are then discussed, followed by the introduction of SPs for NIR-II phototheranostics. Finally, the conclusion and future perspective of this field is given.
Collapse
Affiliation(s)
- Wenqi Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Mingzhi Du
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|