1
|
Wicklein B, Yoo H, Valurouthu G, Kim JS, Khan M, Mahato M, Carosio F, Gogotsi Y, Oh IK. Multifunctional Ti 3C 2T x-alginate foams for energy harvesting and fire warning. NANOSCALE HORIZONS 2025; 10:1084-1095. [PMID: 40266239 DOI: 10.1039/d5nh00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Foams that combine seemingly opposite properties, such as high thermal insulation and electrical conductivity, are highly sought after for modern-day advanced applications. However, achieving a balance of these properties necessitates careful tuning of material compositions. Here, we prepared ice-templated Ti3C2Tx-alginate composite foams and investigated the role of Ti3C2Tx MXene in triboelectric energy production, thermal insulation, and flame retardancy. Our results show that adding 5 wt% Ti3C2Tx enhances the triboelectric output of 6 mm thick foams (380 V, 7.7 μA, 43 mW m-2) by 110%. Despite incorporating electrically conducting Ti3C2Tx, these macroporous composite foams have a thermal conductivity of only 62 mW m-1 K-1, while they also show flame-retardant properties, exhibiting self-extinguishing behavior. Finally, we demonstrate these composite foams for constructing smart fire alarm systems as they respond to small changes in electrical resistance induced by fire. Our findings prove that Ti3C2Tx is a versatile filler for biopolymer foams, introducing complementary functionalities that can be exploited in energy and safety applications.
Collapse
Affiliation(s)
- Bernd Wicklein
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Hyunjoon Yoo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Geetha Valurouthu
- Department of Materials Science & Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania, 19104, USA
| | - Ji-Seok Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Mannan Khan
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Manmatha Mahato
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino - Alessandria campus, Viale T. Michel 5, 15121 Alessandria, Italy
| | - Yury Gogotsi
- Department of Materials Science & Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania, 19104, USA
| | - Il-Kwon Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Sun X, Wang F, Yu Y, Liu Y, Zhou J, Jiang Z, Li Y, Yang H, Wang C. In-situ polymerized tourmaline/polypyrrole/lignocellulose aerogel for flame-resistant and intelligent fire alarm sensor. Int J Biol Macromol 2025; 309:142733. [PMID: 40180088 DOI: 10.1016/j.ijbiomac.2025.142733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Fires in buildings made of woody materials pose threats to human lives and property. Therefore, an intelligent, efficient sensors made of lignocellulosic materials for early fire warnings that can detect fires quickly and exhibit satisfactory flame retardancy is urgently needed. In this study, a flame-retardant lignocellulose aerogel (TPLA) with a thermosensitive alarm sensor response is prepared by the vacuum impregnation of tourmaline particles (TPs) and in-situ polymerization of pyrrole in lignocellulose aerogel specimens. A β-FeOOH scaffold produced via thermal hydrolysis provided ample space for the growth of polypyrrole (PPy), and PPy along with TPs improved the flame retardancy and thermoelectric performance of the aerogel. A comparison with pristine wood showed that the heat release rate and total heat release of TPLA were 69.43 % and 72.60 % lower, respectively. The limiting oxygen index of TPLA was substantially higher by 20.48 %, and the UL-94 flame retardant rating was upgraded to V-0. The Seebeck coefficient of the TPLA reached 23.88 μV·K-1 at 298 K, and this generated a potential difference of >100 mV upon encountering fires, showing that the material has good fire alarm properties. Thus, TPLA is promising for the development of smart fire alarm systems with satisfactory fire retardancy.
Collapse
Affiliation(s)
- Xiaohan Sun
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fangmiao Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan Yu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yifan Liu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jiazuo Zhou
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Zishuai Jiang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Yudong Li
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Haiyue Yang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Chengyu Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
3
|
Li M, M N P, Park JK, Song JI. Flame-retardant innovations in bio-based treatments for lignocellulosic natural fibers: A review. Int J Biol Macromol 2025; 311:143728. [PMID: 40316069 DOI: 10.1016/j.ijbiomac.2025.143728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The growing environmental concerns tied to synthetic materials have sparked interest in renewable, biodegradable, and sustainable alternatives like lignocellulosic fibers (LFs) from plants and agricultural waste. While advantageous, the inherent flammability of LFs limits their use in safety-critical applications, necessitating effective flame-retardant treatments. Traditional flame retardants (FRs) involve harmful chemicals, which pose environmental and health risks. Consequently, research is increasingly focusing on bio-based FRs derived from natural compounds such as polysaccharides, proteins, and phytic acid. These materials have shown promise in enhancing the fire resistance of natural fiber through mechanisms that improve thermal stability and char formation. This review provides a comprehensive analysis of recent advancements in bio-based flame retardant solutions alongside the physical, mechanical, thermal, and flammability properties of LFs. It also examines recent techniques for applying bio-based coatings to fibers and explores the latest fiber applications. By evaluating the interactions between these FRs and fiber structures, the review highlights the potential for developing effective, sustainable solutions that can facilitate the safe and environmentally friendly use of LFs across various applications. Ultimately, this review aims to contribute to a transformative shift toward safer and more sustainable materials in the face of growing environmental challenges.
Collapse
Affiliation(s)
- Maksym Li
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| | - Prabhakar M N
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea; Bristol Composite Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol BS8 1UP, United Kingdom.
| | - Jong-Kyu Park
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| | - Jung-Il Song
- Research Institute of Mechatronics, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| |
Collapse
|
4
|
Morshedi Dehaghi F, Aberoumand M, Sundararaj U. A Review on Multifunctional Polymer-MXene Hybrid Materials for Electronic Applications. Molecules 2025; 30:1955. [PMID: 40363762 PMCID: PMC12073719 DOI: 10.3390/molecules30091955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
MXenes, a family of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides, have emerged as a promising class of nanomaterials for interdisciplinary applications due to their unique physiochemical properties. The large surface area, excellent electrical conductivity, superior mechanical properties, and abundant possible functional groups make this layered nanomaterial an ideal candidate for multifunctional hybrid materials for electronic applications. This review highlights recent progress in MXene-based hybrid materials, focusing on their electrical, dielectric, and electromagnetic interference (EMI) shielding properties, with an emphasis on the development of multifunctionality required for advanced electronic devices. The review explores the multifunctional nature of MXene-based polymer nanocomposites and hybrid materials, covering the coexistence of a diverse range of properties, including sensory capabilities, electromagnetic interference shielding, energy storage, and the Joule heating phenomenon. Finally, the future outlook and key challenges are summarized, offering insights to guide future research aimed at improving the performance and functionality of MXene-polymer nanocomposites.
Collapse
Affiliation(s)
| | | | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2L1Y6, Canada
| |
Collapse
|
5
|
Cai Z, Wu B, Zhou X, Li K, Hou C, Zhang Q, Li Y, Wang H. High-Performance Temperature Sensors for Early Warning Utilizing Flexible All-Inorganic Thermoelectric Films. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24106-24115. [PMID: 40199726 DOI: 10.1021/acsami.5c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The demand for highly sensitive temperature-response materials is critical for the advancement of intelligent temperature sensing and fire warning systems. Despite notable progress in thermoelectrical (TE) materials and devices, designing TE materials suitable for wide-range temperature monitoring across diverse scenarios remains a challenge. In this study, we introduce a TE temperature sensor for fire warnings and hot object recognition, utilizing an all-inorganic TE film composite of reduced graphene oxide (rGO)/Te nanowires (Te NWs). The resulting all-inorganic TE film, annealed at a high temperature, exhibits distinct response ratios to varying temperature changes, enabling consistently sensitive thermosensation. The robust linear relationship between open circuit voltage and temperature difference establishes it as an effective thermoreceptor for enhanced temperature alerts. Furthermore, we demonstrate that the assembled TE sensor provides rapid high-temperature warnings with adjustable threshold voltages (1-7 mV), achieving an ultrafast response time of approximately 4.8 s at 1 mV threshold voltage. Additionally, this TE sensor can be integrated with the gloves to monitor high-temperature objects in various scenarios, such as the brewed milk in daily life and heating reactors in industrial applications. These results offer perspectives for future innovations in intelligent temperature monitoring.
Collapse
Affiliation(s)
- Zongfu Cai
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Bo Wu
- College of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xinxing Zhou
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Shanghai Dianji University, Shanghai 200245, P. R. China
| |
Collapse
|
6
|
Yu Z, Wan Y, Zhou M, Mia MH, Huo S, Huang L, Xu J, Jiang Q, Zheng Z, Hu X, He H. Muscle-Inspired Anisotropic Aramid Nanofibers Aerogel Exhibiting High-Efficiency Thermoelectric Conversion and Precise Temperature Monitoring for Firefighting Clothing. NANO-MICRO LETTERS 2025; 17:214. [PMID: 40227515 PMCID: PMC11996746 DOI: 10.1007/s40820-025-01728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/09/2025] [Indexed: 04/15/2025]
Abstract
Enhancing the firefighting protective clothing with exceptional thermal barrier and temperature sensing functions to ensure high fire safety for firefighters has long been anticipated, but it remains a major challenge. Herein, inspired by the human muscle, an anisotropic fire safety aerogel (ACMCA) with precise self-actuated temperature monitoring performance is developed by combining aramid nanofibers with eicosane/MXene to form an anisotropically oriented conductive network. By combining the two synergies of the negative temperature-dependent thermal conductive eicosane, which induces a high-temperature differential, and directionally ordered MXene that establishes a conductive network along the directional freezing direction. The resultant ACMCA exhibited remarkable thermoelectric properties, with S values reaching 46.78 μV K-1 and κ values as low as 0.048 W m-1 K-1 at room temperature. Moreover, the prepared anisotropic aerogel ACMCA exhibited electrical responsiveness to temperature variations, facilitating its application in intelligent temperature monitoring systems. The designed anisotropic aerogel ACMCA could be incorporated into the firefighting clothing as a thermal barrier layer, demonstrating a wide temperature sensing range (50-400 °C) and a rapid response time for early high-temperature alerts (~ 1.43 s). This work provides novel insights into the design and application of temperature-sensitive anisotropic aramid nanofibers aerogel in firefighting clothing.
Collapse
Affiliation(s)
- Zhicai Yu
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Yuhang Wan
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Mi Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Md Hasib Mia
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Siqi Huo
- School of Engineering, Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Lele Huang
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Jie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Qing Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Zhenrong Zheng
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Xiaodong Hu
- College of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, People's Republic of China
| | - Hualing He
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| |
Collapse
|
7
|
Luo B, Bai X, Hou Y, Guo J, Liu Z, Duan Y, Wu Z. Research progress on MXenes in polysaccharide-based hemostasis and wound healing: A review. Int J Biol Macromol 2025; 303:140613. [PMID: 39900158 DOI: 10.1016/j.ijbiomac.2025.140613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Traumatic events occur frequently in daily life, and hemostasis and infection prevention represent key challenges in trauma care. Polysaccharide-based materials (chitosan, cellulose, etc.) are widely used as hemostasis materials due to their excellent designability and biocompatibility. However, their insufficient antibacterial activity and limited hemostatic capabilities diminish their effectiveness in wound care. As emerging two-dimensional nanomaterials, MXene offers promising solutions to these limitations. With superior hydrophilicity, antibacterial properties and biocompatibility, MXene enhances the performance of polysaccharide-based hemostasis materials. This review summarizes the characteristics and synthesis methods of MXenes and outlines recent advances in MXene/polysaccharide composites for promoting wound healing by controlling bleeding and preventing infection. Additionally, we discuss the preparation methods, the mechanisms of action, and challenges in practical applications of MXene/polysaccharide composites, and propose future research directions. By integrating the advantages of MXenes and polysaccharides, we hope to provide a more effective solution for the research of polysaccharide-based hemostatic materials.
Collapse
Affiliation(s)
- Bichong Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Xiaofei Bai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongshuang Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yongbing Duan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Liu L, He L, Jin L, Shi H, Ye S, He L, Wang W, Guo W. Phosphorylated chitosan@MXene biomass-based coating with high flame retardancy and environmental friendliness for cotton fabric. Int J Biol Macromol 2025; 301:140344. [PMID: 39889990 DOI: 10.1016/j.ijbiomac.2025.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/21/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
To obtain cotton fabrics with high-efficiency flame retardancy, a novel nanohybrid MXene modified with phosphorylated chitosan (CS) was successfully prepared through a simple chemical modification strategy. It was subsequently employed in the fabrication of PC@T-MXene-functionalized cotton fabric (PC@T-MXene-C) through an impregnation process. The thermal stability and flame retardancy of the pure and treated cotton textiles were analyzed via TGA, LOI, VBT flammability tests and cone calorimetry. Compared with those of the original cotton textile and PCS-decorated cotton fabric (PC-C), the thermal and flame-retardant performance of PC@T-MXene-C was significantly enhanced. When the weight gain of the treated cotton fabric was 12 % (PC@T-MXene-C3), the LOI of PC@T-MXene-C3 significantly reached 35 %, and the peak heat release rate (PHRR) and total heat release (THR) decreased by 80.7 % and 43.7 %, respectively, compared with those of the original cotton textile. Additionally, PC@T-MXene-C3 retained 39.1 % of the char residual at high temperature under a nitrogen atmosphere in the TGA analysis. This eco-friendly biomass-based flame-retardant coating provides a new strategy for fabricating green flame-retardant systems without the use of hazardous compounds.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lei He
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liping Jin
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Haojie Shi
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shuhan Ye
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lingxin He
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Wenwen Guo
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Wang D, Shi S, Luo Q, Su Y, Ren Y, Zhang J, Lei L, Shi Y, Fan L, Hu J, Fu S. Electrochemical Exfoliation of Large Antioxidative MXene Flakes for Polymeric Fire Safety. SMALL METHODS 2025; 9:e2401383. [PMID: 39573844 DOI: 10.1002/smtd.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Indexed: 04/25/2025]
Abstract
Large-size MXene flakes have drawn growing attention due to their fascinating properties, which inevitably suffer from the low yield and weak oxidation resistance. Herein, an electrochemical exfoliation approach is proposed to achieve a high recording yield of 87% for preparing large antioxidative MXene flakes with an average lateral size of 8.3 µm, which combines the etching, electrolyte intercalation, interlay expansion, and short-time sonication. Moreover, the MXene flakes can keep stable for over three months in the presence of water and oxygen, and even have good stability over 500 °C under an air atmosphere, ascribed to the protection of the surface electrolyte layer. Combined with bacterial cellulose, the MXene can serve as an intelligent resistance-type sensor for contact/non-contact fire alarm, and further integrate with IoT for remote fire detection and warning within 1 s. In addition, the MXene significantly improves the flame-retardant properties of indoor textiles and household materials, owing to the large thermostable 2D barriers to restrain heat and mass transfer. This work establishes an innovative and efficient method to prepare the large antioxidative MXene flakes in high yield for practical usage and extends its application to polymeric fire safety.
Collapse
Affiliation(s)
- Dong Wang
- College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122, China
- Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077, China
| | - Qiaoling Luo
- College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yupei Su
- Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077, China
| | - Yuhao Ren
- College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Jichao Zhang
- College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077, China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Lishan Fan
- School of Textile & Clothing, Yancheng Polytechnic College, Jiangsu, 224005, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong Kowloon, Hong Kong SAR, 999077, China
| | - Shaohai Fu
- College of Textile Science and Engineering, Jiangnan University, Jiangsu, 214122, China
| |
Collapse
|
10
|
Xu B, Zhang Y, Li J, Wang B, Lu Y, Cheng D. Preparation and Applications of Multifunctional MXene/Tussah Silk Fabric. MATERIALS (BASEL, SWITZERLAND) 2025; 18:169. [PMID: 39795813 PMCID: PMC11722387 DOI: 10.3390/ma18010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
The development of functional textiles has become a key focus in recent years, aiming to meet the diverse requirements of modern society. MXene has excellent conductivity, hydrophilicity, and UV resistance, and is widely used in electromagnetic shielding, sensors, energy storage, and photothermal conversion. Tussah silk (TS) is a unique natural textile raw material and has a unique jewelry luster, natural luxury, and a smooth and comfortable feel. However, there are relatively few studies on the functional finishing of TS fabric with Ti3C2Tx MXene. Here, we developed a multifunctional MXene/tussah silk (MXene/TS) fabric by the deposition of Ti3C2Tx MXene sheets on the surface of TS fabric through a simple padding-drying-curing process. The obtained MXene/TS fabric (five cycles) exhibited excellent conductivity (4.8 S/m), air permeability (313.6 mm/s), ultraviolet resistance (ultraviolet protection factor, UPF = 186.3), photothermal conversion (temperature increase of 11 °C), and strain sensing. Thanks to these superior properties, the MXene/TS fabric has broad application prospects in motion monitoring, smart clothing, flexible wearables, and artificial intelligence.
Collapse
Affiliation(s)
- Bingbing Xu
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
- Key Laboratory of Jiangsu Province for Silk Engineering, Soochow University, Suzhou 215123, China
| | - Yue Zhang
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| | - Jia Li
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| | - Boxiang Wang
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| | - Yanhua Lu
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| | - Dehong Cheng
- College of Textiles and Garment, Liaodong University, Dandong 118003, China; (B.X.); (Y.Z.); (J.L.); (B.W.); (Y.L.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118003, China
| |
Collapse
|
11
|
Zhang L, Li C, Chen Y, Li S, Wang X, Li F. A polyoxometalate/chitosan-Ti 3C 2T x MXene nanocomposite constructed by electrostatically mediated strategy for electrochemical detecting L-tryptophan in milk. Food Chem 2024; 458:140309. [PMID: 38968709 DOI: 10.1016/j.foodchem.2024.140309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
L-tryptophan (L-Trp) is crucial for human metabolism, and its imbalance or deficiency can lead to certain diseases, such as insomnia, depression, and heart disease. Since the body cannot synthesize L-Trp and must obtain it from external sources, accurately monitoring L-Trp levels in food is essential. Herein, a nanocomposite film based on polyoxometalate (P2Mo17V), Ti3C2Tx MXene, and chitosan (Cs) was developed through a green electrostatically mediated layer-by-layer self-assembly strategy for electrochemical detection of L-Trp. The composite film exhibits fast electron transfer and remarkable electrocatalytic performance for L-Trp with a wide linear range (0.1-103 μM), low limit of detection (0.08 μM, S/N = 3), good selectivity, reproducibility, and repeatability. In milk sample, the recoveries of L-Trp were from 95.78% and 104.31%. The P2Mo17V/Cs-Ti3C2Tx electrochemical sensor not only provides exceptional recognition and detection capabilities for L-Trp but also shows significant potential for practical applications, particularly in food safety and quality control.
Collapse
Affiliation(s)
- Li Zhang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Chao Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yue Chen
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China.
| | - Xue Wang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China..
| |
Collapse
|
12
|
Jiang W, Seidi F, Liu Y, Li C, Huang Y, Xiao H. Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites. Adv Colloid Interface Sci 2024; 335:103332. [PMID: 39536515 DOI: 10.1016/j.cis.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emergence of smart textiles with the ability to regulate body temperature, monitor human motion, exhibit antibacterial properties, sound fire alarms, and offer fire resistance has sparked considerable interest in recently. MXene displays remarkable attributes like high metallic conductivity, electromagnetic shielding capability, and photothermal/electrothermal properties. Furthermore, due to the highly polar surface groups, MXene nanosheets show exceptional hydrophilic properties and are able to establish strong connections with the polar surfaces of natural fabrics. This review focuses on the most recent developments in altering the surface of cellulosic textiles with MXene and MXene-based composites. The combination of MXene with other modifier agents, such as phosphorous compounds, graphene, carbon nanotube, conductive polymers, antibacterial macromolecules, superhydrophobic polymers, and metal or metal oxide nanoparticles, imparts diverse functionalities to textiles, such as self-cleaning and fire resistance. Moreover, the synergistic effects between these modifier agents with MXenes can improve MXene-related properties like antibacterial, photothermal, electrothermal, and motion- and fire-sensing characteristics.
Collapse
Affiliation(s)
- Wensi Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
13
|
He X, Xu Y, Wang Y, Wu L, Chen FF, Yu Y. Synergistic Effect of GO and MXene Enables Ultrasensitive, Reversible, and Self-Powered Fire Warning of a GO/MXene/Chitosan Aerogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59346-59357. [PMID: 39410792 DOI: 10.1021/acsami.4c13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Graphene oxide (GO)-based fire alarm materials have garnered extensive attention because the thermal reduction of GO to reduced GO (RGO) enables rapid fire warning. However, they suffer from poor flame retardancy, irreversible fire warning, and dependence on an external power supply. Herein, a GO/MXene/chitosan aerogel with a low density of 0.018 g cm-3 and good compressibility has been developed. The experimental results demonstrate that (i) MXene effectively reduces the peak and mean heat release rate of GO, while RGO nanosheets compensate for the structural instability of MXene in the flame due to thermal oxidation into TiO2; as such, long-lasting fire warning (>120 s) has been achieved; (ii) the reducibility and conductivity of MXene contribute to the ultrasensitive response of GO, with a fire response time of 1 s; and (iii) notably, the thermoelectric effect of MXene enables the reversible and self-powered fire warning of the GO/MXene/CS aerogel without an external power supply. Compared to pure MXene/CS aerogel, the presence of GO improves the sensitivity and stability of self-powered fire warning, owing to the formation of the highly conductive RGO nanosheets. The results of this work highlight the cooperation between GO and MXene in realizing ultrasensitive, long-lasting, reversible, and self-powered fire warning.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yaozheng Xu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuan Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Linhan Wu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fei-Fei Chen
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
14
|
Chu C, Gao Y, Ma X, Cheng R, Xu P, Ding Y. Multilevel structural polylactic acid fabrics for flame retardancy, durability, and electromagnetic interference shielding. Int J Biol Macromol 2024; 282:136934. [PMID: 39471918 DOI: 10.1016/j.ijbiomac.2024.136934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
The integration of polylactic acid (PLA) fabrics with bio-based flame retardants and conductive MXene addresses the requirements for safe sustainable development and electromagnetic interference (EMI) shielding. The dehydration and carbonization of phytic acid (PA) and polyethylenimine (PEI) were facilitated by employing 3-glycidyl oxy propyl trimethoxsilane (GPTMS) as an organic crosslinking agent, which was covalently bonded to both the flame retardants and the MXene conductive layer. The prepared multifunctional PLA fabric, designated as PA-PEI-MXene-60, exhibits a high Limiting Oxygen Index (LOI) of 35.6 %, a damage length of 3.2 cm, a peak heat release rate (pHRR) reduction of 81.38 %, and total heat release (THR) reduction of 27.03 %, indicating exceptional flame-retardant properties. Concurrently, the MXene conductive layer provides outstanding EMI shielding performance. A subsequent hydrophobic treatment was applied using polydimethylsiloxane (PDMS) coatings, resulting in a water contact angle of 148.8°. Additionally, while the PLA fabrics exhibited remarkable EMI shielding effectiveness at 54 dB. Importantly, despite undergoing repeated bending and abrasion tests, these multifunctional PLA fabrics maintain relatively high EMI shielding efficiency, demonstrating commendable durability. This work significantly contributes to the research and development of bio-based, safe, durable multifunctional flame-retardant materials with EMI shielding capabilities.
Collapse
Affiliation(s)
- Cen Chu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Yifei Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Ma
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Rui Cheng
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Pei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
15
|
Yang L, Zhou Y, Xu J, Ma X, Yuan J, Yuan B. Multi-crosslinked gelatin-based composite hydrogel featuring high thermoelectric performance and excellent flame retardancy for intelligent fire-warning system. Int J Biol Macromol 2024; 282:136881. [PMID: 39490884 DOI: 10.1016/j.ijbiomac.2024.136881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The frequency occurrence of building fires necessitates response materials with high flame retardancy and temperature sensitivity. Herein, we synthesized a gelatin/poly(acrylamide-co-acrylic acid)/lithium bromide/sodium phytate/glycerol hydrogel (Gly-GAPL) using in situ radical polymerization and solvent exchange techniques. Gly-GAPL exhibits notable thermoelectric performance (the Seebeck coefficient: 8.66 mV/K), temperature sensitivity, commendable mechanical properties and flame retardancy. Remarkably, Gly-GAPL features a rapid response time, triggering an alarm within 2 s upon exposure to flame. Gly-GAPL is highly resistant to ignition and significantly enhances the fire resistance of wood coated with it. Furthermore, its high transparency, impressive water retention and adhesion further underscore its potential as a flame-retardant coating for various inflammable materials. Given its outstanding thermoelectric performance and temperature sensitivity, an early fire-warning system is rapidly activated, promptly sending alerts to smart devices. This work introduces a novel strategy for developing smart flame retardancy materials and advances the applications of ionic hydrogels in early fire-warning systems.
Collapse
Affiliation(s)
- Lujia Yang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yichen Zhou
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Jiaojiao Xu
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xinyi Ma
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Jiayi Yuan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Bihe Yuan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
16
|
Lin B, Li A, De Cachinho Cordeiro IM, Jia M, Lee YX, Yuen ACY, Wang C, Wang W, Yeoh GH. MXene Based Flame Retardant and Electrically Conductive Polymer Coatings. Polymers (Basel) 2024; 16:2461. [PMID: 39274094 PMCID: PMC11398058 DOI: 10.3390/polym16172461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Modern polymer coatings possess tremendous multifunctionalities and have attracted immense research interest in recent decades. However, with the expeditious development of technologies and industries, there is a vast demand for the flame retardancy and electrical conductivity of engineered polymer coatings. Traditional functional materials that render the polymer coatings with these properties require a sophisticated fabrication process, and their high mass gains can be a critical issue for weight-sensitive applications. In recent years, massive research has been conducted on a newly emerged two-dimensional (2D) nanosize material family, MXene. Due to the excellent electrical conductivity, flame retardancy, and lightweightness, investigations have been launched to synthesise MXene-based polymer coatings. Consequently, we performed a step-by-step review of MXene-involved polymer coatings, from solely attaching MXene to the substrate surface to the multilayered coating of modified MXene with other components. This review examines the performances of the fire safety enhancement and electrical conductivity as well as the feasibility of the manufacturing procedures of the as-prepared polymer composites. Additionally, the fabricated polymer coatings' dual property mechanisms are well-demonstrated. Finally, the prospect of MXene participating in polymer coatings to render flame retardancy and electrical conductivity is forecasted.
Collapse
Affiliation(s)
- Bo Lin
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ao Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Ming Jia
- Urban Mobility Institute, College of Transportation Engineering, Tongji University, 4800 Cao'an Rd, Shanghai 201804, China
- Key Laboratory of Road and Traffic Engineering of the Ministry of Education, College of Transportation Engineering, Tongji University, 4800 Cao'an Rd, Shanghai 201804, China
| | - Yuan Xien Lee
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony Chun Yin Yuen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Cheng Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW 2232, Australia
| |
Collapse
|
17
|
Ding Z, Li G, Wang Y, Du C, Ye Z, Liang L, Tang LC, Chen G. Ultrafast Response and Threshold Adjustable Intelligent Thermoelectric Systems for Next-Generation Self-Powered Remote IoT Fire Warning. NANO-MICRO LETTERS 2024; 16:242. [PMID: 38985378 PMCID: PMC11236834 DOI: 10.1007/s40820-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 μW m-1 K-2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1-10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
Collapse
Affiliation(s)
- Zhaofu Ding
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Gang Li
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Yejun Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Chunyu Du
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Zhenqiang Ye
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Guangming Chen
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
18
|
Fang Y, Qi D, Wu L. Flame retardant cotton fabrics with ultra-fast and long-term fire early warning response. Int J Biol Macromol 2024; 271:132673. [PMID: 38821804 DOI: 10.1016/j.ijbiomac.2024.132673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Smart textiles with flame retardant and fire-warning functions have received more and more attention. However, improving the fire-warning response sensitivity and long-term responsiveness of the smart textiles is a top priority. In this research, flame retardant and fire-warning cotton fabrics were prepared by layer-by-layer assembly composite coating consisting of bio-based flame retardants composed of chitosan (CS) and phytic acid (PA) and carbon-based nanomaterials composed of carbon nanotubes (CNTs) and graphene oxide (GO). The PA-GO/CS-CNTs coated cotton fabric showed excellent flame retardancy with a limiting oxygen index (LOI) value of 31 %, and the coated fabrics could self-extinguish rapidly when the flame was removed. The fire hazard of the coated fabric was significantly reduced by reducing the 45.77 % of peak heat release rate, 29.69 % of total heat release and 81.9 % of total smoke production. The PA-GO/CS-CNTs coated cotton fabric showed ultra-fast fire warning response with the response time of 1.0 s. And the fire-warning response time of the coated cotton fabric could last longer than 600 s revealing it possessed the continuous fire warning response property. This research provides a new strategy to prepare the smart fireproof textiles with flame retardant and fire-warning functions to broaden its application in early fire-warning.
Collapse
Affiliation(s)
- Yinchun Fang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China.
| | - Daojun Qi
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Lingshuang Wu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
19
|
Xu D, Gao C, Ge C, Liu Y, Yang L, Peng Z, Ye C, Chen Z, Liu K, Zhang Q, Xu W, Fang J. Integrated Firefighting Textile with Temperature and Pressure Monitoring for Personal Defense. ACS Sens 2024; 9:2575-2584. [PMID: 38695880 DOI: 10.1021/acssensors.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Although electronic textiles that can detect external stimuli show great promise for fire rescue, existing firefighting clothing is still scarce for simultaneously integrating reliable early fire warning and real-time motion sensing, hardly providing intelligent personal protection under complex high-temperature conditions. Herein, we introduce an "all-in-one" hierarchically sandwiched fabric (HSF) sensor with a simultaneous temperature and pressure stimulus response for developing intelligent personal protection. A cross-arranged structure design has been proposed to tackle the serious mutual interference challenge during multimode sensing using two separate sets of core-sheath composite yarns and arrayed graphene-coated aerogels. The functional design of the HSF sensor not only possesses wide-range temperature sensing from 25 to 400 °C without pressure disturbance but also enables highly sensitive pressure response with good thermal adaptability (up to 400 °C) and wide pressure detection range (up to 120 kPa). As a proof of concept, we integrate large-scalable HSF sensors onto conventional firefighting clothing for passive/active fire warning and also detecting spatial pressure and temperature distribution when a firefighter is exposed to high-temperature flames, which may provide a useful design strategy for the application of intelligent firefighting protective clothing.
Collapse
Affiliation(s)
- Duo Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P R China
| | - Chong Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P R China
| | - Yingcun Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P R China
| | - Likun Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Zhiyong Peng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Chenchen Ye
- School of Electronic and Information Engineering, Soochow University, Suzhou 215123, P R China
| | - Ze Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Keshuai Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Qian Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P R China
| |
Collapse
|
20
|
Jia S, Chen G, Dai S, Gao Y, Wu Y, Qing Y, Zhang S, Xie J, Chen Q, Wang Y, Huang X, Su Z. Rational Design of Amorphous Carbon-Coated Laminar-Structured Wood for Integrating Repeatable Early Fire Detection and High-Temperature Affordable Flexible Pressure Sensing in One System. NANO LETTERS 2024; 24:5260-5269. [PMID: 38639406 DOI: 10.1021/acs.nanolett.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
High-temperature affordable flexible polymer-based pressure sensors integrated with repeatable early fire warning service are strongly desired for harsh environmental applications, yet their creation remains challenging. This work proposed an approach for preparing such advanced integrated sensors based on silver nanoparticles and an ammonium polyphosphate (APP)-modified laminar-structured bulk wood sponge (APP/Ag@WS). Such integrated sensors demonstrated excellent fire warning performance, including a short response time (minimum of 0.44 s), a long-lasting alarm time (>750 s), and reliable repeatability. Moreover, it achieved high-temperature affordable flexible pressure sensing that exhibited an almost unimpaired working range of 0-7.5 kPa and a higher sensitivity (in the low-pressure range, maximum to 226.03 kPa-1) after fire. The high stability was attributed to reliable structural elasticity, and the wood-derived amorphous carbon is capable of repeatable fire warnings. Finally, a Ag@APP/WS-based wireless fire alarm system that realized reliable house fire accident detection was demonstrated, showing great promise for smart firefighting application.
Collapse
Affiliation(s)
- Shanshan Jia
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Guoxi Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Shijie Dai
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yemei Gao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shaobo Zhang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Jiulong Xie
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Qi Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yangao Wang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xingyan Huang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Zhiping Su
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, P. R. China
| |
Collapse
|
21
|
Guo M, Wang W, Zhai B, Li J, Zhang L, Li J, Luo K, Wang R. Ti 3C 2T x MXene-based hybrid nanocoating for flame retardant, early fire-warning and piezoresistive tension sensing smart polyester fabrics. NANOSCALE 2024; 16:4811-4825. [PMID: 38312063 DOI: 10.1039/d3nr06604e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Flammability feature of textiles is a big underlying risk causing fire disasters. The fabrication of reliable fire resistant and quick fire warning fabrics is imperative but challenging. Herein, three types of early fire-warning polyester fabrics, namely, FPP@AM-X, FPP@PM-X and FPP@AX-M1, with good flame retardant and piezoresistive sensing performance were developed by fabricating polyethyleneimine (PEI), ammonium polyphosphate (APP), phytic acid (PA) and MXenes onto phosphorus-containing flame retardant polyethylene terephthalate (FRPET) via polydopamine (PDA) mediated layer-by-layer self-assembly. Owing to the improved thermoelectric properties of MXenes, FPP@A5-M1 exhibited a maximum thermoelectric voltage of 0.59 mV at a temperature difference of 130 °C and can provide an ideal cyclic early fire warning response within 4 s. In addition, due to the synergistic flame retardant effect of MXenes and APP in the coating layer, FPP@A5-M1 could be self-extinguished within 2 s after ignition and the value of peak heat release ratio and total smoke production decreased by 41.9% and 30.4%, respectively. Besides, the MXene-based hybrid coated fabric can detect the movement of human fingers and elbows, illustrating its potential application in piezoresistive tension sensing. This work provides a new route to designing and developing multi-functional and smart fire protection fabrics.
Collapse
Affiliation(s)
- Menghan Guo
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Wenqing Wang
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China.
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Bin Zhai
- No. 5 Geological Brigade of Shandong Provincial Bureau of Geology and Mineral Resources, Taian, Shandong 271000, China
| | - Jingtao Li
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Liran Zhang
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China.
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jingchun Li
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Kexin Luo
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Rui Wang
- Materials Design & Engineering Department, Beijing Institute of Fashion Technology, Beijing 100029, China.
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
22
|
Xu Y, Lv J, Wang J, Ye F, Ye S, Ji J. Identifying topology of distribution substation in power Internet of Things using dynamic voltage load fluctuation flow analysis. PeerJ Comput Sci 2024; 10:e1688. [PMID: 38435577 PMCID: PMC10909208 DOI: 10.7717/peerj-cs.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 03/05/2024]
Abstract
At present, the reconfiguration, maintenance, and review of power lines play a pivotal role in maintaining the stability of electrical grid operations and ensuring the accuracy of electrical energy measurements. These essential tasks not only guarantee the uninterrupted functioning of the power system, thereby improving the reliability of the electricity supply but also facilitate precise electricity consumption measurement. In view of these considerations, this article endeavors to address the challenges posed by power line restructuring, maintenance, and inspections on the stability of power grid operations and the accuracy of energy metering. To accomplish this goal, this article introduces an enhanced methodology based on the hidden Markov model (HMM) for identifying the topology of distribution substations. This approach involves a thorough analysis of the characteristic topology structures found in low-voltage distribution network (LVDN) substations. A topology identification model is also developed for LVDN substations by leveraging time series data of electricity consumption measurements and adhering to the principles of energy conservation. The HMM is employed to streamline the dimensionality of the electricity consumption data matrix, thereby transforming the topology identification challenge of LVDN substations into a solvable convex optimization problem. Experimental results substantiate the effectiveness of the proposed model, with convergence to minimal error achieved after a mere 50 iterations for long time series data. Notably, the method attains an impressive discriminative accuracy of 0.9 while incurring only a modest increase in computational time, requiring a mere 35.1 milliseconds. By comparison, the full-day data analysis method exhibits the shortest computational time at 16.1 milliseconds but falls short of achieving the desired accuracy level of 0.9. Meanwhile, the sliding time window analysis method achieves the highest accuracy of 0.95 but at the cost of a 50-fold increase in computational time compared to the proposed method. Furthermore, the algorithm reported here excels in terms of energy efficiency (0.89) and load balancing (0.85). In summary, the proposed methodology outperforms alternative approaches across a spectrum of performance metrics. This article delivers valuable insights to the industry by fortifying the stability of power grid operations and elevating the precision of energy metering. The proposed approach serves as an effective solution to the challenges entailed by power line restructuring, maintenance, and inspections.
Collapse
Affiliation(s)
- Yongjin Xu
- State Grid Zhejiang Marketing Service Center, Hangzhou, China
| | - Jifan Lv
- State Grid Zhejiang Marketing Service Center, Hangzhou, China
| | - Jiaying Wang
- State Grid Zhejiang Marketing Service Center, Hangzhou, China
| | - Fangbin Ye
- State Grid Zhejiang Marketing Service Center, Hangzhou, China
| | - Shen Ye
- State Grid Zhejiang Marketing Service Center, Hangzhou, China
| | - Jianfeng Ji
- Beijing Zhixiang Technology Co., Ltd, Beijing, China
| |
Collapse
|
23
|
Jin X, Zhang J, Wang B, Li X, Zeng J, Ma J, Zhao X, Wu W, Del Río Sáez JS, Zhang X, Wang DY, Wang R. Multifunctional polylactic acid sensing fabric based on biomass flame retardants for intelligent fire early-warning. Int J Biol Macromol 2024; 259:129158. [PMID: 38176481 DOI: 10.1016/j.ijbiomac.2023.129158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Today, building materials emit many hazardous gases in the event of a fire, causing great harm to human health and the environment. Therefore, it is of great significance to develop bio-based flame retardant materials and to realize preventive measures to reduce fires or their damage. In this work, we fabricated a novel multifunctional fire early-warning polylactic acid-based fabric (MFR-PBF) by coating MXene nanosheet, phytic acid @ furfurylamine (PA@FA) and ammonium polyphosphate (APP) via an eco-friendly layer-by-layer assembly method. MFR-PBF showed outstanding flame retardancy including a limiting oxygen index value of 35 % and better char formation capacity. More importantly, MFR-PBF exhibited sensitive fire early-warning capability (∼1 s) and excellent cyclic alarm stability (>15 cycles) due to the excellent semiconductor responsiveness (light and heat) and the significant catalytic char formation effect. Moreover, MFR-PBF is comfortable, flexible and strong enough to sew onto firefighter uniform to detect a variety of human motions, which can be monitored in the internet by using a LoRa emitter and a gateway. In addition, the controllable heating performance rendered MFR-PBF as a potential portable heater. This work provides new insights into the preparation and application of intelligent fire early-warning fabrics in the smart fire protection and Internet of Things.
Collapse
Affiliation(s)
- Xu Jin
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jing Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Bin Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Xiaolu Li
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040 Madrid, Spain
| | - Jing Zeng
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jiayu Ma
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Ximeng Zhao
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Wenqi Wu
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - José Sánchez Del Río Sáez
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; Departamento de Ingeniería Eléctrica, Electrónica Automática y Física Aplicada, ETSIDI, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Xiuqin Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain
| | - Rui Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
24
|
Zhang J, Zhang HY, Xu WR, Zhang YC. Sustainable biomass-based composite biofilm: Sodium alginate, TEMPO-oxidized chitin nanocrystals, and MXene nanosheets for fire-resistant materials and next-generation sensors. J Colloid Interface Sci 2024; 654:795-804. [PMID: 37866051 DOI: 10.1016/j.jcis.2023.10.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Efficient utilization of natural biomass for the development of fireproof materials and next-generation sensors faces various challenges in the field of fire safety and prevention. In this study, renewable sodium alginate (SA), TEMPO-oxidized chitin nanocrystals (TOChNs), and MXene nanosheets were employed to fabricate a sustainable, flexible, and flame-retardant composite biofilm, donated as STM, utilizing a simple and environmentally friendly evaporation-induced self-assembly technique. The incorporation of SA, TOChNs, and MXene in a weight ratio of 50/10/40 led to improved mechanical properties of the resulting STM-40 films, as evidenced by increased tensile strength and Young's modulus values of approximately 36 MPa and 4 GPa, respectively. Notably, these values were approximately 3 and 11 times higher than those observed for the pure SA film. Moreover, the STM-40 films demonstrated highly sensitive fire alarm capabilities, exhibiting a superior flame alarm response time of 0.6 s and a continuous alarm time of approximately 492 s when exposed to flames. The STM exhibited exceptional flame retardancy due to the synergistic carbonization between MXene and SA/TOChNs, resulting in a limiting oxygen index of 45.0 %. Furthermore, its maximum heat release rate decreased by over 90.1 % during the test. This study presents a novel approach for designing and developing fire-retardant fire alarm sensors by utilizing natural biomass.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; Hainan Health Management College, Haikou 570228, China
| | - Hui-Yuan Zhang
- Heibei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical Safety, North China Institute of Science and Technology, Langfang, Hebei 065201, China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
25
|
Li X, Sánchez Del Río Sáez J, Du S, Sánchez Díaz R, Ao X, Wang DY. Bio-based chitosan-based film as a bifunctional fire-warning and humidity sensor. Int J Biol Macromol 2023; 253:126466. [PMID: 37659494 DOI: 10.1016/j.ijbiomac.2023.126466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Early fire detection is an efficient method to mitigate disastrous fire loss. However, developing smart low-temperature fire-warning sensors that better diminish fire hazards, especially those caused by household appliances, is still challenging. Herein, a salts-modified chitosan (salts-modified CS) based sensor with integrated fire-warning and humidity-monitoring capability is proposed using an easy assembling method. This sensor can respond to temperatures as low as 50 °C and a flame within 2 s quickly and detect relative humidity (RH) range above 50 % at 50 °C and 75 °C sensitively. This system can be reusable for multiple ignitions and works in high-humidity environments (>50 %). Furthermore, the comparison between different salts-modified CS films is carried out to elucidate the mechanism of the formation of electric current under the joint driven by temperature and humidity. Moreover, real-time temperature and RH monitoring can be achieved with a wireless transmission section. This design shows a promising approach for multifunctional CS-based sensors and paves a path to developing a new generation of smart fire-warning detectors.
Collapse
Affiliation(s)
- Xiaolu Li
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | - José Sánchez Del Río Sáez
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; Departamento de Ingeniería Eléctrica, Electrónica Automática y Física Aplicada, ETSIDI, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012, Madrid, Spain
| | - Shuanglan Du
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | | | - Xiang Ao
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain.
| |
Collapse
|
26
|
Ding Z, Du C, Long W, Cao CF, Liang L, Tang LC, Chen G. Thermoelectrics and thermocells for fire warning applications. Sci Bull (Beijing) 2023; 68:3261-3277. [PMID: 37722927 DOI: 10.1016/j.scib.2023.08.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
Historically, fire disasters have killed numerous human lives, and caused tremendous property loss. Fire warning systems play a vital role in predicting fire risks, and are strongly desired to effectively prevent the disaster occurrence and significantly reduce the loss. Among the developed fire warning systems, thermoelectrics (TEs) and thermocells (TECs)-based fire warning materials are extremely important and indispensable in future research, owing to their unique capability of direct conversion between heat and electricity. Here, we present this review of the recent progress of TEs and TECs in fire warning field. Firstly, a brief introduction of existing fire warning systems is provided, including the mechanisms and features of various types. Then, the mechanisms of electronic TE (eTE), ionic TE (iTE) and TEC are elucidated. Next, the basic principles for the material preparation and device fabrication are discussed in their dimension sequence. Subsequently, some important advances or examples of TE fire warnings are highlighted in details. Finally, the challenges and prospects are outlooked.
Collapse
Affiliation(s)
- Zhaofu Ding
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China
| | - Chunyu Du
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China
| | - Wujian Long
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China
| | - Cheng-Fei Cao
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia
| | - Lirong Liang
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| | - Guangming Chen
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
27
|
Zhao Y, Deng C, Yan B, Yang Q, Gu Y, Guo R, Lan J, Chen S. One-Step Method for Fabricating Janus Aramid Nanofiber/MXene Nanocomposite Films with Improved Joule Heating and Thermal Camouflage Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55150-55162. [PMID: 37967290 DOI: 10.1021/acsami.3c13722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The integration of ultraflexible and mechanically robust films with electric heaters and camouflage technology provides a promising platform for the development of wearable devices, especially for aerospace and military applications. Herein, we present a facile and efficient one-step vacuum-assisted filtration method for fabricating Janus films based on aramid nanofibers (ANF) and Ti3C2Tx (MXene). The ANF/MXene nanocomposite film exhibits remarkable properties, including high conductivity (23809.5 S/m), excellent mechanical strength (102.54 MPa), and outstanding thermal stability (575 °C). Most notably, the Janus ANF/MXene composite film demonstrates superior Joule heating performance with a low driving voltage (1-5 V), high heating temperature (30-276 °C), and rapid response time (within 5 s). Additionally, the film exhibits effective thermal camouflage (72 °C for objects with temperatures above 163 °C) and excellent electromagnetic interference shielding properties (SSE/t = 32475.6 dB cm2/g). These results demonstrate that Janus ANF/MXene films possess a unique combination of thermal camouflage, Joule heating, and electromagnetic interference shielding properties, making them highly promising for wearable devices, high-performance electrical heating, infrared stealth, and security protection applications.
Collapse
Affiliation(s)
- Yinghui Zhao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Cong Deng
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yingchun Gu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Ronghui Guo
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jianwu Lan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
28
|
Zhao H, Zhang Y, Han L, Qian W, Wang J, Wu H, Li J, Dai Y, Zhang Z, Bowen CR, Yang Y. Intelligent Recognition Using Ultralight Multifunctional Nano-Layered Carbon Aerogel Sensors with Human-Like Tactile Perception. NANO-MICRO LETTERS 2023; 16:11. [PMID: 37943399 PMCID: PMC10635924 DOI: 10.1007/s40820-023-01216-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
Humans can perceive our complex world through multi-sensory fusion. Under limited visual conditions, people can sense a variety of tactile signals to identify objects accurately and rapidly. However, replicating this unique capability in robots remains a significant challenge. Here, we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure, temperature, material recognition and 3D location capabilities, which is combined with multimodal supervised learning algorithms for object recognition. The sensor exhibits human-like pressure (0.04-100 kPa) and temperature (21.5-66.2 °C) detection, millisecond response times (11 ms), a pressure sensitivity of 92.22 kPa-1 and triboelectric durability of over 6000 cycles. The devised algorithm has universality and can accommodate a range of application scenarios. The tactile system can identify common foods in a kitchen scene with 94.63% accuracy and explore the topographic and geomorphic features of a Mars scene with 100% accuracy. This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing, recognition and intelligence.
Collapse
Affiliation(s)
- Huiqi Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yizheng Zhang
- Tencent Robotics X, Shenzhen, 518054, People's Republic of China
| | - Lei Han
- Tencent Robotics X, Shenzhen, 518054, People's Republic of China
| | - Weiqi Qian
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiabin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Heting Wu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Jingchen Li
- Tencent Robotics X, Shenzhen, 518054, People's Republic of China
| | - Yuan Dai
- Tencent Robotics X, Shenzhen, 518054, People's Republic of China.
| | - Zhengyou Zhang
- Tencent Robotics X, Shenzhen, 518054, People's Republic of China
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AK, UK
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
29
|
He H, Qin Y, Zhu Z, Jiang Q, Ouyang S, Wan Y, Qu X, Xu J, Yu Z. Temperature-Arousing Self-Powered Fire Warning E-Textile Based on p-n Segment Coaxial Aerogel Fibers for Active Fire Protection in Firefighting Clothing. NANO-MICRO LETTERS 2023; 15:226. [PMID: 37831274 PMCID: PMC10575845 DOI: 10.1007/s40820-023-01200-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission. A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground. However, it is still a challenge to facilely design and manufacture thermoelectric (TE) textile (TET)-based fire warning electronics with dynamic surface conformability and breathability. Here, we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti3C2Tx MXene and p-type MXene/SWCNT-COOH as core materials, and tough aramid nanofiber as protective shell, which simultaneously ensure the flexibility and high-efficiency TE power generation. With such alternating p/n-type TE fibers, TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric. The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300 °C. The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature. The fire alarm response time and flame-retardant properties are further displayed. Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement, demonstrating their potential application in firefighting clothing.
Collapse
Affiliation(s)
- Hualing He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Yi Qin
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Zhenyu Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Qing Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Shengnan Ouyang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Yuhang Wan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Xueru Qu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Jie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Zhicai Yu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
- Jiangsu New Horizon Advanced Functional Fiber Innovation Center Co., Ltd., Suzhou, 215000, People's Republic of China.
| |
Collapse
|
30
|
Lee GS, Kim JG, Kim JT, Lee CW, Cha S, Choi GB, Lim J, Padmajan Sasikala S, Kim SO. 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307689. [PMID: 37777874 DOI: 10.1002/adma.202307689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Recent consecutive discoveries of various 2D materials have triggered significant scientific and technological interests owing to their exceptional material properties, originally stemming from 2D confined geometry. Ever-expanding library of 2D materials can provide ideal solutions to critical challenges facing in current technological trend of the fourth industrial revolution. Moreover, chemical modification of 2D materials to customize their physical/chemical properties can satisfy the broad spectrum of different specific requirements across diverse application areas. This review focuses on three particular emerging application areas of 2D materials: smart fibers, soft robotics, and single atom catalysts (SACs), which hold immense potentials for academic and technological advancements in the post-artificial intelligence (AI) era. Smart fibers showcase unconventional functionalities including healthcare/environmental monitoring, energy storage/harvesting, and antipathogenic protection in the forms of wearable fibers and textiles. Soft robotics aligns with future trend to overcome longstanding limitations of hard-material based mechanics by introducing soft actuators and sensors. SACs are widely useful in energy storage/conversion and environmental management, principally contributing to low carbon footprint for sustainable post-AI era. Significance and unique values of 2D materials in these emerging applications are highlighted, where the research group has devoted research efforts for more than a decade.
Collapse
Affiliation(s)
- Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sujin Cha
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Go Bong Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonwon Lim
- Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
- Materials Creation, Seoul, 06179, Republic of Korea
| |
Collapse
|
31
|
Zhao Y, Zeng Q, Lai X, Li H, Zhao Y, Li K, Jiang C, Zeng X. Multifunctional cellulose-based aerogel for intelligent fire fighting. Carbohydr Polym 2023; 316:121060. [PMID: 37321743 DOI: 10.1016/j.carbpol.2023.121060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Multifunctional biomass-based aerogels with mechanically robust and high fire safety are urgently needed for the development of environmentally-friendly intelligent fire fighting but challenging. Herein, a novel polymethylsilsesquioxane (PMSQ)/cellulose/MXene composite aerogel (PCM) with superior comprehensive performance was fabricated by ice-induced assembly and in-situ mineralization. It exhibited light weight (16.2 mg·cm-3), excellent mechanical resilience, and rapidly recovered after being subjected to the pressure of 9000 times of its own weight. Moreover, PCM demonstrated outstanding thermal insulation, hydrophobicity and sensitive piezoresistive sensing. In addition, benefiting from the synergism of PMSQ and MXene, PCM displayed good flame retardancy and improved thermostability. The limiting oxygen index of PCM was higher than 45.0 %, and it quickly self-extinguished after being removed away from fire. More importantly, the rapid electrical resistance reduction of MXene at high temperature endowed PCM with sensitive fire-warning capability (trigger time was less than 1.8 s), which provided valuable time for people to evacuate and relief. This work provides new insights for the preparation and application of the next-generation high performance biomass-based aerogels.
Collapse
Affiliation(s)
- Yinan Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Qingtao Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xuejun Lai
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| | - Hongqiang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Ying Zhao
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Changcheng Jiang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xingrong Zeng
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, No 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
32
|
Zhao J, Zhou J, Li H, Xiao A. Ti 3C 2T x MXene and cellulose-based aerogel phase change composite decorated laminated fabric with excellent electro/solar-thermal conversion and high latent heat. Carbohydr Polym 2023; 316:121031. [PMID: 37321709 DOI: 10.1016/j.carbpol.2023.121031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Wearable heaters have attracted growing attention for maintaining a relatively constant temperature of the human body in cold environments with near zero energy consumption. Herein, we developed a multifunctional laminated fabric with fascinating electro/solar-thermal conversion, thermal energy storage and thermal insulation properties. With cotton fabric as the substrate, MXene/polydimethylsiloxane (PDMS) conductive network was decorated on the upper layer, and carbon nanotube (CNT)/cellulose nanofiber (CNF)/paraffin (PA) aerogel phase change composites were assembled on the bottom layer. Attributed to the strong conductivity and light absorption of MXene and the light/thermal response of CNT and PA components, this wearable laminated fabric broke the limitation of intermittent solar photothermal heating, and integrated multiple heating modes to precisely heat the human body. Meanwhile, the low thermal conductivity of aerogel retarded heat loss. The laminated fabric can help people better adapt to a variety of complex and changeable environments such as cold winter, rainy days and nights. This study provides a promising and energy-efficient avenue for the development of all-day personal thermal management fabrics.
Collapse
Affiliation(s)
- Jiaojiao Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021, Shaanxi, China
| | - Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021, Shaanxi, China.
| | - Hong Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021, Shaanxi, China
| | - Anguo Xiao
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde 415000, Hunan, China
| |
Collapse
|
33
|
Ma T, Zhou Q, Liu C, Li L, Guo C, Mei C. Construction of Multifunctional Hierarchical Biofilms for Highly Sensitive and Weather-Resistant Fire Warning. Polymers (Basel) 2023; 15:3666. [PMID: 37765520 PMCID: PMC10535110 DOI: 10.3390/polym15183666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Multifunctional biofilms with early fire-warning capabilities are highly necessary for various indoor and outdoor applications, but a rational design of intelligent fire alarm films with strong weather resistance remains a major challenge. Herein, a multiscale hierarchical biofilm based on lignocellulose nanofibrils (LCNFs), carbon nanotubes (CNTs) and TiO2 was developed through a vacuum-assisted alternate self-assembly and dipping method. Then, an early fire-warning system that changes from an insulating state to a conductive one was designed, relying on the rapid carbonization of LCNFs together with the unique electronic excitation characteristics of TiO2. Typically, the L-CNT-TiO2 film exhibited an ultrasensitive fire-response signal of ~0.30 s and a long-term warning time of ~1238 s when a fire disaster was about to occur, demonstrating a reliable fire-alarm performance and promising flame-resistance ability. More importantly, the L-CNT-TiO2 biofilm also possessed a water contact angle (WCA) of 166 ± 1° and an ultraviolet protection factor (UPF) as high as 2000, resulting in excellent superhydrophobicity, antifouling, self-cleaning as well as incredible anti-ultraviolet (UV) capabilities. This work offers an innovative strategy for developing advanced intelligent films for fire safety and prevention applications, which holds great promise for the field of building materials.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (T.M.); (C.L.)
| | - Qianqian Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (T.M.); (C.L.)
| | - Chaozheng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (T.M.); (C.L.)
| | - Liping Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Chuigen Guo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (T.M.); (C.L.)
| |
Collapse
|
34
|
Hu WY, Yu KX, Zheng QN, Hu QL, Cao CF, Cao K, Sun W, Gao JF, Shi Y, Song P, Tang LC. Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane. J Colloid Interface Sci 2023; 647:467-477. [PMID: 37271091 DOI: 10.1016/j.jcis.2023.05.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
An abundance of early warning graphene-based nano-materials and sensors have been developed to avoid and prevent the critical fire risk of combustible materials. However, there are still some limitations that should be addressed, such as the black color, high-cost and single fire warning response of graphene-based fire warning materials. Herein, we report an unexpected montmorillonite (MMT)-based intelligent fire warning materials that have excellent fire cyclic warning performance and reliable flame retardancy. Combining phenyltriethoxysilane (PTES) molecules, poly(p-phenylene benzobisoxazole) nanofiber (PBONF), and layers of MMT to form a silane crosslinked 3D nanonetwork system, the homologous PTES decorated MMT-PBONF nanocomposites are designed and fabricated via a sol-gel process and low temperature self-assembly method. The optimized nanocomposite paper shows good mechanical flexibility (good recovery after kneading or bending process), high tensile strength of ∼81 MPa and good water resistance. Furthermore, the nanocomposite paper exhibits high-temperature flame resistance (almost unchanged structure and size after 120 s combustion), sensitive flame alarm response (∼0.3 s response once exposure onto a flame), cyclic fire warning performance (>40 cycles), and adaptability to complex fire situations (several fire attack and evacuation scenarios), showing promising applications for monitoring the critical fire risk of combustible materials. Therefore, this work paves a rational way for design and fabrication of MMT-based smart fire warning materials that combine excellent flame shielding and sensitive fire alarm functions.
Collapse
Affiliation(s)
- Wen-Yu Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Ke-Xin Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Na Zheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Liang Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng-Fei Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Kun Cao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weifu Sun
- State Key Laboratory of Explosion Science and Technology, School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jie-Feng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
35
|
Zhu M, Lu C, Liu L. Progress and challenges of emerging MXene based materials for thermoelectric applications. iScience 2023; 26:106718. [PMID: 37234091 PMCID: PMC10206441 DOI: 10.1016/j.isci.2023.106718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
To realize sustainable development, more and more countries forwarded carbon neutrality goal. Accordingly, improving the utilization efficiency of traditional fossil fuel is an effective strategy for this great goal. Keeping this in mind, developing thermoelectric devices to recover waste heat energy resulted in the consumption process of fuel is demonstrated to be promising. High performance thermoelectric devices require advanced materials. MXenes are a kind of 2D materials with a layered structure, which demonstrate excellent thermoelectric performance owing to their unique physical, mechanical, and chemical properties. Also, substantial achievement has been gained during the past few years in synthesizing MXene based materials for thermoelectric devices. In this review, the mainstream synthetic routes of MXene from etching MAX were summarized. Significantly, the current state and challenges of research on improving the performance of MXene based thermoelectrics are explored, including pristine MXene and MXene based composites.
Collapse
Affiliation(s)
- Maiyong Zhu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Congcong Lu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lingran Liu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
36
|
Lu T, Han X, Wang H, Zhang Z, Lu S. Multi-functional bio-film based on sisal cellulose nanofibres and carboxymethyl chitosan with flame retardancy, water resistance, and self-cleaning for fire alarm sensors. Int J Biol Macromol 2023; 242:124740. [PMID: 37150370 DOI: 10.1016/j.ijbiomac.2023.124740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Flexible and environmentally friendly bio-based films have attracted significant attention as next-generation fire-responsive sensors. However, the low structural stability, durability, and flame retardancy of pure bio-based films limit their application in outdoor and extreme environments. Here, we report the design of a sustainable bio-based composite film assembled from carboxymethyl-modified sisal fibre microcrystals (C-MSF), carboxymethyl chitosan (CMC), graphene nanosheets (GNs), phytic acid (PA), and trivalent iron ions (Fe3+). Cross-linking between Fe3+ and the C-MSF/CMC matrix and the formation of PA-Fe3+ complexes on the surface of the film imparted excellent mechanical properties, chemical stability, self-cleaning ability, and flame retardancy to the bio-film. Furthermore, the bio-film produced a reversible and sensitive response to temperature at 55.3-214.1 °C, and a fire alarm system made from the bio-film had a fire-response time of 4.6 s. In addition, the char layer of the bio-film retained a stable cyclic response to temperature, enabling it to serve as a fire resurgence sensor with a response time of 2.3 s and recovery time of 11.2 s. This work provides a simple pathway for the fabrication of self-cleaning, flame retardant, and water-resistant bio-films that can be assembled into fire alarm systems for the real-time monitoring of fire accidents and resurgence.
Collapse
Affiliation(s)
- Tianyun Lu
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber, Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaokun Han
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber, Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - He Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber, Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
| | - Zuocai Zhang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
37
|
Zhu J, Song Y, Wang J, Yang Q, Ma S, Zhang S, Chen T, Jia Z. A highly flame-retardant, agile fire-alarming and ultrasensitive cotton fabric-based piezoresistive sensor for intelligent fire system. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
38
|
Gong X, Xiong Z, Chen X, Meng F, Wang H. Multifunctional Superamphiphobic Cotton Fabrics with Highly Efficient Flame Retardancy, Self-Cleaning, and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3395-3408. [PMID: 36595716 DOI: 10.1021/acsami.2c21320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, a facile method is reported to prepare multifunctional cotton fabrics with high flame retardancy, high electrical conductivity, superamphiphobicity, and high electromagnetic shielding. The cotton fabric surface was first modified with phytic acid (PA), which promoted dehydration and carbonization of cellulose to increase flame retardancy in the process of pyrolysis. Tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) coating with nanospheres as interlayers created hierarchical roughness that facilitated the construction of superamphiphobic surfaces and provided adhesion sites for silver nanoparticles. In addition, the TA-APTES coating improved flame retardancy because the APTES-containing silicon could form silicon carbon layers to isolate heat and oxygen. Subsequently, the surface energy of the composite cotton fabric was reduced by fluorine-containing molecules. The prepared composite cotton fabric exhibited excellent superamphiphobicity with contact angles of 160.3 and 152° for water and olive oil, respectively. The conductivity and EMI shielding efficiency of the prepared composite cotton fabric reached 629.93 S/cm and 76 dB, respectively. Importantly, the composite cotton fabric maintained a relatively stable EMI shielding efficiency even after cyclic bending and abrasion tests. Moreover, the composite cotton fabric possessed a high limiting oxygen index (LOI) of 45.3% and self-extinguishing properties with the peak heat release rate (PHHR) and total heat release (THR) reduced by 73 and 67%, respectively, than the pure cotton fabric, indicating the outstanding flame retardancy.
Collapse
Affiliation(s)
- Xiao Gong
- NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, Zhejiang, P. R. China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan430070, P. R. China
| | - Zheng Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan430070, P. R. China
| | - Xiaona Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, Zhejiang, P. R. China
| | - Fanchao Meng
- NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, Zhejiang, P. R. China
| | - Hangxiang Wang
- NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, Zhejiang, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250117, Shandong, P. R. China
| |
Collapse
|
39
|
Fire-retardant and electrocatalytic performance of N, P-graphene fiber nonwoven fabrics. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
40
|
Cao CF, Yu B, Huang J, Feng XL, Lv LY, Sun FN, Tang LC, Feng J, Song P, Wang H. Biomimetic, Mechanically Strong Supramolecular Nanosystem Enabling Solvent Resistance, Reliable Fire Protection and Ultralong Fire Warning. ACS NANO 2022; 16:20865-20876. [PMID: 36468754 DOI: 10.1021/acsnano.2c08368] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A graphene oxide (GO)-based smart fire alarm sensor (FAS) has gained rapidly increasing research interest in fire safety fields recently. However, it still remains a huge challenge to obtain desirable GO-based FAS materials with integrated performances of mechanical flexibility/robustness, harsh environment-tolerance, high-temperature resistance, and reliable fire warning and protection. In this work, based on bionic design, the supermolecule melamine diborate (M·2B) was combined with GO nanosheets to form supramolecular cross-linking nanosystems, and the corresponding GO-M·2B (GO/MB) hybrid papers with a nacre-like micro/nano structure were successfully fabricated via a gel-dry method. The optimized GO/MB paper exhibits enhanced mechanical properties, e.g., tensile strength and toughness up to ∼122 MPa and ∼1.72 MJ/m3, respectively, which is ∼3.5 and ∼6.6 times higher than those of the GO paper. Besides, it also shows excellent structural stability even under acid/alkaline solution immersion and water bath ultrasonication conditions. Furthermore, due to the presence of promoting reduction effect and atom doping reactions in GO network, the resulting GO/MB network displays exceptional high-temperature resistance, sensitive fire alarm response (∼0.72 s), and ultralong alarming time (>1200 s), showing promising fire safety and protection application prospects as desirable FAS and fire shielding material with excellent comprehensive performances. Therefore, this work provides inspiration for the design and fabrication of high-performance GO-based smart materials that combine fire shielding and alarm functions.
Collapse
Affiliation(s)
- Cheng-Fei Cao
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bin Yu
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ju Huang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Lan Feng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ling-Yu Lv
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Feng-Na Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jiabing Feng
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
| |
Collapse
|
41
|
Layer-by-Layer Self-Assembly Coating for Multi-Functionalized Fabrics: A Scientometric Analysis in CiteSpace (2005-2021). Molecules 2022; 27:molecules27196767. [PMID: 36235299 PMCID: PMC9573603 DOI: 10.3390/molecules27196767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Surface-engineered coatings have been increasingly applied to functionalize fabrics due to the ease of deposition of the coatings and their effectiveness in endowing the fabric with abundant properties. Among the surface modification methods, layer-by-layer (LbL) self-assembly has emerged as an important approach for creating multifunctional surfaces on fabrics. In this review, bibliometric analysis with the visualization analysis of LbL self-assembly coatings on fabrics was performed on publications extracted from the Web of Science (WOS) from 2005 to 2021 based on the CiteSpace software. The analysis results showed that research on LbL self-assembly coatings on fabrics has attracted much attention, and this technique has plentiful and flexible applications. Moreover, research on the LbL self-assembly method in the field of functionalization of fabrics has been summarized, which include flame retardant fabric, antibacterial fabric, ultraviolet resistant fabric, hydrophobic fabric and electromagnetic shielding fabric. It was found that the functionalization of the fabric has been changing from singularity to diversification. Based on the review, several future research directions can be proposed. The weatherability, comfort, cost and environmental friendliness should be considered when the multifunctional coatings are designed.
Collapse
|
42
|
Li X, Vázquez-López A, Sánchez Del Río Sáez J, Wang DY. Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective. NANO-MICRO LETTERS 2022; 14:197. [PMID: 36201090 PMCID: PMC9537397 DOI: 10.1007/s40820-022-00938-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/25/2022] [Indexed: 05/17/2023]
Abstract
Early-stage fire-warning systems (EFWSs) have attracted significant attention owing to their superiority in detecting fire situations occurring in the pre-combustion process. Substantial progress on EFWSs has been achieved recently, and they have presented a considerable possibility for more evacuation time to control constant unintentional fire hazards in our daily life. This review mainly makes a comprehensive summary of the current EFWSs, including the working mechanisms and their performance. According to the different working mechanisms, fire alarms can be classified into graphene oxide-based fire alarms, semiconductor-based fire alarms, thermoelectric-based fire alarms, and fire alarms on other working mechanisms. Finally, the challenge and prospect for EFWSs are briefly provided by comparing the art of state of fire alarms. This work can propose a more comprehensive understanding of EFWSs and a guideline for the cutting-edge development direction of EFWSs for readers.
Collapse
Affiliation(s)
- Xiaolu Li
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906, Getafe, Madrid, Spain
- E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | | | - José Sánchez Del Río Sáez
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906, Getafe, Madrid, Spain
- Departamento de Ingeniería Eléctrica, Electrónica Automática y Física Aplicada, ETSIDI, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012, Madrid, Spain
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906, Getafe, Madrid, Spain.
| |
Collapse
|
43
|
Sathiyaseelan A, Saravanakumar K, Wang MH. Bimetallic silver-platinum (AgPt) nanoparticles and chitosan fabricated cotton gauze for enhanced antimicrobial and wound healing applications. Int J Biol Macromol 2022; 220:1556-1569. [PMID: 36100005 DOI: 10.1016/j.ijbiomac.2022.09.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Wound healing is a significant clinical and socioeconomic problem that is often affected by microbial infection. Inappropriate monitoring leads to unfavorable concerns for surrounding tissues. Cotton gauzes have been used as low-cost wound dressing material but prolong healing owing to strong adherence and secondary microbial infections. Hence, we prepared the bimetallic (silver and platinum) nanoparticles (AgPt NPs) using citric acid (CA) as a reducing agent and then coated them on chitosan (CS) fabricated cotton gauze (CG) for enhanced antimicrobial and wound healing applications. The synthesis of AgPt NPs was evidenced UV-Visible spectroscopy, FE-TEM, and elemental mapping analysis. The average size of AgPt NPs was 21.48 ± 6.32 nm and spherical in structure. Besides, AgPt NPs showed a hydrodynamic size of 63.64 (d.nm) with a polydispersity index of 0.220 and a zeta potential of -28.1 mV. The FT-IR and XRD analysis demonstrated the functional changes and crystalline properties of AgPt NPs. The antimicrobial efficacy of AgPt NPs was significantly higher than standard antibiotic against bacteria, yeast, and filamentous fungi. Furthermore, the AgPt NPs-CS/CG exhibited a substantial hydrophobic nature with better antimicrobial and antioxidant activity. In addition, pH-dependent Ag and Pt release from the AgPt NPs-CS/CG was determined by ICP-MS analysis. The treatment of AgPt NPs-CS/CG augmented the in vitro wound healing in mouse embryonic fibroblast cells (NIH3T3). Hence, we concluded that AgPt NPs-CS/CG could be used to enhance antimicrobial and wound healing applications.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
44
|
Yan Y, Dong S, Jiang H, Hou B, Wang Z, Jin C. Efficient and Durable Flame-Retardant Coatings on Wood Fabricated by Chitosan, Graphene Oxide, and Ammonium Polyphosphate Ternary Complexes via a Layer-by-Layer Self-Assembly Approach. ACS OMEGA 2022; 7:29369-29379. [PMID: 36033710 PMCID: PMC9404465 DOI: 10.1021/acsomega.2c03624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
An efficient and durable flame-retardant coating was constructed on wood via a layer-by-layer (LBL) self-assembly approach by using a chitosan (CS), graphene oxide (GO), and ammonium polyphosphate (APP) ternary flame-retardant system. Both scanning electron microscopy (SEM) characterization and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that CS-GO and APP polyelectrolytes were successfully deposited on wood, and the deposition amount was increased with the numbers of the LBLs. Thermogravimetric analysis revealed that the CS-GO-APP coating could decrease the initial and maximum thermal decomposition temperature of the coated wood while increase the char residue significantly, which may be attributed to the earlier degradation of CS and APP and effective heat barrier of the incorporated GO, thus increasing the thermal stability of the modified wood. The limited oxygen index (LOI) and cone calorimeter analysis results of the pristine and coated wood indicated that the fire resistance was significantly improved after CS-GO-APP modification; when 15 BLs were deposited on the wood, the LOI was increased from pristine 22 to 42, while the heat release rate and total heat release decreased from pristine 105.50 kW/m2 and 62.43 MJ/m2 to 57.51 kW/m2 and 34.31 MJ/m2, respectively. What is more, the 24 h immersion experiments and abrasion tests proved the excellent durability of the deposited coating. Furthermore, the SEM images of the char residues after flaming test proved that the CS-GO-APP assembly coating could promote the char layer formation on the wood surface and block the heat and flame spread, thus protecting the wood from fire attacking.
Collapse
Affiliation(s)
- Yutao Yan
- School of Chemical and Material
Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang
Province, PR China
| | - Sijie Dong
- School of Chemical and Material
Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang
Province, PR China
| | - Haochong Jiang
- School of Chemical and Material
Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang
Province, PR China
| | - Bohan Hou
- School of Chemical and Material
Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang
Province, PR China
| | - Zhe Wang
- School of Chemical and Material
Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang
Province, PR China
| | - Chunde Jin
- School of Chemical and Material
Engineering, Zhejiang A&F University, Hangzhou 311300, Zhejiang
Province, PR China
| |
Collapse
|
45
|
Peng T, Wang S, Xu Z, Tang T, Zhao Y. Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection. ACS OMEGA 2022; 7:29161-29170. [PMID: 36033682 PMCID: PMC9404508 DOI: 10.1021/acsomega.2c03219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 05/31/2023]
Abstract
Rapid development of highly integrated electronic and telecommunication devices has led to urgent demands for electromagnetic interference (EMI) shielding materials that incorporate flame retardancy, and more desirably the early fire detection ability, due to the potential fire hazards caused by heat propagation and thermal failure of the devices during operation. Here, multifunctional flexible films having the main dual functions of high EMI shielding performance and repeatable fire detection ability are fabricated by vacuum filtration of the mixture of MXene and aramid nanofiber (ANF) suspensions. ANFs serve to reinforce MXene films via the formation of hydrogen bonding between the carbonyl groups of ANFs and the hydroxyl groups of MXene. When the ANF content is 20 wt %, the tensile strength of the film is increased from 24.6 MPa for a pure MXene film to 79.5 MPa, and such a composite film (9 μm thickness) exhibits a high EMI shielding effectiveness (SE) value of ∼40 dB and a specific SE (SSE) value of 4361.1 dB/mm. Upon fire exposure, the composite films can trigger the fire detection system within 10 s owing to the thermoelectric property of MXene. The self-extinguishing feature of ANFs ensures the structural integrity of the films during burning, thus allowing for continuous alarm signals. Moreover, the films also exhibit excellent Joule heating and photothermal conversion performances with rapid response and sufficient heating reliability.
Collapse
Affiliation(s)
- Tianshu Peng
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Shanchi Wang
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia
Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Tingting Tang
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Yan Zhao
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| |
Collapse
|
46
|
Gao C, Zhu J, Li J, Zhou B, Liu X, Chen Y, Zhang Z, Guo J. Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation. J Colloid Interface Sci 2022; 619:322-330. [DOI: 10.1016/j.jcis.2022.03.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
|
47
|
Zou W, Gu J, Li J, Wang Y, Chen S. Tailorable antibacterial and cytotoxic chitosan derivatives by introducing quaternary ammonium salt and sulfobetaine. Int J Biol Macromol 2022; 218:992-1001. [PMID: 35878673 DOI: 10.1016/j.ijbiomac.2022.07.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Abstract
Chitosan (CS) derivatives with improved water solubility, antibacterial activity and adequate biocompatibility are attracting increasingly interest in medical application. Herein, we have successfully synthesized isocyanate terminated quaternary ammonium salt (IQAS) and sulfopropylbetaine (ISB) to be readily covalently bounded to CS skeleton by selective reaction with amino and hydroxyl groups. And their molecular structures and crystallinity were confirmed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and X-ray diffraction. The effect of the substitution degree, carbon chain length, content ratio of IQAS/ISB on their water solubility, antibacterial activity and cytotoxicity were systematically investigated, which shows that those properties of the CS derivatives can be tailored by adjusting the grafted antibacterial agents and their additive amount. The structure-property relationship of these CS derivatives may provide a solid guidance on the development of CS derivatives for more efficient practical applications.
Collapse
Affiliation(s)
- Wanjing Zou
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jingwei Gu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jianna Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen 518060, China
| | - Yuanfang Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
48
|
Koyappayil A, Chavan SG, Roh YG, Lee MH. Advances of MXenes; Perspectives on Biomedical Research. BIOSENSORS 2022; 12:454. [PMID: 35884257 PMCID: PMC9313156 DOI: 10.3390/bios12070454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Yun-Gil Roh
- Department of Convergence in Health and Biomedicine, Chungbuk University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea;
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| |
Collapse
|
49
|
Yu L, Xu L, Lu L, Alhalili Z, Zhou X. Thermal Properties of MXenes and Relevant Applications. Chemphyschem 2022; 23:e202200203. [PMID: 35674280 DOI: 10.1002/cphc.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Indexed: 11/10/2022]
Abstract
The properties and applications of MXenes (a family of layered transition metal carbides, nitrides, and carbonitrides) have aroused enormous research interests for a decade since the successful synthesis of few-layer transition metal carbides in 2011. Though MXenes, as the building blocks, have already been applied in various fields (such as wearable electronics) owing to the distinctive optical, mechanical and electrical properties, their thermal stability and intrinsic thermal properties were less thoroughly investigated compared to other characteristics in early reports. The pioneering theoretical prediction of the thermoelectric nature of MXenes was performed in 2013 while the first experiment-based report concerning the degradation behavior of the 2D structure at elevated temperatures in a controlled atmosphere was published in 2015, followed by numerous discoveries regarding the thermal properties of MXenes. Herein, after a brief description of the synthesis, this Review summarized the latest insights into the thermal stability and thermophysical properties of MXenes, and further associated these unique properties with relevant applications by multiple examples. Finally, current hurdles and challenges in this field were provided along with some advices on potential research directions in the future.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts, Shaqra University, Sajir, Riyadh, Saudi Arabia
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| |
Collapse
|
50
|
Dual fire-alarm LBL safeguarding coatings with flame-retardant, EMI shielding and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|