1
|
Tong Z, Yan X, Liu Y, Zhao Y, Li K. Si 3N 4 Nanoparticle Reinforced Si 3N 4 Nanofiber Aerogel for Thermal Insulation and Electromagnetic Wave Transmission. Gels 2025; 11:324. [PMID: 40422344 DOI: 10.3390/gels11050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/28/2025] Open
Abstract
Traditional nanoparticle aerogels suffer from inherent brittleness and thermal instability at elevated temperatures. In recent years, ceramic nanofiber aerogels, utilizing flexible nanofibers as structural units, have emerged as mechanically resilient alternatives with ultrahigh porosity (>90%). However, their thermal insulation capabilities are compromised by micron-scale pores (10-100 μm) and overdependence on ultralow density, which exacerbates mechanical fragility. This study pioneers a gas-phase self-assembly strategy to fabricate Si3N4 nanoparticle reinforced Si3N4 nanofiber aerogels (SNP-R-SNFA) with gradient pore architectures. By leveraging methyltrimethoxysilane/vinyltriethoxysilane composite aerogel (MVa) as a reactive template, we achieved spontaneous growth of Si3N4 nanofiber films (SNP-R-SNF) featuring nanoparticle-fiber interpenetration and porosity gradients. The microstructure formation mechanism of SNP-R-SNF was analyzed using field-emission scanning electron microscopy. Layer assembly and hot-pressing composite technology were employed to prepare the SNP-R-SNFA, which showed low density (0.033 g/cm3), exceptional compression resilience, insensitive frequency dependence of dielectric properties (ε' = 2.31-2.39, tan δ < 0.08 across 8-18 GHz). Infrared imaging displayed backside 893 °C cooler than front, demonstrating superior insulation performance. This study not only provides material solutions for integrated electromagnetic wave-transparent/thermal insulation applications but more importantly establishes an innovative paradigm for enhancing the mechanical robustness of nanofiber-based aerogels.
Collapse
Affiliation(s)
- Zongwei Tong
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
| | - Xiangjie Yan
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
| | - Yun Liu
- School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yali Zhao
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
| | - Kexun Li
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
| |
Collapse
|
2
|
Dang S, Guo J, Deng Y, Yu H, Zhao H, Wang D, Zhao Y, Song C, Chen J, Ma M, Chen W, Xu X. Highly-Buckled Nanofibrous Ceramic Aerogels with Ultra-Large Stretchability and Tensile-Insensitive Thermal Insulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415159. [PMID: 39617998 DOI: 10.1002/adma.202415159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/11/2024] [Indexed: 01/30/2025]
Abstract
Ceramic aerogels have exhibited many superior characteristics with promising applications. As an attractive material system for thermal insulation under extreme conditions, ceramic aerogels are required to withstand complex thermomechanical stress to retain their super-insulating properties but, they often suffer from severe fracture damage that can lead to catastrophic failure. Herein, inspired by the tendrils of Parthenocissus, we report a design and synthesis of ultra-stretchable ceramic aerogels constructed by highly buckled nanofibers. The buckling of nanofibers is formed by asymmetric deformation through two-component off-axial electrospinning method. The resulting aerogels feature an ultra-large stretchability with a tensile strain of up to 150% and high restorability with a tensile strain of up to 80%. They also display a near-zero Poisson's ratio (4.3 × 10-2) and a near-zero thermal expansion coefficient (2.6 × 10-7 per °C), resulting in excellent thermomechanical stability. Benefiting from this ultra-stretchability, the aerogels exhibit a unique tensile-insensitive thermal insulation performance with thermal conductivities remaining only ≈106.7 mW m-1 K-1 at 1000 °C. This work promotes the development of ceramic aerogels for robust thermal insulation under extreme conditions and establishes a set of fundamental considerations in structural design of stretchable aerogels for a wide spectrum of applications.
Collapse
Affiliation(s)
- Shixuan Dang
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jingran Guo
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yuanpeng Deng
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Hongxuan Yu
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Han Zhao
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Duola Wang
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yingde Zhao
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Chuanyun Song
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jiali Chen
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Minglei Ma
- China Construction Eighth Engineering Division Co. Ltd, Shanghai, 200112, P. R. China
| | - Wenshuai Chen
- Key Laboratory of Bio-Based Material Science and Technology of the Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiang Xu
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, P. R. China
| |
Collapse
|
3
|
Li W, He F, Liu H, Jiang Y, Mu Y, Wang C, Zhou X, Jiang S, Xu L, Wang L, He X, Li M. Electric Field-Induced Ordered-Structural Aerogels Enable Superinsulation and Multifunctionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406188. [PMID: 39402763 DOI: 10.1002/smll.202406188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Indexed: 12/20/2024]
Abstract
1D flexible fibers assembled 3D porous networked ceramic fiber aerogels (CFAs) are developed to overcome the brittleness of traditional ceramic particle aerogels. However, existing CFAs with disordered and quasi-ordered structures fail to balance the relationship between flexibility, robustness, and thermal insulation. Creating novel architectural CFAs with an excellent combination of performances has proven extremely challenging. In this paper, a novel strategy is adopted to fabricate porous mullite fibrous aerogels (MFAs) with ordered structures by combining fiber sedimentation and electric field-induced fiber alignment techniques. For the first time, electric field-induced alignment of ceramic fibers is utilized to prepare bulk aerogels on a large scale. The resulting MFAs exhibit ultra-low high-temperature thermal conductivity of 0.0830 W m-1 K-1 at 1000 °C, anisotropic mechanical and sound absorption performances, and multifunctionality in terms of the combination of thermal insulation, sound absorption, and hydrophobicity. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional CFAs for various applications.
Collapse
Affiliation(s)
- Wenjie Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fei He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hang Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuncong Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuwen Mu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chen Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Siyi Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lingfeng Xu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Linyan Wang
- Department of materials engineering, Taiyuan Institute of Technology, Taiyuan, 030024, P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Mingwei Li
- National Key Laboratory for Precision Hot Processing of Materials, Harbin Institute of Technology, Harbin, 150080, P. R. China
| |
Collapse
|
4
|
Okafor PE, He C, Tang G. A critical review of superinsulation performance of ceramic nanofibrous aerogel for extreme conditions: Modeling, fabrication, applications, and outlook. Adv Colloid Interface Sci 2024; 335:103352. [PMID: 39591833 DOI: 10.1016/j.cis.2024.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/20/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Affiliation(s)
- Peter-Ebuka Okafor
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenbo He
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guihua Tang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Sun Z, Zhao K, Yang H, Liang J, Chen Z, Feng J, Jiang Y, Li L, Hu Y, Feng J. Research Progress on Modification of Aerogels by Chemical Vapor Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19304-19315. [PMID: 39214592 DOI: 10.1021/acs.langmuir.4c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aerogels are three-dimensional nanomaterials with low thermal conductivity, low density, high specific surface area, and high porosity. They have demonstrated remarkable performance advantages in thermal insulation, catalysis, and adsorption in recent years. However, their inherent brittleness and weak skeletal structure limit their applications. In order to improve the resilience and expand the capabilities of aerogels, it is essential to optimize their intrinsic properties. The chemical vapor deposition (CVD) method offers a number of advantages, including fine control, high selectivity, and the ability to modify the aerogel in both the outer surface and the inner layer. This approach allows for reinforcement of the gel skeleton while achieving functionalization. This paper reviews the research progress of aerogel modification by the CVD method with a focus on hydrophobic modification, structural improvement, antioxidant modification, catalytic modification, etc. In light of the current demand for aerogel applications and the difficulties encountered in modifying aerogels, this review proposes future research directions for aerogel modification by CVD.
Collapse
Affiliation(s)
- Zhengyang Sun
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
| | - Kongli Zhao
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
| | - Haisen Yang
- Polymer Materials and Engineering, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P.R. China
| | - Jingjing Liang
- Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Guangdong 518118, P.R. China
| | - Zixu Chen
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, P.R. China
| | - Junzong Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
| | - Yonggang Jiang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
| | - Liangjun Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
| | - Yijie Hu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
| |
Collapse
|
6
|
Ni H, Lu D, Zhuang L, Guo P, Xu L, Li M, Hu W, Ni Z, Su L, Peng K, Wang H. Tailoring Mechanical Properties of a Ceramic Nanowire Aerogel with Pyrolytic Carbon for In Situ Resilience at 1400 °C. ACS NANO 2024; 18:15950-15957. [PMID: 38847327 DOI: 10.1021/acsnano.4c03816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Resilient ceramic aerogels with a unique combination of lightweight, good high-temperature stability, high specific area, and thermal insulation properties are known for their promising applications in various fields. However, the mechanical properties of traditional ceramic aerogels are often constrained by insufficient interlocking of the building blocks. Here, we report a strategy to largely increase the interlocking degree of the building blocks by depositing a pyrolytic carbon (PyC) coating onto Si3N4 nanowires. The results show that the mechanical performances of the Si3N4 nanowire aerogels are intricately linked to the microstructure of the PyC nodes. The compression resilience of the Si3N4@PyC nanowire aerogels increases with an increase of the interlayer cross-linking in PyC. Additionally, benefiting from the excellent high-temperature stability of PyC, the Si3N4@PyC nanowire aerogels demonstrate significantly superior in situ resilience up to 1400 °C. The integrated mechanical and high-temperature properties of the Si3N4@PyC nanowire aerogels make them highly appealing for applications in harsh conditions. The facile method of manipulating the microstructure of the nodes may offer a perspective for tailoring the mechanical properties of ceramic aerogels.
Collapse
Affiliation(s)
- Haotian Ni
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - De Lu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhuang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Guo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingzhu Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenhao Hu
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhentao Ni
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Wang W, Fu Q, Ge J, Xu S, Liu Q, Zhang J, Shan H. Advancements in Thermal Insulation through Ceramic Micro-Nanofiber Materials. Molecules 2024; 29:2279. [PMID: 38792141 PMCID: PMC11124260 DOI: 10.3390/molecules29102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Ceramic fibers have the advantages of high temperature resistance, light weight, favorable chemical stability and superior mechanical vibration resistance, which make them widely used in aerospace, energy, metallurgy, construction, personal protection and other thermal protection fields. Further refinement of the diameter of conventional ceramic fibers to microns or nanometers could further improve their thermal insulation performance and realize the transition from brittleness to flexibility. Processing traditional two-dimensional (2D) ceramic fiber membranes into three-dimensional (3D) ceramic fiber aerogels could further increase porosity, reduce bulk density, and reduce solid heat conduction, thereby improving thermal insulation performance and expanding application areas. Here, a comprehensive review of the newly emerging 2D ceramic micro-nanofiber membranes and 3D ceramic micro-nanofiber aerogels is demonstrated, starting from the presentation of the thermal insulation mechanism of ceramic fibers, followed by the summary of 2D ceramic micro-nanofiber membranes according to different types, and then the generalization of the construction strategies for 3D ceramic micro-nanofiber aerogels. Finally, the current challenges, possible solutions, and future prospects of ceramic micro-nanofiber materials are comprehensively discussed. We anticipate that this review could provide some valuable insights for the future development of ceramic micro-nanofiber materials for high temperature thermal insulation.
Collapse
Affiliation(s)
- Wenqiang Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (W.W.); (Q.F.); (J.G.); (S.X.); (J.Z.)
| | - Qiuxia Fu
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (W.W.); (Q.F.); (J.G.); (S.X.); (J.Z.)
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Jianlong Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (W.W.); (Q.F.); (J.G.); (S.X.); (J.Z.)
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Sijun Xu
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (W.W.); (Q.F.); (J.G.); (S.X.); (J.Z.)
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Qixia Liu
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (W.W.); (Q.F.); (J.G.); (S.X.); (J.Z.)
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Junxiong Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (W.W.); (Q.F.); (J.G.); (S.X.); (J.Z.)
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Haoru Shan
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (W.W.); (Q.F.); (J.G.); (S.X.); (J.Z.)
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| |
Collapse
|
8
|
Du Y, Jiang P, Yang X, Fu R, Liu L, Miao C, Wang Y, Sai H. Hydrophobic Silk Fibroin-Agarose Composite Aerogel Fibers with Elasticity for Thermal Insulation Applications. Gels 2024; 10:266. [PMID: 38667686 PMCID: PMC11049485 DOI: 10.3390/gels10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Aerogel fibers, characterized by their ultra-low density and ultra-low thermal conductivity, are an ideal candidate for personal thermal management as they hold the potential to effectively reduce the energy consumption of room heating and significantly contribute to energy conservation. However, most aerogel fibers have weak mechanical properties or require complex manufacturing processes. In this study, simple continuous silk fibroin-agarose composite aerogel fibers (SCAFs) were prepared by mixing agarose with silk fibroin through wet spinning and rapid gelation, followed by solvent replacement and supercritical carbon dioxide treatment. Among them, the rapid gelation of the SCAFs was achieved using agarose physical methods with heat-reversible gel properties, simplifying the preparation process. Hydrophobic silk fibroin-agarose composite aerogel fibers (HSCAFs) were prepared using a simple chemical vapor deposition (CVD) method. After CVD, the HSCAFs' gel skeletons were uniformly coated with a silica layer containing methyl groups, endowing them with outstanding radial elasticity. Moreover, the HSCAFs exhibited low density (≤0.153 g/cm3), a large specific surface area (≥254.0 m2/g), high porosity (91.1-94.7%), and excellent hydrophobicity (a water contact angle of 136.8°). More importantly, they showed excellent thermal insulation performance in low-temperature (-60 °C) or high-temperature (140 °C) environments. The designed HSCAFs may provide a new approach for the preparation of high-performance aerogel fibers for personal thermal management.
Collapse
Affiliation(s)
- Yuxiang Du
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Pengjie Jiang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Rui Fu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Lipeng Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Changqing Miao
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yaxiong Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Huazheng Sai
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
9
|
Wang J, Cheng L, Ye F, Zhao K. Amorphous/Nanocrystalline, Lightweight, Wave-Transparent Boron Nitride Nanobelt Aerogel for Thermal Insulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47405-47414. [PMID: 37769167 DOI: 10.1021/acsami.3c09996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
At present, the new generation of aircraft is developing in the direction of high speed, long endurance, high mobility, and repeatability. Some studies have shown that the surface temperature of the radome can reach even 1800 °C as the flight speed of the aircraft increases. However, the antenna inside the radome cannot serve at this temperature. Consequently, a thermal insulation system with electromagnetic wave-transparent ability and high-temperature resistance is urgently needed to protect the antenna from working normally. An aerogel material is known as "solid smoke," with the lowest density currently. Because of its high porosity (>90%) and the characteristics of nanopore size, its application in the field of thermal insulation always draws the attention of researchers. In this work, a novel amorphous/nanocrystalline boron nitride (BN) nanobelt aerogel was synthesized successfully. The BN aerogel shows lightweight (18 mg/cm3), good thermal stability (1400 °C under an inert atmosphere and 750 °C under an air atmosphere), wideband wave-transparent performance (dielectric constant of 1.03 and dielectric loss of 0.016 at 4-18 GHz), and thermal insulation property (43 mW/(m·K) at room temperature and 73 mW/(m·K) at 600 °C). The BN aerogel is a suitable candidate as an electromagnetic wave-transparent thermal insulator and fire-resistant material. What is more, the structural stability of the BN aerogel is good (Young's modulus remains basically constant during the fatigue tests), and the energy loss coefficient (∼0.56) is high; it also has the potential to be a mechanical energy dissipative material. The study on the amorphous/nanocrystalline BN nanobelt aerogel provides a new idea for structure design and performance optimization of a high-temperature electromagnetic functional insulation material.
Collapse
Affiliation(s)
- Junheng Wang
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fang Ye
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Zhao
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Li W, Jiang Y, Liu H, Wang C, Zhou X, Jiang S, Mu Y, Wang L, He X, Li M, He F. Fiber Sedimentation and Layer-By-Layer Assembly Strategy for Designing Biomimetic Quasi-Ordered Mullite Fiber Aerogels as Extreme Conditions Thermal Insulators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46010-46021. [PMID: 37737705 DOI: 10.1021/acsami.3c09418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Ceramic fiber aerogels are attractive thermal insulating materials. In a thermomechanical coupling environment, however, they often show limited mechanical strength and considerably increased heat transfer which can lead to thermal runaway. In this paper, inspired by bird's nest and nacre, we demonstrate a sample strategy combining fiber sedimentation and layer-by-layer assembly to fabricate ultrastrong mullite fiber aerogels (MFAs) with quasi-ordered structures. The fibrous layers and fiber bridges are constructed in a fiber sedimentation self-assembly process. The fiber sedimentation technique optimizes the structure of the MFAs by regulating the fiber orientation. Owing to the quasi-ordered structure, the fabricated MFAs exhibit the integrated properties of high compression fatigue resistance, temperature-invariant compression resilience from -196 to 1300 °C, and low thermal conductivity (0.034 W·m-1·K-1). By deliberately pressing multilayer MFAs into a thin paper, we substantially enhance the load-bearing capacity of the MFAs and achieve large temperature differences (563 °C) between the cold and hot surfaces by using a thin layer of MFAs (3-5 mm) under the simulated high-temperature (685 °C) and high-pressure (0.9 MPa) environment test. The combination of compression resistance, mechanical flexibility, and excellent thermal insulation provides an appealing material for efficient thermal insulation in extreme environments.
Collapse
Affiliation(s)
- Wenjie Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yuncong Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| | - Hang Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| | - Chen Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xin Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| | - Siyi Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yuwen Mu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| | - Linyan Wang
- Department of materials engineering, Taiyuan Institute of Technology, Taiyuan 030024, PR China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| | - Mingwei Li
- National Key Laboratory for Precision Hot Processing of Materials, Harbin Institute of Technology, Harbin 150080, PR China
| | - Fei He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
11
|
Dong T, Ye H, Wang W, Zhang Y, Han G, Peng F, Lou CW, Chi S, Liu Y, Liu C, Lin JH. A sustainable layered nanofiber/sheet aerogels enabling repeated life cycles for effective oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131474. [PMID: 37116327 DOI: 10.1016/j.jhazmat.2023.131474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Discarded oil-containing absorbents, which has been used in handling oil spills, are tricky to deal with and have rose global environmental concerns regarding release of microplastics. Herein, we developed a facile strategy to fabricate sustainable absorbents by a gas-inflating method, through which 2D electrospinning polycaprolactone nanofiber membranes were directly inflated into highly porous 3D nanofiber/sheet aerogels with layered long fiber structure. The membranes were inflated rapidly from a baseline porosity of 81.98% into 97.36-99.42% in 10-60 min. The obtained aerogels were further wrapped with -CH3 ended siloxane structures using CH3SiCl3. This hydrophobic absorbent (CA ≈ 145°) could rapidly trap oils from water with sorption range of 25.60-42.13 g/g and be recycled by simple squeeze due to its mechanical robustness. As-prepared aerogels also showed high separation efficiency to separate oils from both oil/water mixtures and oil-in-water emulsions (>96.4%). Interestingly, the oil-loaded absorbent after cleaning with absolute ethanol could be re-dissolved in selected solvents and promptly reconstituted by re-electrospinning and gas-inflation. The reconstituted aerogels were used as fire-new oil absorbents for repeated life cycles. The novel design, low cost and sustainability of the absorbent provides an efficient and environmentally-friendly solution for handling oil spills.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China.
| | - Huabiao Ye
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Wenhui Wang
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Guangting Han
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Fudi Peng
- Fujian Aton Advanced Materials Science and Technology Co., Ltd, Fujian 350304, PR China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan; School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan.
| |
Collapse
|
12
|
Li S, Cheng X, Han G, Si Y, Liu Y, Yu J, Ding B. Elastic and compressible Al 2O 3/ZrO 2/La 2O 3 nanofibrous membranes for firefighting protective clothing. J Colloid Interface Sci 2023; 636:83-89. [PMID: 36623369 DOI: 10.1016/j.jcis.2022.12.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Developing ceramic nanofibrous membranes for the thermal insulation layer of firefighting protective clothing is vital. However, previous ceramic nanofibrous membranes were brittle and easy to break during service in high-temperature environments. The lack of elastic and compressible properties has limited the high-end applications of ceramic nanofibrous membranes. In this work, elastic and compressible Al2O3/ZrO2/La2O3 nanofibrous membranes were fabricated via sol-gel electrospinning and calcination in air at different temperatures. The as-fabricated Al2O3/ZrO2/La2O3 nanofibrous membranes can maintain excellent elasticity and compressibility in the temperature ranging from -196 to 1400 °C. Moreover, they have low thermal conductivity and high working temperatures. These favorable characteristics make the Al2O3/ZrO2/La2O3 nanofibrous membranes a promising candidate for the thermal insulation layer of firefighting protective clothing.
Collapse
Affiliation(s)
- Shouzhen Li
- College of Textiles and Clothing, Qingdao University, Shandong, Qingdao 266071, China
| | - Xiaota Cheng
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Guangting Han
- College of Textiles and Clothing, Qingdao University, Shandong, Qingdao 266071, China.
| | - Yang Si
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yitao Liu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|
13
|
Liu YT, Ding B. Ultralight and superelastic ceramic nanofibrous aerogels: a new vision of an ancient material. Sci Bull (Beijing) 2023; 68:753-755. [PMID: 37005187 DOI: 10.1016/j.scib.2023.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Li M, Xiao L, Guo P, Ni H, Lu D, Xu L, Wang L, Zhang J, Su L, Wang H. Resilient and Antipuncturing Si 3N 4 Nanofiber Sponge. NANO LETTERS 2023; 23:1289-1297. [PMID: 36749085 DOI: 10.1021/acs.nanolett.2c04475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ceramic nanofibrous nanostructure-based sponges have attracted significant attention due to ultrahigh porosity, low thermal conductivity, large specific area, and chemical stability. From the regulation of the fiber itself to the construction method of 3D networks, efforts are being made to improve the mechanical properties of ceramic sponges for practical applications. So far resilient compressibility has been realized in ceramic nanofibrous-based sponges via structural design, but they still show brittle fracture under a more complex stress state. Herein, we introduced a highly aligned and interwoven Si3N4 nanofiber sponge, which exhibits superflexibility, large break elongation (>80%), large-strain reversible stretch (20%), and good resistance to tensile fatigue. The ceramic sponge also displays reversible compressibility up to 60% strain, puncture resistance, high air filtration efficiency (>99.8%), and low pressure drop (38% of cotton fiber), making the ceramic sponge a high-performance wearable respirator to protect us from harm due to PM2.5 pollution and possible microorganisms.
Collapse
Affiliation(s)
- Mingzhu Li
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingbin Xiao
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Guo
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - Haotian Ni
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - De Lu
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Xu
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Wang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - Jijun Zhang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
15
|
Ji Q, Zhang L, Jiao X, Chen D. Alpha Al 2O 3 Nanosheet-Based Biphasic Aerogels with High-Temperature Resistance up to 1600 °C. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6848-6858. [PMID: 36693011 DOI: 10.1021/acsami.2c20272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alumina aerogels are desirable for lightweight and highly efficient thermal insulation. However, they are typically constrained by brittleness and structural collapse at high temperatures. The manufacture of alumina aerogels with ultralow thermal conductivity and excellent thermal stability at high temperatures beyond 1300 °C is still challenging. Herein, alumina aerogels with superior ultrahigh-temperature-resistant and thermal insulation were successfully prepared by assembling the α-Al2O3 nanosheets with silica sols as the high-temperature binders. Benefiting from the generation of the mullite-covered alumina biphasic structure, the α-Al2O3 nanosheet-based aerogels (ANSAs) exhibit excellent thermal and chemical stabilities even after calcination at as high as 1600 °C. The ANSAs had a low thermal conductivity (0.029 W·m-1·K-1 at room temperature), structural stability with a measured compressive strength of 0.6 MPa, and good thermal shock resistance. Furthermore, the 2D α-alumina@mullite core-shell sheets were also prepared as assembly units to construct aerogels (AMSAs). This core-shell structure can improve temperature resistance through inter-lattice suppression under continuous energy input at high temperatures. The AMSAs have a linear shrinkage of only 2.7% after calcination at 1600 °C for 30 min, further improving the temperature resistance, making them an ideal super-insulating material for applications at extremely high temperatures.
Collapse
Affiliation(s)
- Qiyan Ji
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Li Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
16
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
17
|
Feng L, Wei P, Song Q, Zhang J, Fu Q, Jia X, Yang J, Shao D, Li Y, Wang S, Qiang X, Song H. Superelastic, Highly Conductive, Superhydrophobic, and Powerful Electromagnetic Shielding Hybrid Aerogels Built from Orthogonal Graphene and Boron Nitride Nanoribbons. ACS NANO 2022; 16:17049-17061. [PMID: 36173441 DOI: 10.1021/acsnano.2c07187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Three-dimensional (3D) elastic aerogels enable diverse applications but are usually restricted by their low thermal and electrical transfer efficiency. Here, we demonstrate a strategy for fabricating the highly thermally and electrically conductive aerogels using hybrid carbon/ceramic structural units made of hexagonal boron nitride nanoribbons (BNNRs) with in situ-grown orthogonally structured graphene (OSG). High-aspect-ratio BNNRs are first interconnected into a 3D elastic and thermally conductive skeleton, in which the horizontal graphene layers of OSG provide additional hyperchannels for electron and phonon conduction, and the vertical graphene sheets of OSG greatly improve surface roughness and charge polarization ability of the entire skeleton. The resulting OSG/BNNR hybrid aerogel exhibits very high thermal and electrical conductivity (up to 7.84 W m-1 K-1 and 340 S m-1, respectively) at a low density of 45.8 mg cm-3, which should prove to be vastly advantageous as compared to the reported carbonic and/or ceramic aerogels. Moreover, the hybrid aerogel possesses integrated properties of wide temperature-invariant superelasticity (from -196 to 600 °C), low-voltage-driven Joule heating (up to 42-134 °C at 1-4 V), strong hydrophobicity (contact angel of up to 156.1°), and powerful broadband electromagnetic interference (EMI) shielding effectiveness (reaching 70.9 dB at 2 mm thickness), all of which can maintain very well under repeated mechanical deformations and long-term immersion in strong acid or alkali solution. Using these extraordinary comprehensive properties, we prove the great potential of OSG/BNNR hybrid aerogel in wearable electronics for regulating body temperature, proofing water and pollution, removing ice, and protecting human health against EMI.
Collapse
Affiliation(s)
- Lei Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Peng Wei
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Qiang Song
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jiaxu Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Qiangang Fu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaohua Jia
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jin Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Dan Shao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yong Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Sizhe Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xinfa Qiang
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, PR China
| | - Haojie Song
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
18
|
Lu X, Li X, Cao Y, Zhu W, Wang Y, Ren Z, Zhu D. 1D CNT-Expanded 3D Carbon Foam/Si 3N 4 Sandwich Heterostructure: Utilizing the Polarization Compensation Effect for Keeping Stable Electromagnetic Absorption Performance at Elevated Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39188-39198. [PMID: 35976988 DOI: 10.1021/acsami.2c08389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modern electromagnetic (EM) absorbing materials (EAMs) are experiencing a revolution triggered by advanced information technology. Simultaneously, the diverse harsh EM application scenarios entail a more stringent appeal of practicability to EAMs, especially under high-temperature conditions. Therefore, exploring EAMs with both excellent absorbing performance and practicability at elevated temperatures is necessary. Herein, a novel 3D porous carbon foam/carbon nanotubes@Si3N4 (CF/CNTs@Si3N4) heterostructure was constructed by the chemical vapor infiltration process. The optimally grown 1D CNTs embedded in 3D CF/Si3N4 are utilized to provide abundant nanointerface coupling effects to compensate for the excessive increase in the conductive loss during rising temperature to realize a self-adjustment in response to high temperature. A high-efficiency EM absorption over a wide temperature range from 25 to 480 °C was achieved (with a ≥90% absorbing ratio covering the whole X-band). In addition, the Si3N4 coating can improve the thermal stability of the carbon matrix and maintain the tailored inner structure. Multiple investigations into other environmental adaptabilities also exhibited the application perspective of such a heterostructure. This work points out a new strategy for preparing designable, efficient, and high-temperature applicable EAMs, promoting the diverse development of electronic devices.
Collapse
Affiliation(s)
- Xiaoke Lu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Xin Li
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Yuchen Cao
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Wenjie Zhu
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Yijin Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Zhaowen Ren
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Dongmei Zhu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China
| |
Collapse
|
19
|
Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022; 606:909-916. [PMID: 35768591 PMCID: PMC9242853 DOI: 10.1038/s41586-022-04784-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/20/2022] [Indexed: 01/07/2023]
Abstract
Thermal insulation under extreme conditions requires materials that can withstand complex thermomechanical stress and retain excellent thermal insulation properties at temperatures exceeding 1,000 degrees Celsius1–3. Ceramic aerogels are attractive thermal insulating materials; however, at very high temperatures, they often show considerably increased thermal conductivity and limited thermomechanical stability that can lead to catastrophic failure4–6. Here we report a multiscale design of hypocrystalline zircon nanofibrous aerogels with a zig-zag architecture that leads to exceptional thermomechanical stability and ultralow thermal conductivity at high temperatures. The aerogels show a near-zero Poisson’s ratio (3.3 × 10−4) and a near-zero thermal expansion coefficient (1.2 × 10−7 per degree Celsius), which ensures excellent structural flexibility and thermomechanical properties. They show high thermal stability with ultralow strength degradation (less than 1 per cent) after sharp thermal shocks, and a high working temperature (up to 1,300 degrees Celsius). By deliberately entrapping residue carbon species in the constituent hypocrystalline zircon fibres, we substantially reduce the thermal radiation heat transfer and achieve one of the lowest high-temperature thermal conductivities among ceramic aerogels so far—104 milliwatts per metre per kelvin at 1,000 degrees Celsius. The combined thermomechanical and thermal insulating properties offer an attractive material system for robust thermal insulation under extreme conditions. Hypocrystalline ceramic aerogels with a zig-zag architecture show high thermal stability under thermal shock and exposure to high temperature, providing a reliable material system for thermal insulation at extreme conditions.
Collapse
|
20
|
Xu H, Li X, Tong Z, Zhang B, Ji H. Thermal Radiation Shielding and Mechanical Strengthening of Mullite Fiber/SiC Nanowire Aerogels Using In Situ Synthesized SiC Nanowires. MATERIALS 2022; 15:ma15103522. [PMID: 35629551 PMCID: PMC9146078 DOI: 10.3390/ma15103522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022]
Abstract
Traditional solid nanoparticle aerogels have been unable to meet the requirements of practical application due to their inherent brittleness and poor infrared shielding performance. Herein, combining vacuum impregnation and high-temperature pyrolysis, a novel micro/nano-composite fibrous aerogel was prepared via in situ synthesis of silicon carbide nanowires (SiC NWS) in mullite fiber (MF) preform. During this process, uniformly distributed SiC NWS in the MF preform serve as an enhancement phase and also act as an infrared shielding agent to reduce radiation heat transfer, which can significantly improve the mechanical properties of the mullite fiber/silicon carbide nanowire composite aerogels (MF/SiC NWS). The fabricated MF/SiC NWS exhibited excellent thermal stability (1400 °C), high compressive strength (~0.47 MPa), and outstanding infrared shielding performance (infrared transmittance reduced by ~70%). These superior properties make them appealing for their potential in practical application as high-temperature thermal insulators.
Collapse
|
21
|
Influence of Gas-Flow Conditions on the Evolution of Thermally Insulating Si3N4 Nano-Felts. MATERIALS 2022; 15:ma15031068. [PMID: 35161013 PMCID: PMC8839865 DOI: 10.3390/ma15031068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 01/25/2023]
Abstract
This paper discusses the role of nitrogen (N2) gas flow conditions on the formation of silicon nitride (Si3N4) nano-felts from polysiloxane-impregnated polyurethane (PU) foams. The polymeric foam was converted into an amorphous silicon oxycarbide (SiOC) artefact during pyrolysis, which was then transformed, at a higher temperature, into a Si3N4 felt through a reaction between the decomposition products of SiOC with N2. The study identified that a N2 flux of ~2.60 cm.min−1 at the cross-section of the furnace (controlled to 100 cm3.min−1 at the inlet of the furnace using a flowmeter) substantially favored the transformation of the parent SiOC foam to Si3N4 felts. This process intensification step significantly reduced the wastage and the energy requirement while considering the material production on a bulk scale. The study also inferred that the cell sizes of the initial PU templates influenced the foam to felt transformation.
Collapse
|