1
|
Tsai PH, Liao TH, Chuang YT, Jan PE, Lin HC, Tan GH, Hsiao KY, Lu MY, Lai HL, Chiu PW, Sun SY, Li YL, Lin HW. Bright Structural-Phase-Pure CsPbI 3 Core-PbSO 4 Shell Nanoplatelets With Ultra-Narrow Emission Bandwidth of 77 meV at 630 nm. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404573. [PMID: 39279611 DOI: 10.1002/smll.202404573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Achieving a narrow emission bandwidth is long pursued for display applications. Among all primary colors, obtaining pure red emission with high visual perception is the most challenging. In this work, CsPbI3 halide perovskite nanoplatelets (NPLs) with rigorously controlled 2D [PbI6]4- octahedron layer number (n) are demonstrated. A perovskite core-PbSO4 shell structure is designed to prevent aggregation and fusion between NPLs, enabling consistent thickness and quantum confinement strength for each NPL. Consequently, exact n = 4 CsPbI3 NPLs are demonstrated, exhibiting emission peaks around 630 nm, with very narrow spectral bandwidths of <24 nm and high absolute photoluminescence quantum yields up to 85%. The emission of n = 4 NPLs falls exactly within the pure-red region, closely aligning with the International Telecommunication Union Recommendation BT.2020 standard. Measurements suggest predominant stability and color homogeneity compared to traditional red-emitting CsPbIxBr3- x nanocrystals. Finally, proof-of-concept pure-red emissive light-emitting diodes (LEDs) are demonstrated by integrating n = 4 CsPbI3 NPLs films with a blue LED chip, showing an excellent external quantum efficiency of 18.3% and high brightness exceeding 3 × 106 nits. Stringent requirements for future display technologies, are satisfied based on the high color purity, stability, and brightness of CsPbI3 NPLs.
Collapse
Affiliation(s)
- Ping-Hsun Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Hao Liao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yung-Tang Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-En Jan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Cheng Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Guang-Hsun Tan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kai-Yuan Hsiao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | | | | | - Yun-Li Li
- PlayNitride Inc., Miaoli, 350401, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
2
|
Kumar G, Lin CC, Kuo HC, Chen FC. Enhancing photoluminescence performance of perovskite quantum dots with plasmonic nanoparticles: insights into mechanisms and light-emitting applications. NANOSCALE ADVANCES 2024; 6:782-791. [PMID: 38298599 PMCID: PMC10825943 DOI: 10.1039/d3na01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Perovskite quantum dots (QDs) are considered as promising materials for numerous optoelectronic applications due to their narrow emission spectra, high color purity, high photoluminescence quantum yields (PLQYs), and cost-effectiveness. Herein, we synthesized various types of perovskite QDs and incorporated Au nanoparticles (NPs) to systematically investigate the impact of plasmonic effects on the photoluminescence performance of perovskite QDs. The PLQYs of the QDs are enhanced effectively upon the inclusion of Au NPs in the solutions, with an impressive PLQY approaching 99% achieved. The PL measurements reveal that the primary mechanism behind the PL improvement is the accelerated rate of radiative recombination. Furthermore, we integrate perovskite QDs and Au NPs, which function as color conversion layers, with blue light-emitting diodes (LEDs), achieving a remarkable efficiency of 140.6 lm W-1. Additionally, we prepare photopatternable thin films of perovskite QDs using photocrosslinkable polymers as the matrix. Microscale patterning of the thin films is accomplished, indicating that the addition of plasmonic NPs does not adversely affect their photopatternable properties. Overall, our research not only elucidates the underlying mechanisms of plasmonic effects on perovskite QDs but presents a practical method for enhancing their optical performance, paving the way for next-generation optoelectronic applications, including high-definition micro-LED panels.
Collapse
Affiliation(s)
- Gautham Kumar
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Chien-Chung Lin
- Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Hao-Chung Kuo
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Fang-Chung Chen
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
3
|
Bian L, Fu Q, Gan Z, Wu Z, Song Y, Xiong Y, Hu F, Zheng L. Fluorescence-Quenching Lateral Flow Immunoassay for "Turn-On" and Sensitive Detection of Anti-SARS-Cov-2 Neutralizing Antibodies in Human Serum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305774. [PMID: 38032112 PMCID: PMC10811470 DOI: 10.1002/advs.202305774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The titer of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies (NAbs) in the human body is an essential reference for evaluating the acquired protective immunity and resistance to SARS-CoV-2 infection. In this study, a fluorescence-quenching lateral flow immunoassay (FQ-LFIA) is established for quantitative detection of anti-SARS-CoV-2 NAbs in the sera of individuals who are vaccinated or infected within 10 min. The ultrabright aggregation-induced emission properties encapsulated in nanoparticles, AIE490 NP, are applied in the established FQ-LFIA with gold nanoparticles to achieve a fluorescence "turn-on" competitive immunoassay. Under optimized conditions, the FQ-LFIA quantitatively detected 103 positive and 50 negative human serum samples with a limit of detection (LoD) of 1.29 IU mL-1 . A strong correlation is present with the conventional pseudovirus-based virus neutralization test (R2 = 0.9796, P < 0.0001). In contrast, the traditional LFIA with a "turn-off" mode can only achieve a LoD of 11.06 IU mL-1 . The FQ-LFIA showed excellent sensitivity to anti-SARS-CoV-2 NAbs. The intra- and inter-assay precisions of the established method are below 15%. The established FQ-LFIA has promising potential as a rapid and quantitative method for detecting anti-SARS-CoV-2 NAbs. FQ-LFIA can also be used to detect various biomarkers.
Collapse
Affiliation(s)
- Lun Bian
- Biomaterials Research CenterSchool of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Qiangqiang Fu
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhuoheng Gan
- Biomaterials Research CenterSchool of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Ze Wu
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yuchen Song
- Biomaterials Research CenterSchool of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Yufeng Xiong
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Fang Hu
- Biomaterials Research CenterSchool of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
- Division of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
4
|
Chen CH, Hsu CH, Ni IC, Lin BH, Wu CI, Kuo CC, Chueh CC. Regulating the phase distribution of quasi-2D perovskites using a three-dimensional cyclic molecule toward improved light-emitting performance. NANOSCALE 2022; 14:17409-17417. [PMID: 36383153 DOI: 10.1039/d2nr04735g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a molecule with a three-dimensional (3D) cyclic structure, a cryptand, is demonstrated as an effective additive for the quasi-two-dimensional (quasi-2D) PEA2Csn-1PbnBr3n+1 (n = 3, herein) to improve its light-emitting performance. The cryptand can effectively regulate the phase distribution of the quasi-2D perovskite through its intense interaction with PbBr2, benefitting from its cage-like structure that can better capture the Pb2+ ions. Due to the inhibited growth of the low-n phases, a much-concentrated phase distribution is achieved for the cryptand-containing films. Moreover, its constituent O/N atoms can passivate the uncoordinated Pb2+ ions to improve the film quality. Such a synergistic effect thereby facilitates the charge/energy transfer among the multiple phases and reduces the non-radiative recombination. As a result, the quasi-2D perovskite light-emitting diode (PeLED) with the optimized cryptand doping ratio is shown to deliver the highest luminance (Lmax) of 15 532 cd m-2 with a highest external quantum efficiency (EQE) of 4.02%. Compared to the pristine device, Lmax is enhanced by ∼5 times and EQE is enhanced by ∼10 times.
Collapse
Affiliation(s)
- Chiung-Han Chen
- Department of Chemical Engineering, National Taiwan, University, Taipei 10617, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chiao-Hsin Hsu
- Institute of Organic and Polymeric Material, National Taipei University of Technology, Taipei 10617, Taiwan.
| | - I-Chih Ni
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-I Wu
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Material, National Taipei University of Technology, Taipei 10617, Taiwan.
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan, University, Taipei 10617, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Lee SY, Jang SH, Lee G, Park NH, Park J, Park DH, Cho KH, Jung JW, Choi J. Investigation of highly luminescent inorganic perovskite nanocrystals synthesized using optimized ultrasonication method. ULTRASONICS SONOCHEMISTRY 2022; 89:106145. [PMID: 36067647 PMCID: PMC9463450 DOI: 10.1016/j.ultsonch.2022.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
All-inorganic halide perovskite nanocrystals are next-generation materials with excellent optical and semiconductor properties suitable for display applications. In this study, we introduce an optimized ultrasonication method for the high-capacity synthesis of highly luminescent inorganic perovskite nanocrystals. After the synthesis of CsPbBr3 with superior optical performance by ultrasonication method, halide anion exchange was performed to tune the stable emission wavelength over the entire visible range. In particular, the maximum photoluminescence wavelengths of the red and green perovskite nanocrystals were appropriate for light-emitting diode applications, and their full-width-at-half-maximum were very narrow, showing outstanding color purity. The materials also had excellent thermal and photo-stability, which is a necessary requirement for perovskite nanocrystal/organic light-emitting diode hybrid device applications. We formulated uniformly stable perovskite nanocrystal inks and optimized their physical and rheological properties for successful inkjet-printing. Finally, we fabricated a hybrid device with a color conversion layer based on the red and green perovskite nanocrystals synthesized using the optimized ultrasonication and halide-ion-exchange methods. The color reproduction range of the fabricated devices was 27.3 % wider than that of the National Television System Committee values, indicating very vivid colors.
Collapse
Affiliation(s)
- Sang Yoon Lee
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; Department of Advanced Materials Engineering for Information & Electronics, KyungHee University, Yongin 17104, Republic of Korea
| | - Seong Hyun Jang
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; Lab. Of Organic Photo-functional Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Geonho Lee
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; Department of Chemical Engineering, KyungHee University, Yongin 17104, Republic of Korea
| | - No-Hyung Park
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
| | - Jongwook Park
- Department of Chemical Engineering, KyungHee University, Yongin 17104, Republic of Korea
| | - Dong Hyup Park
- Applied Polymer Research Center, Korea Conformity Laboratories, Incheon 21594, Republic of Korea
| | - Kwan Hyun Cho
- Digital Transformation R&D Department, Korea Institute of Industrial Technology (KITECH) Ansan 15588, Republic of Korea.
| | - Jae Woong Jung
- Department of Advanced Materials Engineering for Information & Electronics, KyungHee University, Yongin 17104, Republic of Korea.
| | - Jun Choi
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea.
| |
Collapse
|
6
|
Bian L, Li Z, He A, Wu B, Yang H, Wu Y, Hu F, Lin G, Zhang D. Ultrabright nanoparticle-labeled lateral flow immunoassay for detection of anti-SARS-CoV-2 neutralizing antibodies in human serum. Biomaterials 2022; 288:121694. [PMID: 35977850 PMCID: PMC9360774 DOI: 10.1016/j.biomaterials.2022.121694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
The level of anti-SARS-CoV-2 neutralizing antibodies (NAb) is an indispensable reference for evaluating the acquired protective immunity against SARS-CoV-2. Here, we established an ultrabright nanoparticles-based lateral flow immunoassay (LFIA) for one-step rapid semi-quantitative detection of anti-SARS-CoV-2 NAb in vaccinee's serum. Once embedded in polystyrene (PS) nanoparticles, the aggregation-induced emission (AIE) luminogen, AIE490, exhibited ultrabright fluorescence due to the rigidity of PS and severe inhibition of intramolecular motions. The ultrabright AIE490-PS nanoparticle was used as a fluorescent marker of LFIA. Upon optimized conditions including incubation time, concentrations of coated proteins and conjugated nanoparticles, amounts of antigens modified on the surface of nanoparticles, dilution rate of serum samples, and so on, the ultrabright nanoparticles-based LFIA could accurately identify 70 negative samples and 63 positive samples from human serum (p < 0.0001). The intra- and inter-assay precisions of the established method are above 13% and 16%, respectively. The established LFIA has tremendous practical value of generalization as a rapid semi-quantitative detection method of anti-SARS-CoV-2 NAb. Meanwhile, the AIE490-PS nanoparticle is also promising to detect many other analytes by altering the protein on the surface.
Collapse
Affiliation(s)
- Lun Bian
- Guangdong Province Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zhaoyue Li
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - An He
- The First People's Hospital of Chenzhou City, Chenzhou, China
| | - Biru Wu
- Guangdong Province Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Hui Yang
- Guangdong Province Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yingsong Wu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Fang Hu
- Guangdong Province Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Guanfeng Lin
- Experimental Center of Teaching and Scientific Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|