1
|
Yu SH, Lim T, Jin S, Jeong Y, Sung MM, Cho S. Polycaprolactone-Based High-k Dielectrics: A Platform for Flexible and Biodegradable Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23146-23154. [PMID: 40070056 DOI: 10.1021/acsami.4c22395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Transient electronics, designed to degrade after a defined period, are ideal for biomedical implants that eliminate the need for secondary removal surgeries and contribute to sustainable electronics by leaving no electronic waste. While significant progress has been made in developing semiconductors, electrodes, and substrates, dielectric layers for bioapplicable transient electronics that combine flexibility, self-healing capabilities, and high dielectric constants (high-k) remain underexplored. This study introduces urea-linked polycaprolactone (PCL-IU)/ionic liquid (IL) hybrids as dielectric materials. PCL-IU integrates the self-healing ability of urea bonds with the biodegradability and flexibility of polycaprolactone, ensuring biocompatibility. Incorporating 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) significantly enhanced dielectric performance, achieving a high capacitance of ∼10-6 F/cm2 at low frequencies. ZnO field-effect transistors (FETs) using PCL-IU/IL as the gate dielectric layer demonstrated stable electrical characteristics under ambient conditions and exhibited excellent performance, including a mobility of ∼60 cm2/(V s) and an on/off current ratio of ∼105. Devices fabricated on flexible polyimide (PI) and degradable poly(vinyl alcohol) (PVA) substrates demonstrated stable and reliable operation, confirming the potential of PCL-IU/IL for bioapplicable transient electronics. These results position PCL-IU/IL as a versatile platform for flexible, low-power, and biodegradable devices.
Collapse
Affiliation(s)
- Sung Ho Yu
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Taeho Lim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Soyeong Jin
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Mo Sung
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangho Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Nanoscience and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Alexandre EB, Corzo D, Lengger S, Carrara S, Kosel J. Imperceptible and Disposable Humidity and Temperature Sensors with Low Environmental Footprint Enabled by Aerosol Jet Printing and Cellulose-Based Substrates. SMALL METHODS 2025:e2500506. [PMID: 40207664 DOI: 10.1002/smtd.202500506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/24/2025] [Indexed: 04/11/2025]
Abstract
The continuous growth of the electronics industry requires a reevaluation of traditional materials and manufacturing techniques to address the rising issue of electronic waste (e-waste). Environmental monitoring devices, which provide valuable insights into factors such as humidity and temperature, currently rely on non-degradable substrates and toxic metals, significantly contributing to plastic and electronic waste. Furthermore, conventional manufacturing techniques like screen printing, while effective, are limited in their ability to produce miniaturized, high-resolution features. Here, aerosol jet printing is used to fabricate devices for humidity and temperature monitoring, enabling minimal footprint (99.75% material reduction vs other printing methods), and precise patterning of features as small as 13 µm, even on biodegradable substrates. The resistive sensor is made of biocompatible conducting polymer poly(3,4 ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) on a biodegradable cellulose substrate. It operates efficiently within a 10-80% RH range while maintaining a high optical transmittance of 91% in the visible spectrum. Additionally, by crosslinking PEDOT:PSS with (3 Glycidyloxypropyl)Trimethoxysilane (GOPS), the sensors effectively detects changes within a temperature range of 20-50 °C. This fully printed sensor on biodegradable substrates represents a step toward next-generation, eco-friendly, and metal-free solutions for environmental monitoring while minimizing ecological impact.
Collapse
Affiliation(s)
- Emily Bezerra Alexandre
- Silicon Austria Labs GmbH, Europastraße 12, Villach, 9524, Austria
- École Polytechnique Fédérale de Lausanne, EPFL, Bio/CMOS Interfaces Lab, Neuchâtel, CH-2000, Switzerland
| | - Daniel Corzo
- Silicon Austria Labs GmbH, Europastraße 12, Villach, 9524, Austria
| | - Sabine Lengger
- Silicon Austria Labs GmbH, Europastraße 12, Villach, 9524, Austria
| | - Sandro Carrara
- École Polytechnique Fédérale de Lausanne, EPFL, Bio/CMOS Interfaces Lab, Neuchâtel, CH-2000, Switzerland
| | - Jürgen Kosel
- Silicon Austria Labs GmbH, Europastraße 12, Villach, 9524, Austria
| |
Collapse
|
3
|
Miao H, Liu Y, Zheng C, Huang X, Song Y, Tong L, Dong C, Fu X, Huang H, Ge M, Liu H, Qian Y. A flexible, antifreezing, and long-term stable cellulose ionic conductive hydrogel via one-step preparation for flexible electronic sensors. Carbohydr Polym 2025; 351:122936. [PMID: 39778980 DOI: 10.1016/j.carbpol.2024.122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Ionic conductive hydrogels have attracted great attention due to their good flexibility and conductivity in flexible electronic devices. However, because of the icing and water loss problems, the compatibility issue between the mechanical properties and conductivity of hydrogel electrolytes over a wide temperature range remains extremely challenging to achieve. Although, antifreezing/water-retaining additives could alleviate these problems, the reduced performance and complex preparation methods seriously limit their development. In this work, a simple strategy without additives was provided to prepare an ionic conductive cellulose hydrogel (ICH) in one step through molten salt hydrate. The hydrogel featured controllable mechanical properties (0.19 MPa - 0.67 MPa), high ionic conductivity (78.96 mS/cm), excellent freezing resistance (-80 °C). More importantly, due to the existing metal salts component, the ICH exhibited long-term stability in water-retention ability (75.6 %, after 90 days) and ionic conductivity (85 %, after 90 days) over a wide working temperature range (-80 °C to 40 °C). Benefiting from these advantages, the ICH exhibited excellent electromechanical performance in human movement detection and movement direction identification, indicating a promising apply for flexible electronic device.
Collapse
Affiliation(s)
- Haiyue Miao
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyang Liu
- Phonon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yidan Song
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, 200062 Shanghai, China
| | - Lulu Tong
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China
| | - Changwu Dong
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China
| | - Xiaobin Fu
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
| | - Hailong Huang
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
| | - Min Ge
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China
| | - Hongtao Liu
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
| | - Yuan Qian
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China
| |
Collapse
|
4
|
Wu X, Shi S, Liang B, Dong Y, Yang R, Ji R, Wang Z, Huang W. Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. SCIENCE ADVANCES 2024; 10:eadn4524. [PMID: 38630830 PMCID: PMC11023521 DOI: 10.1126/sciadv.adn4524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Bio-inspired transistor synapses use solid electrolytes to achieve low-power operation and rich synaptic behaviors via ion diffusion and trapping. While these neuromorphic devices hold great promise, they still suffer from challenges such as high leakage currents and power consumption, electrolysis risk, and irreversible conductance changes due to long-range ion migrations and permanent ion trapping. In addition, their response to light is generally limited because of "exciton-polaron quenching", which restricts their potential in in-sensor neuromorphic visions. To address these issues, we propose replacing solid electrolytes with polyzwitterions, where the cation and anion are covalently concatenated via a flexible alkyl chain, thus preventing long-range ion migrations while inducing good photoresponses to the transistors via interfacial charge trapping. Our detailed studies reveal that polyzwitterion-based transistors exhibit optoelectronic synaptic behavior with ultralow-power consumption (~250 aJ per spike) and enable high-performance in-sensor reservoir computing, achieving 95.56% accuracy in perceiving the trajectory of moving basketballs.
Collapse
Affiliation(s)
- Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shuhui Shi
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Rumeng Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Ruiduan Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Kramar A, Luxbacher T, González-Benito J. Solution blow co-spinning of cellulose acetate with poly(ethylene oxide). Structure, morphology, and properties of nanofibers. Carbohydr Polym 2023; 320:121225. [PMID: 37659793 DOI: 10.1016/j.carbpol.2023.121225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 09/04/2023]
Abstract
Cellulose acetate (CA) nanofibers are prepared using solution blow co-spinning (SBS) with poly(ethylene oxide) (PEO). The pure CA membranes are obtained by washing water-soluble PEO from the fibrous CA-PEO blend. Nanofibrous membranes are characterized using optical and scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared spectroscopy (ATR-FTIR), and surface zeta potential measurements. Thermal transitions from DSC and ATR-FTIR spectra analysis were used to confirm the removal of the PEO. Although the characteristic signals of PEO are not observed by FTIR, an additional thermal step transition in CA nanofibers indicates the embedding of a small amount of PEO (up to 6 wt%). SEM analysis shows that CA-PEO blends are constituted by fibers with mean diameters from 671 to 857 nm (depending on the SBS parameters), while after PEO removal, diameters range from 567 to 605 nm. We propose a new method for staining CA-PEO membranes with iodine solution in absolute ethanol that allows the differentiation of CA and PEO components with an optical microscope. The microscopy results suggest that PEO assists in the spinning by enveloping CA nanofibers, allowing uninterrupted processing. The successful deacetylation to cellulose using an aqueous KOH solution is confirmed with zeta potential measurements and ATR-FTIR.
Collapse
Affiliation(s)
- Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain.
| | | | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain.
| |
Collapse
|
6
|
Gaspar D, Martins J, Carvalho JT, Grey P, Simões R, Fortunato E, Martins R, Pereira L. Alkali-Doped Nanopaper Membranes Applied as a Gate Dielectric in FETs and Logic Gates with an Enhanced Dynamic Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8319-8326. [PMID: 36734958 PMCID: PMC9940104 DOI: 10.1021/acsami.2c20486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The market for flexible, hybrid, and printed electronic systems, which can appear in everything from sensors and wearables to displays and lighting, is still uncertain. What is clear is that these systems are appearing every day, enabling devices and systems that can, in the near future, be crumpled up and tucked in our pockets. Within this context, cellulose-based modified nanopapers were developed to serve both as a physical support and a gate dielectric layer in field-effect transistors (FETs) that are fully recyclable. It was found that the impregnation of those nanopapers with sodium (Na+) ions allows for low operating voltage FETs (<3 V), with mobility above 10 cm2 V-1 s-1, current modulation surpassing 105, and an improved dynamic response. Thus, it was possible to implement those transistors into simple circuits such as inverters, reaching a clear discrimination between logic states. Besides the overall improvement in electrical performance, these devices have shown to be an interesting alternative for reliable, sustainable, and flexible electronics, maintaining proper operation even under stress conditions.
Collapse
Affiliation(s)
- Diana Gaspar
- AlmaScience
Colab, Madan Parque, 2829-516Caparica, Portugal
- CENIMAT/i3N,
Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon (FCT-NOVA) and CEMOP/UNINOVA, Campus de Caparica, Caparica2829-516, Portugal
| | - Jorge Martins
- CENIMAT/i3N,
Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon (FCT-NOVA) and CEMOP/UNINOVA, Campus de Caparica, Caparica2829-516, Portugal
| | - José Tiago Carvalho
- CENIMAT/i3N,
Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon (FCT-NOVA) and CEMOP/UNINOVA, Campus de Caparica, Caparica2829-516, Portugal
| | - Paul Grey
- CENIMAT/i3N,
Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon (FCT-NOVA) and CEMOP/UNINOVA, Campus de Caparica, Caparica2829-516, Portugal
| | - Rogério Simões
- FibEnTech,
Department of Chemistry, University of Beira
Interior, 6201-001Covilhã, Portugal
| | - Elvira Fortunato
- CENIMAT/i3N,
Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon (FCT-NOVA) and CEMOP/UNINOVA, Campus de Caparica, Caparica2829-516, Portugal
| | - Rodrigo Martins
- CENIMAT/i3N,
Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon (FCT-NOVA) and CEMOP/UNINOVA, Campus de Caparica, Caparica2829-516, Portugal
| | - Luís Pereira
- AlmaScience
Colab, Madan Parque, 2829-516Caparica, Portugal
- CENIMAT/i3N,
Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon (FCT-NOVA) and CEMOP/UNINOVA, Campus de Caparica, Caparica2829-516, Portugal
| |
Collapse
|
7
|
Kakoria A, Sinha-Ray S. Ultrafine nanofiber-based high efficiency air filter from waste cigarette butts. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Kim GI, Jung J, Min WK, Kim MS, Jung S, Choi DH, Chung J, Kim HJ. Mechanically Durable Organic/High- k Inorganic Hybrid Gate Dielectrics Enabled by Plasma-Polymerization of PTFE for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28085-28096. [PMID: 35680562 DOI: 10.1021/acsami.2c04340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To achieve both the synergistic advantages of outstanding flexibility in organic dielectrics and remarkable dielectric/insulating properties in inorganic dielectrics, a plasma-polymerized hafnium oxide (HfOx) hybrid (PPH-hybrid) dielectric is proposed. Using a radio-frequency magnetron cosputtering process, the high-k HfOx dielectric is plasma-polymerized with polytetrafluoroethylene (PTFE), which is a flexible, thermally stable, and hydrophobic fluoropolymer dielectric. The PPH-hybrid dielectric with a high dielectric constant of 14.17 exhibits excellent flexibility, maintaining a leakage current density of ∼10-8 A/cm2 even after repetitive bending stress (up to 10000 bending cycles with a radius of 2 mm), whereas the HfOx dielectric degrades to be leaky. To evaluate its practical applicability to flexible thin-film transistors (TFTs), the PPH-hybrid dielectric is applied to amorphous indium-gallium-zinc oxide (IGZO) TFTs as a gate dielectric. Consequently, the PPH-hybrid dielectric-based IGZO TFTs exhibit stable electrical performance under the same harsh bending cycles: a field-effect mobility of 16.99 cm2/(V s), an on/off current ratio of 1.15 × 108, a subthreshold swing of 0.35 V/dec, and a threshold voltage of 0.96 V (averaged in nine devices). Moreover, the PPH-hybrid dielectric-based IGZO TFTs exhibit a reduced I-V hysteresis and an enhanced positive bias stress stability, with the threshold voltage shift decreasing from 4.99 to 1.74 V, due to fluorine incorporation. These results demonstrate that PTFE improves both the mechanical durability and electrical stability, indicating that the PPH-hybrid dielectric is a promising candidate for high-performance and low-power flexible electronics.
Collapse
Affiliation(s)
- Gwan In Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Joohye Jung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Display R&D Center, Samsung Display Co., Ltd., 181 Samsung-ro, Tangjeong-myeon, Asan-Si 31454, Republic of Korea
| | - Won Kyung Min
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Seong Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sujin Jung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dong Hyun Choi
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jusung Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyun Jae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Paschoalin RT, Gomes NO, Almeida GF, Bilatto S, Farinas CS, Machado SAS, Mattoso LHC, Oliveira ON, Raymundo-Pereira PA. Wearable sensors made with solution-blow spinning poly(lactic acid) for non-enzymatic pesticide detection in agriculture and food safety. Biosens Bioelectron 2021; 199:113875. [PMID: 34922318 DOI: 10.1016/j.bios.2021.113875] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
On-site monitoring the presence of pesticides on crops and food samples is essential for precision and post-harvest agriculture, which demands nondestructive analytical methods for rapid, low-cost detection that is not achievable with gold standard methods. The synergy between eco-friendly substrates and printed devices may lead to wearable sensors for decentralized analysis of pesticides in precision agriculture. In this paper we report on a wearable non-enzymatic electrochemical sensor capable of detecting carbamate and bipyridinium pesticides on the surface of agricultural and food samples. The low-cost devices (<US$ 0.08 per unit) contained three-electrode systems deposited via screen-printing technology (SPE) on solution-blow spinning mats of poly (lactic acid) (PLA). The flexible PLA/SPE sensors can be used on flat, curved and irregular surfaces of leaves, vegetables and fruits. Detection was performed using differential pulse voltammetry and square wave voltammetry with detection limits of 43 and 57 nM for carbendazim and diquat, respectively. The wearable non-enzymatic sensor can discriminate and quantify carbendazim and diquat on apple and cabbage skins with no interference from other pesticides. The use of such wearable sensors may be extended to other agrochemicals, including with incorporation of active bio (sensing) layers for online monitoring of any type of agricultural products and foods.
Collapse
Affiliation(s)
- Rafaella T Paschoalin
- São Carlos Institute of Physics, University of São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Nathalia O Gomes
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590, São Carlos, SP, Brazil
| | - Gabriela F Almeida
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Stanley Bilatto
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Cristiane S Farinas
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, CEP 13566-590, São Carlos, SP, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|