1
|
Sagisaka M, Darmanin T, Guittard F, Eastoe J. New fluorine-free low surface energy surfactants and surfaces. J Colloid Interface Sci 2025; 690:137229. [PMID: 40112528 DOI: 10.1016/j.jcis.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Modification and control of surface properties, such as surface tension γ at air-liquid (AL) interfaces and surface energy at solid-liquid (SL) surfaces, are at the heart of colloid and interface science. Certain applications require low or very low surface tensions γAL and surface energies γSL, for example and not limited to: microemulsification, aqueous foams for fire-fighting, hydrophobic, superhydrophobic and oleophobic surfaces to control spreading and wetting of aqueous and oily liquids on solids. In many cases low surface tensions/energies can only be obtained by employing perfluoroalkyl substances (PFAS) as surfactant or polymer additives or surface treatments. Although fluorocarbons and polymers have been employed for over 80 years, with many industrial and commercial benefits, it is now recognized that PFAS are very hazardous to the environment and health. Hence, in the coming years it will be necessary to phase out PFAS entirely, however, at present, there are very few viable alternatives available. This article outlines the chemical principles for designing F-free low surface energy (LSE) additives, and also covers the most recent advances in the quest for non-fluorinated surfactants and polymeric surface coatings.
Collapse
Affiliation(s)
- Masanobu Sagisaka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| | | | | | - Julian Eastoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
2
|
Alipanahrostami M, Coolidge C, Wang Y, Wang W, Tong T. Minimizing the Use of Per- and Polyfluoroalkyl Substances for Textured Wetting-Resistant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3355-3365. [PMID: 39957599 DOI: 10.1021/acs.est.4c08343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used as synthetic chemicals to create textured wetting-resistant surfaces, which have a broad range of applications including omniphobic membranes, self-cleaning textiles, and anticorrosion coatings. However, the high persistence, toxicity, and bioaccumulation potential of PFAS have led to rising public concerns and stringent regulations, especially after the U.S. Environmental Protection Agency (USEPA) announced legally enforceable maximum contamination levels for six PFAS species in April 2024. In this paper, we provide our perspective that the use of PFAS can be avoided in the fabrication of textured omniphobic and superomniphobic surfaces, which display high wetting resistance against not only high surface tension liquids but also more importantly low surface tension liquids. We first discuss the role of PFAS in the design of conventional wetting-resistant surfaces. We then discuss the state-of-the-art strategies for creating PFAS-free textured omniphobic and superomniphobic surfaces with high wetting resistance while elucidating the underlying mechanism. Further, we emphasize that PFAS are indeed not always needed for textured surfaces with a sufficiently high wetting resistance in specific environmental applications such as desalination and wastewater treatment. We envision that this paper will motivate the scientific community to rethink and revolutionize the design framework toward more sustainable wetting-resistant surfaces, thereby circumventing the use of PFAS and the consequent health and environmental risks.
Collapse
Affiliation(s)
- Mohammad Alipanahrostami
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Connor Coolidge
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yuqi Wang
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Wei Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Choi SH, Shin S, Kim WY, Lee JM, Park SR, Kim H, Woo K, Kwon S, Fang NX, Kim S, Cho YT. Scalable Multistep Roll-to-Roll Printing of Multifunctional and Robust Reentrant Microcavity Surfaces via a Wetting-Induced Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411064. [PMID: 39572924 PMCID: PMC11795719 DOI: 10.1002/adma.202411064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Indexed: 02/06/2025]
Abstract
Owing to their unique structural robustness, interconnected reentrant structures offer multifunctionality for various applications. a scalable multistep roll-to-roll printing method is proposed for fabricating reentrant microcavity surfaces, coined as wetting-induced interconnected reentrant geometry (WING) process. The key to the proposed WING process is a highly reproducible reentrant structure formation controlled by the capillary action during contact between prefabricated microcavity structure and spray-coated ultraviolet-curable resins. It demonstrates the superior liquid repellency of the WING structures, which maintain large contact angles even with low-surface-tension liquids, and their robust capability to retain solid particles and liquids under external forces. In addition, the scalable and continuous fabrication approach addresses the limitations of existing methods, providing a cost-effective and high-throughput solution for creating multifunctional reentrant surfaces for anti-icing, biofouling prevention, and particle capture.
Collapse
Affiliation(s)
- Su Hyun Choi
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Seungwoo Shin
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Woo Young Kim
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
| | - Je Min Lee
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
| | - Seo Rim Park
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
| | - Hyuntae Kim
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Kyoohee Woo
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Sin Kwon
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Nicholas X. Fang
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Seok Kim
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
- Department of Mechanical EngineeringChangwon National UniversityChangwon51140South Korea
| | - Young Tae Cho
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
- Department of Mechanical EngineeringChangwon National UniversityChangwon51140South Korea
| |
Collapse
|
4
|
Liu K, Ma Z, Mai K, Wang X, Li B, Chu J. Fabrication of Flexible and Re-entrant Liquid-Superrepellent Surface Using Proximity and PNIPAM-Assisted Soft Lithography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50012-50026. [PMID: 39238398 DOI: 10.1021/acsami.4c12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The nature-inspired flexible and re-entrant liquid-superrepellent surface has attracted significant attention due to its excellent superomniphobic performance against low-surface-tension liquids. Although conventional photolithography and molding methods offer the advantage of large-area manufacturing, they often involve multiple double-sided alignment and exposure steps, resulting in complex procedures with long processing cycles. In this study, we proposed a straightforward single-exposure ultraviolet proximity lithography method for re-entrant liquid-superrepellent surface fabrication using a photomask with a coaxial circular aperture and ring. A theoretical calculation model for the three-dimensional light intensity distribution in proximity lithography was developed for the prediction of feature sizes for both singly and doubly re-entrant microstructures. Soft lithography techniques, which rely on surface modification and the modulation of the transfer material's flexibility, efficiently optimized the fabrication of flexible re-entrant molds and patterns. By incorporating nanoclay-modified poly(N-isopropylacrylamide) (PNIPAM) into the molding process, we fabricated a three-layer hierarchical structure featuring micrometer-scale wrinkles, re-entrant microstructures, and nanoscale fluorinated silica particles, significantly enhancing the surface's robustness and pressure resistance. The resulting large-area flexible and re-entrant liquid-superrepellent surface demonstrated excellent superomniphobic self-cleaning performance and satisfactory optical transparency, as evidenced by reflection and transmission experiments, showcasing its potential applications in self-cleaning, membrane distillation, and digital microfluidics.
Collapse
Affiliation(s)
- Kai Liu
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zesen Ma
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Keqing Mai
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaojie Wang
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Baoqing Li
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiaru Chu
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
5
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Kim WY, Seo BW, Lee SH, Lee TG, Kwon S, Chang WS, Nam SH, Fang NX, Kim S, Cho YT. Quasi-seamless stitching for large-area micropatterned surfaces enabled by Fourier spectral analysis of moiré patterns. Nat Commun 2023; 14:2202. [PMID: 37072425 PMCID: PMC10113184 DOI: 10.1038/s41467-023-37828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The main challenge in preparing a flexible mold stamp using roll-to-roll nanoimprint lithography is to simultaneously increase the imprintable area with a minimized perceptible seam. However, the current methods for stitching multiple small molds to fabricate large-area molds and functional surfaces typically rely on the alignment mark, which inevitably produces a clear alignment mark and stitched seam. In this study, we propose a mark-less alignment by the pattern itself method inspired by moiré technique, which uses the Fourier spectral analysis of moiré patterns formed by superposed identical patterns for alignment. This method is capable of fabricating scalable functional surfaces and imprint molds with quasi-seamless and alignment mark-free patterning. By harnessing the rotational invariance property in the Fourier transform, our approach is confirmed to be a simple and efficient method for extracting the rotational and translational offsets in overlapped periodic or nonperiodic patterns with a minimized stitched region, thereby allowing for the large-area and quasi-seamless fabrication of imprinting molds and functional surfaces, such as liquid-repellent film and micro-optical sheets, that surpass the conventional alignment and stitching limits and potentially expand their application in producing large-area metasurfaces.
Collapse
Affiliation(s)
- Woo Young Kim
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon, South Korea
| | - Bo Wook Seo
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon, South Korea
| | - Sang Hoon Lee
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon, South Korea
| | - Tae Gyung Lee
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon, South Korea
| | - Sin Kwon
- Department of Flexible & Printed Electronics, Korea Institute of Machinery and Materials, Daejeon, South Korea
| | - Won Seok Chang
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials, Daejeon, South Korea
- Department of Nanomechatronics, University of Science and Technology, Daejeon, South Korea
| | - Sang-Hoon Nam
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Seok Kim
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon, South Korea.
- Department of Mechanical Engineering, Changwon National University, Changwon, South Korea.
| | - Young Tae Cho
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon, South Korea.
- Department of Mechanical Engineering, Changwon National University, Changwon, South Korea.
| |
Collapse
|
7
|
Kim CK, Cho D, Kim S, Song SW, Seo KM, Cho YT. High-Throughput Metal 3D Printing Pen Enabled by a Continuous Molten Droplet Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205085. [PMID: 36526589 PMCID: PMC9951324 DOI: 10.1002/advs.202205085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In metal additive manufacturing (AM), arc plasma is attracting attention as an alternative heat source to expensive lasers to enable the use of various metal wire materials with a high deposition efficiency. However, the stepwise material deposition and resulting limited number of degrees of freedom limit their potential for high-throughput and large-scale production for industrial applications. Herein, a high-throughput metal 3D printing pen (M3DPen) strategy is proposed based on an arc plasma heat source by harnessing the surface tension of the molten metal for enabling continuous material deposition without a downward flow by gravity. The proposed approach differs from conventional arc-based metal AM in that it controls the solidification and cooling time between interlayers of a point-by-point deposition path, thereby allowing for continuous metal 3D printing of freestanding and overhanging structures at once. The resulting mechanical properties and unique microstructures by continuous metal deposition that occur due to the difference in the thermal conditions of the molten metal under cooling are also investigated. This technology can be applied to a wide range of alloy systems and industrial manufacturing, thereby providing new possibilities for metal 3D printing.
Collapse
Affiliation(s)
- Chan Kyu Kim
- Department of Mechanical EngineeringChangwon National University20, Changwondaehak‐ro, Uichang‐guChangwon‐siGyeongsangnam‐do51140Republic of Korea
- Department of Joining TechnologyMaterials Testing & Reliability DivisionKorea Institute of Materials Science797, Changwon‐daero, Seongsan‐guChangwon‐siGyeongsangnam‐do51508Republic of Korea
| | - Dae‐Won Cho
- Busan Machinery Research CenterKorea Institute of Machinery and Materials48, Mieumsandan 5–40, 41beon‐gil, Gangseo‐guBusan46744Republic of Korea
| | - Seok Kim
- Department of Mechanical EngineeringChangwon National University20, Changwondaehak‐ro, Uichang‐guChangwon‐siGyeongsangnam‐do51140Republic of Korea
| | - Sang Woo Song
- Department of Joining TechnologyMaterials Testing & Reliability DivisionKorea Institute of Materials Science797, Changwon‐daero, Seongsan‐guChangwon‐siGyeongsangnam‐do51508Republic of Korea
| | - Kang Myung Seo
- Department of Joining TechnologyMaterials Testing & Reliability DivisionKorea Institute of Materials Science797, Changwon‐daero, Seongsan‐guChangwon‐siGyeongsangnam‐do51508Republic of Korea
| | - Young Tae Cho
- Department of Mechanical EngineeringChangwon National University20, Changwondaehak‐ro, Uichang‐guChangwon‐siGyeongsangnam‐do51140Republic of Korea
| |
Collapse
|
8
|
Zhang Z, Pei G, Zhao K, Pang P, Gao W, Ye T, Ma B, Luo J, Deng J. Fresnel Diffraction Strategy Enables the Fabrication of Flexible Superomniphobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14508-14516. [PMID: 36377419 DOI: 10.1021/acs.langmuir.2c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Doubly re-entrant surfaces inspired by springtails exhibit excellent repellency to low-surface-tension liquid. However, the flexible doubly re-entrant surfaces are difficult to fabricate, especially for the overhang of the structure. Herein, we demonstrate a simple Fresnel aperture diffraction modulation strategy in microscale lithography coupled with a molding process to obtain the flexible doubly re-entrant superomniphobic surfaces with nanoscale overhangs. The negative nanoscale overhang features were formed in a single-layer photoresist due to the fine-modulation of the optical intensity fluctuation of the Fresnel aperture diffraction. The as-prepared flexible non-fluorinated polydimethylsiloxane (PDMS) doubly re-entrant microstructure based on the Fresnel aperture diffraction (D-BF) surface (without any additional treatments) could repel ethanol droplets (21.8 mN m-1) in the Cassie-Baxter state. The robust nanoscale overhangs obtained by the molding process enable the maximum breakthrough pressure for the low-surface-tension ethanol droplets on the D-BF surfaces up to about 230 Pa, allowing ethanol liquids with Weber numbers up to 8.7 to fully bounce off. The fabricated non-fluorinated D-BF superomniphobic surface maintains outstanding liquid repellency after the surface wettability modification and deformation test.
Collapse
Affiliation(s)
- Zhonggang Zhang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Guangyao Pei
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Keli Zhao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Peng Pang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Wei Gao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Jian Luo
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| |
Collapse
|
9
|
Han X, Liu J, Wang M, Upmanyu M, Wang H. Second-Level Microgroove Convexity is Critical for Air Plastron Restoration on Immersed Hierarchical Superhydrophobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52524-52534. [PMID: 36373889 DOI: 10.1021/acsami.2c15929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Air plastrons trapped on the surfaces of underwater superhydrophobic surfaces are critical for their function. Fibrillar morphologies offer a natural pathway, yet they are limited to a narrow range of liquid-surface systems and are vulnerable to pressure fluctuations that irreversibly destroy the air layer plastron. Inspired by the convexly grooved bases of water fern (Salvinia) leaves that support their fibrous outgrowths, we focus on the effect of such second-level grooved structures or microgrooves on the plastron restoration on immersed three-dimensional (3D)-printed hierarchical surfaces. Elliptical, interconnected microgrooves are fabricated with varying surface curvatures to study the effect of their morphology. Immersion experiments reveal that the convex groove curvature stabilizes a seed gas layer (SGL) that facilitates plastron restoration for all immersed hydrophobic surfaces. Theoretical calculations and atomic-scale computations reveal that the SGL storage capacity that sets the SGL robustness follows from the liquid menisci adaption to the groove geometry and pressure, from micro- to nanoscales, and it can be further tuned using separated grooves. Our study highlights groove convexity as a key morphological feature for the design of second-level architectures for underwater air plastron restoration on hierarchical superhydrophobic surfaces.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei230027, Anhui, China
| | - Jingnan Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei230027, Anhui, China
| | - Mengyuan Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei230027, Anhui, China
| | - Moneesh Upmanyu
- Group for Simulation and Theory of Atomic-Scale Material Phenomena (stAMP), Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts02115, United States
| | - Hailong Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei230027, Anhui, China
| |
Collapse
|
10
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|