1
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2025; 54:1027-1092. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
2
|
Liu T, Guo H, Zhang Q, Fujishige M, Endo M, Zhang Z, Wang F. Insulator-Transition-Induced Degradation of Pyrochlore Ruthenates in Electrocatalytic Oxygen Evolution and Stabilization through Doping. Angew Chem Int Ed Engl 2024; 63:e202412139. [PMID: 39039693 DOI: 10.1002/anie.202412139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Ru-based pyrochlores (e.g., Y2Ru2O7-δ) are promised to replace IrO2 in polymer electrolyte membrane (PEM) electrolyzers. It is significant to reveal the cliff attenuation on the oxygen evolution reaction (OER) performance of these pyrochlores. In this work, we monitor the structure changes and electrochemical behavior of Y2Ru2O7-δ over the OER process, and it is found that the reason of decisive OER inactivation is derived from an insulator transition occurred within Y2Ru2O7-δ due to its inner "perfecting" lattice induced by continuous atom rearrangement. Therefore, a stabilization strategy of the Ir-substituted Y2Ru2O7-δ is proposed to alleviate this undesirable behavior. The double-exchange interaction between Ru and Ir in [RuO6] and [IrO6] octahedra leads the charge redistribution with simultaneous spin configuration adjustment. The electronic state in newly formed octahedrons centered with Ru 4d3 (with the state of eg'↑↑a1g ↑ eg 0) and Ir 5d6 (eg'↑↓↑↓a1g ↑↓ eg 0) relieves the uneven electron distributions in [RuO6] orbital. The attenuated Jahn-Teller effect alleviates atom rearrangement, represented as the mitigation of insulator transition, surface reconstruction, and metal dissolution. As results, the Ir-substituted Y2Ru2O7-δ presents the greatly improved OER stability and PEM durability. This study unveils the OER degradation mechanism and stabilization strategy for material design of Ru-based OER catalysts for electrochemical applications.
Collapse
Affiliation(s)
- Tongtong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- National Engineering Research Center for Fuel Cell and Hydrogen Source Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hengyu Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- National Engineering Research Center for Fuel Cell and Hydrogen Source Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingren Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- National Engineering Research Center for Fuel Cell and Hydrogen Source Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Masatsugu Fujishige
- Research Initiative for Supra-Materials, Shinshu University, Nagano, 380-8553, Japan
| | - Morinobu Endo
- Research Initiative for Supra-Materials, Shinshu University, Nagano, 380-8553, Japan
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- National Engineering Research Center for Fuel Cell and Hydrogen Source Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- National Engineering Research Center for Fuel Cell and Hydrogen Source Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
4
|
Bagdwal H, Sood P, Dhillon AK, Singh A, Singh M. Deciphering the work function induced local charge regulation towards activating an octamolybdate cluster-based solid for acidic water oxidation. NANOSCALE 2024; 16:16420-16429. [PMID: 39171964 DOI: 10.1039/d4nr02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The advancement of highly robust and efficient electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions is imperative for the sustainable production of green hydrogen. In accomplishing sustainable and sturdy electrocatalysts for oxygen evolution at low pH, the challenge is tough for non-iridium/ruthenium-based electrocatalysts. This study elaborates on the intrinsic alterations in electronic arrangements and structural disorder upon the precise activation of an octamolybdate cluster-based solid [{Cu(pz)4}2Mo8O26]·2H2O through room temperature grinding with rGO (reduced graphene oxide), resulting in enhanced conductivity, stability, and activity of the electrocatalyst towards the acidic OER without employing any benchmark metal ion (Ru or Ir). Additionally, the work function of the composites was found to be low compared to that of pristine polyoxometalates (POMs), indicative of the improved conducive behavior, which is lacking in the POM structure. The catalyst displays a notably reduced overpotential of 185 mV to achieve a current density of 10 mA cm-2, coupled with significant stability lasting 24 hours at a higher current density of 100 mA cm-2. These findings propose the manipulation of crystalline POMs with highly conductive non-metallic elements to facilitate superior water oxidation at lower pH levels which can help in the production of green hydrogen.
Collapse
Affiliation(s)
- Harshita Bagdwal
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Parul Sood
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Arshminder Kaur Dhillon
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Monika Singh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
5
|
Li W, Bu Y, Ge X, Li F, Han GF, Baek JB. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation. CHEMSUSCHEM 2024; 17:e202400295. [PMID: 38362788 DOI: 10.1002/cssc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Ongoing research to develop advanced electrocatalysts for the oxygen evolution reaction (OER) is needed to address demand for efficient energy conversion and carbon-free energy sources. In the OER process, acidic electrolytes have higher proton concentration and faster response than alkaline ones, but their harsh strongly acidic environment requires catalysts with greater corrosion and oxidation resistance. At present, iridium oxide (IrO2) with its strong stability and excellent catalytic performance is the catalyst of choice for the anode side of commercial PEM electrolysis cells. However, the scarcity and high cost of iridium (Ir) and the unsatisfactory activity of IrO2 hinder industrial scale application and the sustainable development of acidic OER catalytic technology. This highlights the importance of further research on acidic Ir-based OER catalysts. In this review, recent advances in Ir-based acidic OER electrocatalysts are summarized, including fundamental understanding of the acidic OER mechanism, recent insights into the stability of acidic OER catalysts, highly efficient Ir-based electrocatalysts, and common strategies for optimizing Ir-based catalysts. The future challenges and prospects of developing highly effective Ir-based catalysts are also discussed.
Collapse
Affiliation(s)
- Wanqing Li
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunfei Bu
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Xinlei Ge
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai, 200433, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
6
|
Zhang J, Song Y, Liu W, Zheng Q, Liu Y, Wu T, Li T. Enhancing the acidic oxygen evolution reaction performance of RuO 2-TiO 2by a reduction-oxidation process. NANOTECHNOLOGY 2024; 35:345703. [PMID: 38788702 DOI: 10.1088/1361-6528/ad501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
As a promising alternative to Ir based acidic oxygen evolution reaction (OER) catalysts, Ru suffers from severe fading issues. Supporting it on robust oxides such as TiO2is a simple and effective way to enhance its lifetime. Here, we find that a simple reduction-oxidation process can further improve both activity and stability of RuO2-TiO2composites at high potentials. In this process, the degree of oxidation was carefully controlled to form Ru/RuO2heterostructure to improve OER activity. Moreover, due to the oxophilicity difference of Ru and Ti, the structure of catalysts was changed from supported to embedded, which enhanced the protective effect of TiO2and mitigated the dissolution of Ru element in acidic electrolyte, making as-prepared Ru/RuO2-TiO2with better durability at all tested potentials.
Collapse
Affiliation(s)
- Jianjun Zhang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yi Song
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wenwei Liu
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Quan Zheng
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu Liu
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tianli Wu
- School of Future Technology, Henan University, Kaifeng 475004, People's Republic of China
| | - Tao Li
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
7
|
Guan Z, Chen Q, Liu L, Xia C, Cao L, Dong B. Heterointerface MnO 2/RuO 2 with rich oxygen vacancies for enhanced oxygen evolution in acidic media. NANOSCALE 2024; 16:10325-10332. [PMID: 38738334 DOI: 10.1039/d4nr00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of oxygen evolution reaction (OER) electrocatalysts that operate efficiently and stably under acidic conditions are important for the preparation of green hydrogen energy. The low intrinsic catalytic activity and poor acid resistance of commercial RuO2 limit its further development, and the construction of heterointerface structures is the most promising strategy to break through the intrinsic activity limitation of electrocatalysts. Herein, we synthesized spherical and oxygen vacancy-rich heterointerface MnO2/RuO2 using morphology control, which promoted the kinetics of the oxygen evolution reaction with the interaction between oxygen vacancies and the oxide heterointerface. MnO2/RuO2 was reported to be an acidic OER catalyst with excellent performance and stability, requiring only an ultra-low overpotential of 181 mV in 0.5 M H2SO4 to achieve a current density of 10 mA cm-2. The catalyst activity remained essentially unchanged in a 140 h stability test with an ultra-high mass activity (858.9 A g-1@ 1.5 V), which was far superior to commercial RuO2 and most previously reported noble metal-based acidic OER catalysts. The experimental results showed that the effect of more oxygen vacancies and the heterointerfaces of manganese ruthenium oxides broke the intrinsic activity limitation, provided more active sites for the OER, accelerated reaction kinetics, and improved the stability of the catalyst. The excellent performance of the catalyst suggests that MnO2/RuO2 provides a new idea for the design and study of heterointerfaces in metal oxide nanomaterials.
Collapse
Affiliation(s)
- Zhiming Guan
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Qian Chen
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Lin Liu
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Chenghui Xia
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Lixin Cao
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Bohua Dong
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| |
Collapse
|
8
|
Gao J, Wu X, Teng X, Zhang K, Zhao H, Li J, Zhang J. Thermal-Driven Orderly Assembly of Ir-atomic Chains on α-MnO 2 with Enhanced Performance for Acidic Oxygen Evolution. Chempluschem 2024; 89:e202300680. [PMID: 38263338 DOI: 10.1002/cplu.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
The development of acid-stable oxygen evolution reaction electrocatalysts is essential for high-performance acidic water electrolysis. Herein, we report the results of one-dimensional (1D) nanorods (NRs) IrCeMnO@Ir containing ~20 wt . % Iridium (Ir) as an efficient anode electrocatalyst, synthesized via a one-step cation exchange strategy. Owing to the presence of 1D channels of the nanorod architecture and the unique electronic structure, the IrCeMnO@Ir exhibited 69 folds more mass activity than that of commercial IrO2 as well as over 400 h stability with only a 20 mV increase in overpotential. DFT calculations and control experiments demonstrated that CeO2 serves as an electron buffer to accelerate the kinetics of the rate-determined step for the significantly enhanced activity and suppress the over-oxidation of Ir species as well as their dissolution for impressively promoted stability under practical conditions. Our work opens up a feasible strategy to boost OER activity and stability simultaneously.
Collapse
Affiliation(s)
- Junan Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaokuan Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Teng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kuo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hong Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianwei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
9
|
Zhao W, Xu F, Yang J, Hu X, Weng B. Ce Single-Atom Incorporation Enhances the Oxygen Evolution Reaction of Co 3O 4 in Acid. Inorg Chem 2024; 63:1947-1953. [PMID: 38215462 DOI: 10.1021/acs.inorgchem.3c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Oxygen evolution reaction (OER) plays an important role in energy conversion processes such as water electrolysis and metal-air batteries. At present, finding a high-performance and low-cost catalyst for the OER in acidic media remains a great challenge. It is therefore important to develop efficient, robust, and inexpensive electrocatalysts by replacing noble metal-based catalysts with transition-metal electrocatalysts. Herein, we propose a facile method for incorporating Ce-metal single atoms into Co3O4 nanosheets to boost their OER activity and stability. Owing to the enhanced charge transfer and improved electronic structure resulting from Ce incorporation, the obtained Ce single-atom-doped Co3O4 nanosheet exhibits greatly enhanced OER performance. It achieves a 10 mA cm-2 current density under a low overpotential of 348 mV in a 0.5 M H2SO4 solution with excellent stability, outperforming the state-of-the-art non-noble electrocatalysts recently reported in acid.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, China
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, China
| | - Jieyu Yang
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, China
| | - Xiaodong Hu
- Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province 410082, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, China
| |
Collapse
|
10
|
Zhang J, Shi L, Tong R, Yang L. Highly Active Pyrochlore-Type Praseodymium Ruthenate Electrocatalyst for Efficient Acid-Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917040 DOI: 10.1021/acsami.3c08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
To produce directly combustible hydrogen from water, highly active, acid-resistant, and economical catalysts for oxygen evolution reaction (OER) are needed. An electrocatalyst based on praseodymium ruthenate (Pr2Ru2O7) is presented here that greatly outperforms RuO2 for acid-water oxidation. Specifically, at 10 mA cm-2, this electrocatalyst presents a low overpotential (η) of 213 mV and markedly superior stability. Moreover, Pr2Ru2O7 presents a significant rise in turnover frequency (TOF) and a highly intrinsic mass activity of 1618.8 A gRu-1 (η = 300 mV), exceeding the most commonly reported acid OER catalysts. Density functional theory calculations and electronic structure study demonstrate that the Ru 4d-band center related to the longer Ru-O bond with a large radius of Pr ion in this pyrochlore is lower than that in RuO2, which would optimize the binding between the adsorbed oxygen species and catalytic metal sites and enhance the catalytic intrinsic activity.
Collapse
Affiliation(s)
- Jinhui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Lei Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Ruixue Tong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| | - Liping Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China
| |
Collapse
|
11
|
Galyamin D, Tolosana-Moranchel Á, Retuerto M, Rojas S. Unraveling the Most Relevant Features for the Design of Iridium Mixed Oxides with High Activity and Durability for the Oxygen Evolution Reaction in Acidic Media. JACS AU 2023; 3:2336-2355. [PMID: 37772191 PMCID: PMC10523372 DOI: 10.1021/jacsau.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/30/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) is the technology of choice for the large-scale production of green hydrogen from renewable energy. Current PEMWEs utilize large amounts of critical raw materials such as iridium and platinum in the anode and cathode electrodes, respectively. In addition to its high cost, the use of Ir-based catalysts may represent a critical bottleneck for the large-scale production of PEM electrolyzers since iridium is a very expensive, scarce, and ill-distributed element. Replacing iridium from PEM anodes is a challenging matter since Ir-oxides are the only materials with sufficient stability under the highly oxidant environment of the anode reaction. One of the current strategies aiming to reduce Ir content is the design of advanced Ir-mixed oxides, in which the introduction of cations in different crystallographic sites can help to engineer the Ir active sites with certain characteristics, that is, environment, coordination, distances, oxidation state, etc. This strategy comes with its own problems, since most mixed oxides lack stability during the OER in acidic electrolyte, suffering severe structural reconstruction, which may lead to surfaces with catalytic activity and durability different from that of the original mixed oxide. Only after understanding such a reconstruction process would it be possible to design durable and stable Ir-based catalysts for the OER. In this Perspective, we highlight the most successful strategies to design Ir mixed oxides for the OER in acidic electrolyte and discuss the most promising lines of evolution in the field.
Collapse
Affiliation(s)
| | | | - María Retuerto
- Grupo de Energía y
Química Sostenibles. Instituto de
Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y
Química Sostenibles. Instituto de
Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
12
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
13
|
Ahmad W, Hou Y, Khan R, Wang L, Zhou S, Wang K, Wan Z, Zhou S, Yan W, Ling M, Liang C. V-Integration Modulates t 2g -Electrons of a Single Crystal Ir 1- x (Ir 0.8 V 0.2 O 2 ) x -BHC for Boosted and Durable OER in Acidic Electrolyte. SMALL METHODS 2023:e2201247. [PMID: 37086116 DOI: 10.1002/smtd.202201247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Realizing efficacious π-donation from the O 2p orbital to electron-deficient metal (t2g ) d-orbitals along with separately tuned adsorption of *O and *OOH, is an imperious pre-requisite for an electrocatalyst design to demonstrate boosted oxygen evolution reaction (OER) performance. To regulate the π-donation and the adsorption ability for *O and *OOH, herein, a facile strategy to modulate the electron transfer from electron-rich t2g -orbitals to electron-deficient t2g -orbitals, via strong π-donation from the π-symmetry lone pairs of the bridging O2- , and the d-band center of a biomimetic honeycomb (BHC)-like nanoarchitecture (Ir1- x (Ir0.8 V0.2 O2 )x -BHC) is introduced. The suitable integration of V heteroatoms in the single crystal system of IrO2 decreases the electron density on the neighboring Ir sites, and causes an upshift in the d-band center of Ir1- x (Ir0.8 V0.2 O2 )x -BHC, weakening the adsorption of *O while strengthening that of *OOH, lowers the energy barrier for OER. Therefore, BHC design demonstrates excellent OER performance (shows a small overpotential of 238 mV at 10 mA cm-2 and a Tafel slope of 39.87 mV dec-1 ) with remarkable stability (130 h) in corrosive acidic electrolyte. This work opens a new corridor to design robust biomimetic nanoarchitectures of modulated π-symmetry (t2g ) d-orbitals and the band structure, to achieve excellent activity and durability in acidic environment.
Collapse
Affiliation(s)
- Waqar Ahmad
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Yunpeng Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Rashid Khan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Shiyu Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Kun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Zhengwei Wan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Chengdu Liang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| |
Collapse
|
14
|
Retuerto M, Pascual L, Torrero J, Salam MA, Tolosana-Moranchel Á, Gianolio D, Ferrer P, Kayser P, Wilke V, Stiber S, Celorrio V, Mokthar M, Sanchez DG, Gago AS, Friedrich KA, Peña MA, Alonso JA, Rojas S. Highly active and stable OER electrocatalysts derived from Sr 2MIrO 6 for proton exchange membrane water electrolyzers. Nat Commun 2022; 13:7935. [PMID: 36566246 PMCID: PMC9789951 DOI: 10.1038/s41467-022-35631-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Proton exchange membrane water electrolysis is a promising technology to produce green hydrogen from renewables, as it can efficiently achieve high current densities. Lowering iridium amount in oxygen evolution reaction electrocatalysts is critical for achieving cost-effective production of green hydrogen. In this work, we develop catalysts from Ir double perovskites. Sr2CaIrO6 achieves 10 mA cm-2 at only 1.48 V. The surface of the perovskite reconstructs when immersed in an acidic electrolyte and during the first catalytic cycles, resulting in a stable surface conformed by short-range order edge-sharing IrO6 octahedra arranged in an open structure responsible for the high performance. A proton exchange membrane water electrolysis cell is developed with Sr2CaIrO6 as anode and low Ir loading (0.4 mgIr cm-2). The cell achieves 2.40 V at 6 A cm-2 (overload) and no loss in performance at a constant 2 A cm-2 (nominal load). Thus, reducing Ir use without compromising efficiency and lifetime.
Collapse
Affiliation(s)
- María Retuerto
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| | - Laura Pascual
- Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Jorge Torrero
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Álvaro Tolosana-Moranchel
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Paula Kayser
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Vincent Wilke
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Svenja Stiber
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Verónica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mohamed Mokthar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Daniel García Sanchez
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Aldo Saul Gago
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Kaspar Andreas Friedrich
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Miguel Antonio Peña
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - José Antonio Alonso
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Zhao W, Xu F, Wang Z, Pan Z, Ye Y, Hu S, Weng B, Zhu R. Modulation of IrO 6 Chemical Environment for Highly Efficient Oxygen Evolution in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205495. [PMID: 36310342 DOI: 10.1002/smll.202205495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The sluggish kinetics of the oxygen evolution reaction (OER) limits the commercialization of oxygen electrochemistry, which plays a key role in renewable energy technologies such as fuel cells and electrolyzers. Herein, a facile and practical strategy is developed to successfully incorporate Ir single atoms into the lattice of transition metal oxides (TMOs). The chemical environment of Ir and its neighboring lattice oxygen is modulated, and the lattice oxygen provides lone-pair electrons and charge balance to stabilize Ir single atoms, resulting in the enhancement of both OER activity and durability. In particular, Ir0.08 Co2.92 O4 NWs exhibit an excellent mass activity of 1343.1 A g-1 and turnover frequency (TOF) of 0.04 s-1 at overpotentials of 300 mV. And this catalyst also displays significant stability in acid at 10 mA cm-2 over 100 h. Overall water splitting using Pt/C as the hydrogen evolution reaction catalyst and Ir0.08 Co2.92 O4 NWs as the OER catalyst takes only a cell voltage of 1.494 V to achieve 10 mA cm-2 with a perfect stability. This work demonstrates a simple approach to produce highly active and acid-stable transition metal oxides electrocatalysts with trace Ir.
Collapse
Affiliation(s)
- Wenli Zhao
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Zhaoyang Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
| | - Zhipeng Pan
- Guizhou Meling Power sources Co., Ltd, Zunyi, Guizhou Province, 563000, China
| | - Yiming Ye
- China Institute of Atomic Energy, Beijing Province, 102413, China
| | - Shilin Hu
- China Institute of Atomic Energy, Beijing Province, 102413, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Rilong Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
| |
Collapse
|
16
|
Ma CL, Yang XR, Wang ZQ, Sun W, Zhu L, Cao LM, Gong XQ, Yang J. Achieving Active and Stable Amorphous Ir VO xOH y for Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28706-28715. [PMID: 35695736 DOI: 10.1021/acsami.2c01617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Evaluating the structural and electronic-state characteristics of long-range disordered amorphous iridium (Ir)-based oxides is still unsatisfying. Compared with the benchmark IrO2, the higher oxygen evolution reaction (OER) performance brought by IrOxOHy was normally considered to be associated with the pristine IrIII-containing species. However, such a conclusion conflicts with the opinion that high-valence metals can create excellent OER activity. To resolve such contradictions, we synthesized a pure amorphous Lu1.25IrOxOHy (Lu = lutetium) catalyst in this work. In combination with the comprehensive electrochemical evaluation in alkaline and acidic media, ex situ Ir L3-edge and O K-edge X-ray absorption spectroscopy and theoretical calculations revealed that the ultrahigh OER performance of reconstructed IrOx/Lu1.25IrOxOHy in acidic media was identified to be driven by the more d-hole-containing electronic state of IrV created by cationic vacancies. The pristine properties of IrIII-containing Lu1.25IrOxOHy conversely inhibit the OER activity in alkaline media. Additionally, the high edge-shared [IrOx]-[IrOx] motif proportion structure in amorphous Lu1.25IrOxOHy achieves a stable OER process, which exhibits a high S-number stability index similar to IrO2. We demonstrate that the key factor of the edge-shared [IrOx]-[IrOx] motif with cationic vacancies in IrVOxOHy could rationally reveal the source for most of the high-performance Ir-based materials.
Collapse
Affiliation(s)
- Cheng-Long Ma
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xue-Rui Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Sun
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Lin Zhu
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Li-Mei Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ji Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|