1
|
Roque‐Borda CA, Primo LMDG, Medina‐Alarcón KP, Campos IC, Nascimento CDF, Saraiva MMS, Berchieri Junior A, Fusco‐Almeida AM, Mendes‐Giannini MJS, Perdigão J, Pavan FR, Albericio F. Antimicrobial Peptides: A Promising Alternative to Conventional Antimicrobials for Combating Polymicrobial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410893. [PMID: 39530703 PMCID: PMC11714181 DOI: 10.1002/advs.202410893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Polymicrobial biofilms adhere to surfaces and enhance pathogen resistance to conventional treatments, significantly contributing to chronic infections in the respiratory tract, oral cavity, chronic wounds, and on medical devices. This review examines antimicrobial peptides (AMPs) as a promising alternative to traditional antibiotics for treating biofilm-associated infections. AMPs, which can be produced as part of the innate immune response or synthesized therapeutically, have broad-spectrum antimicrobial activity, often disrupting microbial cell membranes and causing cell death. Many specifically target negatively charged bacterial membranes, unlike host cell membranes. Research shows AMPs effectively inhibit and disrupt polymicrobial biofilms and can enhance conventional antibiotics' efficacy. Preclinical and clinical research is advancing, with animal studies and clinical trials showing promise against multidrug-resistant bacteria and fungi. Numerous patents indicate increasing interest in AMPs. However, challenges such as peptide stability, potential cytotoxicity, and high production costs must be addressed. Ongoing research focuses on optimizing AMP structures, enhancing stability, and developing cost-effective production methods. In summary, AMPs offer a novel approach to combating biofilm-associated infections, with their unique mechanisms and synergistic potential with existing antibiotics positioning them as promising candidates for future treatments.
Collapse
Affiliation(s)
- Cesar Augusto Roque‐Borda
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
- Vicerrectorado de InvestigaciónUniversidad Católica de Santa MaríaArequipa04000Peru
| | - Laura Maria Duran Gleriani Primo
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Kaila Petronila Medina‐Alarcón
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Isabella C. Campos
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Camila de Fátima Nascimento
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Mauro M. S. Saraiva
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Ana Marisa Fusco‐Almeida
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Maria José Soares Mendes‐Giannini
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - João Perdigão
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
| | - Fernando Rogério Pavan
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalDurban4001South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| |
Collapse
|
2
|
Yazdani-Ahmadabadi H, Yu K, Gonzalez K, Luo HD, Lange D, Kizhakkedathu JN. Long-Term Prevention of Biofilm Formation by Polycatechol-Based Supramolecular Assemblies with Low Molecular Weight Polymers on Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38631-38644. [PMID: 38980701 DOI: 10.1021/acsami.4c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Achievement of a stable surface coating with long-term resistance to biofilm formation remains a challenge. Catechol-based polymerization chemistry and surface deposition are used as tools for surface modification of diverse materials. However, the control of surface deposition of the coating, surface coverage, coating properties, and long-term protection against biofilm formation remain to be solved. We report a new approach based on supramolecular assembly to generate long-acting antibiofilm coating. Here, we utilized catechol chemistry in combination with low molecular weight amphiphilic polymers for the generation of such coatings. Screening studies with diverse low molecular weight (LMW) polymers and different catechols are utilized to identify lead compositions, which resulted in a thick coating with high surface coverage, smoothness, and antibiofilm activity. We have identified that small supramolecular assemblies (∼10 nm) formed from a combination of polydopamine and LMW poly(N-vinyl caprolactam) (PVCL) resulted in relatively thick coating (∼300 nm) with excellent surface coverage in comparison to other polymers and catechol combinations. The coating properties, such as thickness (10-300 nm) and surface hydrophilicity (with water contact angle: 20-60°), are readily controlled. The optimal coating composition showed excellent antibiofilm properties with long-term (>28 days) antibiofilm activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. We further utilized the combination of optimal binary coating with silver to generate a coating with sustained release of silver ions, resulting in killing both adhered and planktonic bacteria and preventing long-term surface bacterial colonization. The new coating method utilizing LMW polymers opens a new avenue for the development of a novel class of thick, long-acting antibiofilm coatings.
Collapse
Affiliation(s)
- Hossein Yazdani-Ahmadabadi
- Centre for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kai Yu
- Centre for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kevin Gonzalez
- Centre for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Haiming D Luo
- Centre for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dirk Lange
- Department of Urological Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Jack Bell Research Centre, 2660 Oak Street, Vancouver, British Columbia V6H 3Y8, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Science Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
3
|
Esposito TVF, Blackadar C, Wu L, Rodríguez-Rodríguez C, Haney EF, Pletzer D, Saatchi K, Hancock REW, Häfeli UO. Biodistribution of Native and Nanoformulated Innate Defense Regulator Peptide 1002. Mol Pharm 2024; 21:2751-2766. [PMID: 38693707 DOI: 10.1021/acs.molpharmaceut.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Innate defense regulator-1002 (IDR-1002) is a synthetic peptide with promising immunomodulatory and antibiofilm properties. An appreciable body of work exists around its mechanism of action at the cellular and molecular level, along with its efficacy across several infection and inflammation models. However, little is known about its absorption, distribution, and excretion in live organisms. Here, we performed a comprehensive biodistribution assessment with a gallium-67 radiolabeled derivative of IDR-1002 using nuclear tracing techniques. Various dose levels of the radiotracer (2-40 mg/kg) were administered into the blood, peritoneal cavity, and subcutaneous tissue, or instilled into the lungs. The peptide was well tolerated at all subcutaneous and intraperitoneal doses, although higher levels were associated with delayed absorption kinetics and precipitation of the peptide within the tissues. Low intratracheal doses were rapidly absorbed systemically, and small increases in the dose level were lethal. Intravenous doses were rapidly cleared from the blood at lower levels, and upon escalation, were toxic with a high proportion of the dose accumulating within the lung tissue. To improve biocompatibility and prolong its circulation within the blood, IDR-1002 was further formulated onto high molecular weight hyperbranched polyglycerol (HPG) polymers. Constructs prepared at 5:1 and 10:1 peptide-to-polymer ratios were colloidally stable, maintained the biological profile of the peptide payload and helped reduce red blood cell lysis. The 5:1 construct circulated well in the blood, but higher peptide loading was associated with rapid clearance by the reticuloendothelial system. Many peptides face pharmacokinetic and biocompatibility challenges, but formulations such as those with HPG have the potential to overcome these limitations.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Lan Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Evan F Haney
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Asep Medical Holdings, 420 - 730 View Street, Victoria V8W 3Y7, British Columbia, Canada
| | - Daniel Pletzer
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1172, Denmark
| |
Collapse
|
4
|
Hansson A, Karlsen EA, Stensen W, Svendsen JSM, Berglin M, Lundgren A. Preventing E. coli Biofilm Formation with Antimicrobial Peptide-Functionalized Surface Coatings: Recognizing the Dependence on the Bacterial Binding Mode Using Live-Cell Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6799-6812. [PMID: 38294883 PMCID: PMC10875647 DOI: 10.1021/acsami.3c16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Antimicrobial peptides (AMPs) can kill bacteria by destabilizing their membranes, yet translating these molecules' properties into a covalently attached antibacterial coating is challenging. Rational design efforts are obstructed by the fact that standard microbiology methods are ill-designed for the evaluation of coatings, disclosing few details about why grafted AMPs function or do not function. It is particularly difficult to distinguish the influence of the AMP's molecular structure from other factors controlling the total exposure, including which type of bonds are formed between bacteria and the coating and how persistent these contacts are. Here, we combine label-free live-cell microscopy, microfluidics, and automated image analysis to study the response of surface-bound Escherichia coli challenged by the same small AMP either in solution or grafted to the surface through click chemistry. Initially after binding, the grafted AMPs inhibited bacterial growth more efficiently than did AMPs in solution. Yet, after 1 h, E. coli on the coated surfaces increased their expression of type-1 fimbriae, leading to a change in their binding mode, which diminished the coating's impact. The wealth of information obtained from continuously monitoring the growth, shape, and movements of single bacterial cells allowed us to elucidate and quantify the different factors determining the antibacterial efficacy of the grafted AMPs. We expect this approach to aid the design of elaborate antibacterial material coatings working by specific and selective actions, not limited to contact-killing. This technology is needed to support health care and food production in the postantibiotic era.
Collapse
Affiliation(s)
- Adam Hansson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 40530, Sweden
- Department
of Chemistry and Materials, RISE Research
Institutes of Sweden, Borås 50115, Sweden
| | - Eskil André Karlsen
- Amicoat
A/S, Sykehusvegen 23, Tromsø 9019, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - Wenche Stensen
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - John S. M. Svendsen
- Amicoat
A/S, Sykehusvegen 23, Tromsø 9019, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - Mattias Berglin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 40530, Sweden
- Department
of Chemistry and Materials, RISE Research
Institutes of Sweden, Borås 50115, Sweden
| | - Anders Lundgren
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 40530, Sweden
- Centre
for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg 41346, Sweden
| |
Collapse
|
5
|
Klubthawee N, Wongchai M, Aunpad R. The bactericidal and antibiofilm effects of a lysine-substituted hybrid peptide, CM-10K14K, on biofilm-forming Staphylococcus epidermidis. Sci Rep 2023; 13:22262. [PMID: 38097636 PMCID: PMC10721899 DOI: 10.1038/s41598-023-49302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Staphylococci, notably biofilm-forming Staphylococcus epidermidis, have been recognized as global nosocomial pathogens in medical device-related infections. Their potential to attach to and form biofilm on indwelling catheters are significant factors impeding conventional treatment. Due to their extensive antimicrobial and antibiofilm actions, antimicrobial peptides (AMPs) have attracted interest as promising alternative compounds for curing difficult-to-treat, biofilm-forming bacterial infections. Cecropin A-melittin or CM, a well-known hybrid peptide, exhibits broad-spectrum antimicrobial activity, however it also possesses high toxicity. In the current study, a series of hybrid CM derivatives was designed using an amino acid substitution strategy to explore potential antibacterial and antibiofilm peptides with low toxicity. Among the derivatives, CM-10K14K showed the least hemolysis along with potent antibacterial activity against biofilm-forming S. epidermidis (MICs = 3.91 μg/mL) and rapid killing after 15 min exposure (MBCs = 7.81 μg/mL). It can prevent the formation of S. epidermidis biofilm and also exhibited a dose-dependent eradication activity on mature or established S. epidermidis biofilm. In addition, it decreased the development of biofilm by surviving bacteria, and formation of biofilm on the surface of CM-10K14K-impregnated catheters. Released CM-10K14K decreased planktonic bacterial growth and inhibited biofilm formation by S. epidermidis in a dose-dependent manner for 6 and 24 h post-exposure. Impregnation of CM-10K14K prevented bacterial attachment on catheters and thus decreased formation of extensive biofilms. SEM images supported the antibiofilm activity of CM-10K14K. Flow cytometry analysis and TEM images demonstrated a membrane-active mechanism of CM-10K14K, inducing depolarization and permeabilization, and subsequent membrane rupture leading to cell death. The presence of an interaction with bacterial DNA was verified by gel retardation assay. These antibacterial and antibiofilm activities of CM-10K14K suggest its potential application to urinary catheters for prevention of biofilm-forming colonization or for treatment of medical devices infected with S. epidermidis.
Collapse
Affiliation(s)
- Natthaporn Klubthawee
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Mathira Wongchai
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
6
|
Miao J, Wu X, Fang Y, Zeng M, Huang Z, Ouyang M, Wang R. Multifunctional hydrogel coatings with high antimicrobial loading efficiency and pH-responsive properties for urinary catheter applications. J Mater Chem B 2023; 11:3373-3386. [PMID: 37000775 DOI: 10.1039/d3tb00148b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Catheter-associated urinary tract infections are one of the most common hospital-acquired infections. Encrustation formation results from infection of urease-producing bacteria and further complicates the situation. A typical sign of the initial onset of encrustation formation is the alkalization of the urine (pH up to 9-10). However, effective antibacterial strategies with high antimicrobial loading efficiency and pH-responsiveness of antimicrobial release are still lacking. In this study, we developed a poly(sulfobetaine methacrylate)-tannic acid (polySBMA-TA) hydrogel coating, which served as a universal, efficient, and responsive carrier for antimicrobials on urinary catheters. Common antimicrobials, including poly(vinylpyrrolidone)-iodine, copper ions, and nitrofurazone were loaded into the polySBMA-TA coating in high efficiency (several fold higher than that of the polySBMA coating), via the formation of multiple non-covalent interactions between the antimicrobials and hydrogel coating. The hydrogel coatings maintained good antibacterial properties under neutral conditions. More importantly, the pH-responsive release of antibacterial agents under alkaline conditions further enhanced the antibacterial activity of the coatings, which was advantageous for killing the urease-producing bacteria and preventing encrustation. In vitro and in vivo tests confirmed that the hydrogel coating has good biocompatibility, and could effectively inhibit bacterial colonization and encrustation formation. This study offers new opportunities for the utilization of a simple and universal antimicrobial-loaded hydrogel coating with smart pH-responsive properties to combat bacterial colonization and encrustation formation in urinary catheters.
Collapse
Affiliation(s)
- Jiru Miao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
| | - Xiang Wu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University School of Medicine, Ningbo, 315000, China
| | - Yue Fang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
| | - Mingzhu Zeng
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
| | - Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
| | - Mi Ouyang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
7
|
Yazdani-Ahmadabadi H, Yu K, Khoddami S, F. Felix D, Yeh HH, Luo HD, Moskalev I, Wang Q, Wang R, Grecov D, Fazli L, Lange D, Kizhakkedathu JN. Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry. ACS NANOSCIENCE AU 2023; 3:67-83. [PMID: 36820095 PMCID: PMC9936578 DOI: 10.1021/acsnanoscienceau.2c00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/18/2023]
Abstract
A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic-aqueous mixture. Using a screening approach, we have identified a combination of the organic-aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer-silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (>3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (>99.999%) against difficult-to-kill bacteria (Proteus mirabilis) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, in vivo. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.
Collapse
Affiliation(s)
- Hossein Yazdani-Ahmadabadi
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver V6T 1Z3, British
Columbia, Canada
| | - Kai Yu
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver V6T 1Z3, British
Columbia, Canada
- Department
of Pathology and Laboratory Medicine, University
of British Columbia, Vancouver V6T 1Z7, British Columbia, Canada
| | - Sara Khoddami
- Department
of Urologic Sciences, University of British
Columbia, Vancouver V6H 3Z6, British Columbia, Canada
- The
Stone Centre at Vancouver General Hospital, Vancouver V5Z 1M9, British Columbia, Canada
| | - Demian F. Felix
- Department
of Urologic Sciences, University of British
Columbia, Vancouver V6H 3Z6, British Columbia, Canada
- The
Stone Centre at Vancouver General Hospital, Vancouver V5Z 1M9, British Columbia, Canada
| | - Han H. Yeh
- Department
of Mechanical Engineering, University of
British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Haiming D. Luo
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver V6T 1Z3, British
Columbia, Canada
| | - Igor Moskalev
- Vancouver
Prostate Centre, University of British Columbia, Vancouver V6H 3Z6, British Columbia, Canada
| | - Qiong Wang
- Department
of Materials Engineering, University of
British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Rizhi Wang
- Department
of Materials Engineering, University of
British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- School
of Biomedical Engineering, University of
British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Dana Grecov
- Department
of Mechanical Engineering, University of
British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Ladan Fazli
- Vancouver
Prostate Centre, University of British Columbia, Vancouver V6H 3Z6, British Columbia, Canada
| | - Dirk Lange
- Department
of Urologic Sciences, University of British
Columbia, Vancouver V6H 3Z6, British Columbia, Canada
- The
Stone Centre at Vancouver General Hospital, Vancouver V5Z 1M9, British Columbia, Canada
| | - Jayachandran N. Kizhakkedathu
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
- Centre
for Blood Research, Life Science Institute, University of British Columbia, Vancouver V6T 1Z3, British
Columbia, Canada
- Department
of Pathology and Laboratory Medicine, University
of British Columbia, Vancouver V6T 1Z7, British Columbia, Canada
- School
of Biomedical Engineering, University of
British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| |
Collapse
|
8
|
Yu H, Wang L, Zhang Z, Zhang X, Luan S, Shi H. Regulable Polyelectrolyte-Surfactant Complex for Antibacterial Biomedical Catheter Coating via a Readily Scalable Route. Adv Healthc Mater 2023; 12:e2202096. [PMID: 36285359 DOI: 10.1002/adhm.202202096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Constructing multifunctional surfaces is one of the practical approaches to address catheter-related multiple complications but is generally time-consuming and substrate-dependent. Herein, a novel anti-adhesion, antibacterial, low friction, and robustness coating on medical catheters are developed via a universal and readily scalable method based on a regulable polyelectrolyte surfactant complex. The complex is rapidly assembled in one step by electrostatic and hydrophobic interactions between organosilicon quaternary ammonium surfactant (N+ Si ) and adjustable polyelectrolyte with cross-linkable, anti-adhesive, and anionic groups. The alcohol-soluble feature of the complex is conducive to the rapid formation of coatings on any medical device with arbitrary shapes via dip coating. Different from the conventional polyelectrolyte-surfactant complex coating, the regulated complex coating with nonleaching mode could be stable in harsh conditions (high concentration salt solution, organic reagents, etc.) because of the cross-linked structure while improving the biocompatibility and reducing the adhesion of various bacteria, proteins, and blood cells. The coated catheter exhibits good antibacterial infection in vitro and in vivo, owing to the synergistic effect of N+ Si and zwitterionic groups. Therefore, the rationally designed complex supplies a facile coating approach for the potential development in combating multiple complications of the medical catheter.
Collapse
Affiliation(s)
- Huan Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhenyan Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
9
|
Yu K, Warsaba R, Yazdani-Ahmadabadi H, Lange D, Jan E, Kizhakkedathu JN. Antibacterial and Antiviral Coating on Surfaces through Dopamine-Assisted Codeposition of an Antifouling Polymer and In Situ Formed Nanosilver. ACS Biomater Sci Eng 2023; 9:329-339. [PMID: 36516234 DOI: 10.1021/acsbiomaterials.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria and viruses can adhere onto diverse surfaces and be transmitted in multiple ways. A bifunctional coating that integrates both antibacterial and antiviral activities is a promising approach to mitigate bacterial and viral infections arising from a contaminated surface. However, current coating approaches encounter a slow reaction, limited activity against diverse bacteria or viruses, short-term activity, difficulty in scaling-up, and poor adaptation to diverse material surfaces. Here, we report a new one-step strategy for the development of a polydopamine-based nonfouling antibacterial and antiviral coating by the codeposition of various components. The in situ formed nanosilver in the presence of polydopamine was incorporated into the coating and served as both antibacterial and antiviral agents. In addition, the coassembly of polydopamine and a nonfouling hydrophilic polymer was constructed to prevent the adhesion of bacteria and viruses on the coating. The coating was prepared on model surfaces and thoroughly characterized using various surface analytical techniques. The coating exhibited strong antifouling properties with a reduction of nonspecific protein adsorption up to 90%. The coating was tested against both Gram-positive and Gram-negative bacteria and showed long-term antibacterial effectiveness, which correlated with the composition of the coating. The antiviral activity of the coating was evaluated against human coronavirus 229E. A possible mechanism of action of the coating was proposed. We anticipate that the optimized coating will have applications in the development of infection prevention devices and surfaces.
Collapse
|
10
|
Yang F, Liu H, Wei Y, Xue R, Liu Z, Chu X, Tian X, Yin L, Tang H. Antibacterial brush polypeptide coatings with anionic backbones. Acta Biomater 2023; 155:359-369. [PMID: 36400347 DOI: 10.1016/j.actbio.2022.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Preventing initial colonization of bacteria on biomaterial surfaces is crucial to address the medical device-associated infection issues. Antimicrobial peptide (AMP) or cationic polymer modified surfaces have shown promising potentials to inhibit the initial colonization of bacteria by contact killing. However, their development has been impeded because of bacterial adhesion and high cytotoxicity. Herein, we report a series of brush polypeptide coatings with anionic backbones and cationic AMP mimetic side-chains that displayed superior bactericidal activity, antibacterial adhesion property, and biocompatibility. The cationic side-chain density played an important role in the bioactivities of the brush polypeptide modified surfaces. Brush polypeptide coating with low side-chain density exhibited improved bactericidal activity and antibacterial adhesion property, ascribing to the cooperative effects of adjacent side-chains and backbones/side-chains, respectively. It also showed negligible hemolysis/cytotoxicity in vitro and potent anti-infection property (≥99.9% bactericidal efficacy) in vivo. Brush polymers with anionic backbones and cationic side-chains can be used as a promising design motif to potentiate both antibacterial property and biocompatibility of coatings for combating device-associated infections. STATEMENT OF SIGNIFICANCE: Device-associated infections (DAIs) have led to increased medical cost, pain, and even mortality of patients. Antimicrobial peptide and cationic polymer coatings provide an important strategy to combat DAIs by preventing initial colonization of bacteria on biomaterial surfaces. Nevertheless, they have suffered bacterial adhesion and cytotoxicity issues. Herein, we developed a brush polypeptide coating with anionic backbones and cationic side-chains. The brush polypeptide coating showed superior bactericidal and antibacterial adhesion properties outperforming conventional antibacterial coatings based on antimicrobial peptide (i.e., melittin), lysozyme (i.e., lysostaphin), cationic polymer, anionic polymer, and the blends of cationic/anionic polymers. It also showed good biocompatibility and potent anti-infection property, making it a promising candidate to combat the DAIs.
Collapse
Affiliation(s)
- Fangping Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Hao Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yuansong Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Ruizhong Xue
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhiwei Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiaotang Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xinyun Tian
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Haoyu Tang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
11
|
Liu Z, Yang F, Si W, Xue R, Chu X, Tian X, Yin L, Tang H. Impact of Charge Composition and Distribution on the Antibacterial Properties of Polypeptide Coatings. ACS Macro Lett 2022; 11:1373-1377. [PMID: 36440835 DOI: 10.1021/acsmacrolett.2c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the charge composition and distribution of proteins and peptides, we designed and prepared a series of brush polypeptides with positive and negative charges separately distributed in the side chains and the backbones. The brush polypeptides can self- or co-deposit on various substrates forming ultrathin and stable coatings. They showed potent bactericidal activity and antibiofilm property, outperforming conventional linear polypeptide coatings with randomly distributed positive and negative charges. Keeping the balance of positive/negative charges and increasing the numbers of positive/negative charges can further improve the antibacterial property of brush polypeptide coatings without sacrificing their biocompatibility.
Collapse
Affiliation(s)
- Zhiwei Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fangping Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wenting Si
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Ruizhong Xue
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiaotang Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xinyun Tian
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Haoyu Tang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Eskhan A, Johnson D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv Colloid Interface Sci 2022; 310:102796. [DOI: 10.1016/j.cis.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
13
|
Liu T, Liu W, Zeng L, Wen Z, Xiong Z, Liao Z, Hu Y. Biofunctionalization of 3D Printed Porous Tantalum Using a Vancomycin-Carboxymethyl Chitosan Composite Coating to Improve Osteogenesis and Antibiofilm Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41764-41778. [PMID: 36087275 DOI: 10.1021/acsami.2c11715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
3D-printed porous tantalum scaffold has been increasingly used in arthroplasty due to its bone-matching elastic modulus and good osteoinductive ability. However, the lack of antibacterial ability makes it difficult for tantalum to prevent the occurrence and development of periprosthetic joint infection. The difficulty and high cost of curing periprosthetic joint infection (PJI) and revision surgery limit the further clinical application of tantalum. Therefore, we fabricated vancomycin-loaded porous tantalum scaffolds by combining the chemical grafting of (3-aminopropyl)triethoxysilane (APTES) and the electrostatic assembly of carboxymethyl chitosan and vancomycin for the first time. Our in vitro experiments show that the scaffold achieves rapid killing of initially adherent bacteria and effectively prevents biofilm formation. In addition, our modification preserves the original excellent structure and biocompatibility of porous tantalum and promotes the generation of mineralized matrix and osteogenesis-related gene expression by mesenchymal stem cells on the surface of scaffolds. Through a rat subcutaneous infection model, the composite bioscaffold shows efficient bacterial clearance and inflammation control in soft tissue and creates an immune microenvironment suitable for tissue repair at an early stage. Combined with the economic friendliness and practicality of its preparation, this scaffold has great clinical application potential in the treatment of periprosthetic joint infection.
Collapse
Affiliation(s)
- Tuozhou Liu
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Wenbin Liu
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Liyi Zeng
- Centers for Disease Control and Prevention, Zhuzhou 412008, P. R. China
| | - Zhongchi Wen
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Zixuan Xiong
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Zhan Liao
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Yihe Hu
- Department of Orthopeadics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 311121, P. R. China
| |
Collapse
|
14
|
Mei Y, Yu K, Yazdani-Ahmadabadi H, Lange D, Kizhakkedathu JN. Hydrophilic Polymer-Guided Polycatecholamine Assembly and Surface Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39577-39590. [PMID: 35975924 DOI: 10.1021/acsami.2c10749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mussel-inspired surface chemistry based on polycatecholamines and polyphenols has been widely applied as a facile and universal method for modifying surfaces. Specifically, the catecholamine-assisted codeposition as a one-step strategy is a versatile strategy used to impart surface functionalities. Despite successful incorporation of numerous functional agents, very little understanding has emerged over the years regarding the mechanism behind their coassembly and codeposition. Here, we employed six different ultrahigh molecular weight hydrophilic polymers of diverse chemistry and architecture and three catecholamines and a polyphenol for investigating the coassembly and codeposition process. The chemistry of the polymers is found to influence the strength of the interaction between the polycatecholamine and the hydrophilic polymers, thus playing an important role in the aqueous self-assembly in solution to nanoaggregates, its formation kinetics, steric stabilization, and surface deposition. Additionally, the codeposition method was used as a platform for developing antifouling and antibiofilm coatings and evaluating their efficiency. Both the chemistry of hydrophilic polymers and the type of the catecholamine influence the antibiofilm properties of the coating. Our studies demonstrated that significant opportunities exist to further define the surface coating process and polycatecholamine self-assembly process by altering the polycatecholamine-hydrophilic polymer interactions.
Collapse
Affiliation(s)
- Yan Mei
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kai Yu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Dirk Lange
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
15
|
Browne K, Kuppusamy R, Chen R, Willcox MDP, Walsh WR, Black DS, Kumar N. Bioinspired Polydopamine Coatings Facilitate Attachment of Antimicrobial Peptidomimetics with Broad-Spectrum Antibacterial Activity. Int J Mol Sci 2022; 23:ijms23062952. [PMID: 35328373 PMCID: PMC8948759 DOI: 10.3390/ijms23062952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/14/2023] Open
Abstract
The prevention and treatment of biofilm-mediated infections remains an unmet clinical need for medical devices. With the increasing prevalence of antibiotic-resistant infections, it is important that novel approaches are developed to prevent biofilms forming on implantable medical devices. This study presents a versatile and simple polydopamine surface coating technique for medical devices, using a new class of antibiotics—antimicrobial peptidomimetics. Their unique mechanism of action primes them for activity against antibiotic-resistant bacteria and makes them suitable for covalent attachment to medical devices. This study assesses the anti-biofilm activity of peptidomimetics, characterises the surface chemistry of peptidomimetic coatings, quantifies the antibacterial activity of coated surfaces and assesses the biocompatibility of these coated materials. X-ray photoelectron spectroscopy and water contact angle measurements were used to confirm the chemical modification of coated surfaces. The antibacterial activity of surfaces was quantified for S. aureus, E. coli and P. aeruginosa, with all peptidomimetic coatings showing the complete eradication of S. aureus on surfaces and variable activity for Gram-negative bacteria. Scanning electron microscopy confirmed the membrane disruption mechanism of peptidomimetic coatings against E. coli. Furthermore, peptidomimetic surfaces did not lyse red blood cells, which suggests these surfaces may be biocompatible with biological fluids such as blood. Overall, this study provides a simple and effective antibacterial coating strategy that can be applied to biomaterials to reduce biofilm-mediated infections.
Collapse
Affiliation(s)
- Katrina Browne
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia;
| | - Rajesh Kuppusamy
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia;
| | - Renxun Chen
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia;
| | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia;
| | - David StC. Black
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
- Correspondence: (D.S.B.); (N.K.); Tel.: +61-2-9385-4657 (D.S.B.); +61-2-9385-4698 (N.K.)
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
- Correspondence: (D.S.B.); (N.K.); Tel.: +61-2-9385-4657 (D.S.B.); +61-2-9385-4698 (N.K.)
| |
Collapse
|
16
|
Mu G, Genzer J, Gorman CB. Degradable Anti-Biofouling Polyester Coatings with Controllable Lifetimes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1488-1496. [PMID: 35050633 DOI: 10.1021/acs.langmuir.1c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To achieve degradable, anti-biofouling coatings with longer lifetimes and better mechanical properties, we synthesized a series of degradable co-polyesters composed of cyclic ketene acetals, di-(ethylene glycol) methyl ether methacrylate, and a photoactive curing agent, 4-benzoylphenyl methacrylate, using a radical ring-opening polymerization. The precursor co-polyesters were spin-coated on a benzophenone-functionalized silicon wafer to form ca. 60 nm films and drop-casted on glass to form ∼32 μm films. The copolymers were cross-linked via UV irradiation at 365 nm. The degradation of films was studied by immersing the specimens in aqueous buffers of different pH values. The results show that both the pH of buffer solutions and gel fractions of networks affect the degradation rate. The coatings show good bovine serum albumin resistance capability. By adjusting the fractions of monomers, the degradation rate and degree of hydration (e.g., swelling ratio) are controllable.
Collapse
Affiliation(s)
- Gaoyan Mu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Christopher B Gorman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
17
|
Etayash H, Hancock REW. Host Defense Peptide-Mimicking Polymers and Polymeric-Brush-Tethered Host Defense Peptides: Recent Developments, Limitations, and Potential Success. Pharmaceutics 2021; 13:1820. [PMID: 34834239 PMCID: PMC8621177 DOI: 10.3390/pharmaceutics13111820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Amphiphilic antimicrobial polymers have attracted considerable interest as structural mimics of host defense peptides (HDPs) that provide a broad spectrum of activity and do not induce bacterial-drug resistance. Likewise, surface engineered polymeric-brush-tethered HDP is considered a promising coating strategy that prevents infections and endows implantable materials and medical devices with antifouling and antibacterial properties. While each strategy takes a different approach, both aim to circumvent limitations of HDPs, enhance physicochemical properties, therapeutic performance, and enable solutions to unmet therapeutic needs. In this review, we discuss the recent advances in each approach, spotlight the fundamental principles, describe current developments with examples, discuss benefits and limitations, and highlight potential success. The review intends to summarize our knowledge in this research area and stimulate further work on antimicrobial polymers and functionalized polymeric biomaterials as strategies to fight infectious diseases.
Collapse
Affiliation(s)
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|