1
|
Chen S, Fu X, Li G, Bi C, Wu X. Salvinia-Effect-Inspired Magneto-Responsive Superhydrophobic Surfaces with Cluster-Distributed Microcilia Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7741-7751. [PMID: 40074538 DOI: 10.1021/acs.langmuir.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Inspired by the "Salvinia effect", a novel method for fabricating a magneto-responsive superhydrophobic surface coated with a cluster-distributed cilia array (CC-MRSS) was reported. This surface features a magnetically self-assembled nonuniform microcilia array and demonstrates exceptional microdroplet hydrophobicity, magnetic-responsive wettability, and corrosion resistance. The fabrication process involved mixing polydimethylsiloxane (PDMS) and carbonyl iron powders (CIPs), followed by dividing the mixture into two parts. The first part was poured into a 3D-printed female mold to form an elastic substrate with a hemispherical array. The second part was sprayed onto the substrate by using the air spray method. When an external magnetic field was applied during curing, a dense microcilia array self-assembled on the hemispheres of the substrate. As a result, the CC-MRSS, with a two-level composite microstructure, was successfully prepared. Contact angle tests showed a static contact angle of 157.0° for an 8 μL water droplet. Multiple samples were tested for controllable hydrophobicity by varying the spraying volume and CIP weight fraction. The relationship between wettability and the external magnetic field was analyzed, and a magneto-elastic coupling theory was developed to explain the contact angle variation. An optimal parameter scheme was proposed to achieve the maximum magneto-responsive contact angle range. The optimized CC-MRSS can switch between a low-hydrophobic state (118.2°) and a superhydrophobic state (151.5°) upon magnetic field switching, with high repeatability over ten cycles. Notably, the Salvinia-inspired CC-MRSS maintains an air film underwater, just like the Salvinia leaf, reducing surface-solution contact and offering superior corrosion resistance over other magnetic ciliary array surface materials.
Collapse
Affiliation(s)
- Shiwei Chen
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaojiao Fu
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Guichuan Li
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Changfu Bi
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xuan Wu
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Robotics Laboratory, China Nanhu Academy of Electronics and Information Technology, Jiaxing, Jiangsu 314001, China
| |
Collapse
|
2
|
Huang LZY, Penman R, Kariuki R, Vaillant PHA, Gharehgozlo S, Shaw ZL, Truong VK, Vongsvivut J, Elbourne A, Caruso RA. Graveyard effects of antimicrobial nanostructured titanium over prolonged exposure to drug resistant bacteria and fungi. NANOSCALE 2025; 17:3170-3188. [PMID: 39713977 DOI: 10.1039/d4nr03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Innovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant Staphylococcus aureus and Candida albicans. Two surface types - unmodified titanium and nanostructured titanium - were incubated in a suspension of each microbial strain for 1 day and 7 days. Surface topography and cross-sectional information of the microbial cells adhered to the surfaces, along with biomass volume and live/dead rate, showed that while nanostructured titanium was able to kill microbes after 1 day of exposure, after 7 days, the rate of death becomes negligible when compared to the unmodified titanium. This suggests that as biofilms mature on a nanostructured surface, the cells that have lysed conceal the nanostructures and prime the surface for planktonic cells to adhere, decreasing the possibility of structure-induced lysis. Synchrotron macro-attenuated total reflection Fourier transform infrared (macro ATR-FTIR) micro-spectroscopy was used to elucidate the biochemical changes occurring following exposure to differing surface texture and incubation duration, providing further understanding into the effects of surface morphology on the biochemical molecules (lipids, proteins and polysaccharides) in an evolving and growing microbial colony.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rowan Penman
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rashad Kariuki
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Pierre H A Vaillant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Soroosh Gharehgozlo
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Vi Khanh Truong
- Healthcare Engineering Innovation Group, Department of Biomedical Engineering & Biotechnology, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rachel A Caruso
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
3
|
Li H, Wang C, Shi H. Development of endolysin-integrated pH-responsive antiadhesive and antibacterial coatings with nanorods for the prevention of cross-contamination in fresh produce. Food Res Int 2025; 202:115762. [PMID: 39967075 DOI: 10.1016/j.foodres.2025.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Cross-contamination is a major food safety risk during the harvesting and processing of fresh produce, leading to significant losses in global human well-being and the economy. The surface of food contact areas is a high-risk zone for cross-contamination. Therefore, developing an effective antimicrobial coating for food-contact surfaces is essential. This study developed a smart antimicrobial coating that self-regulated in response to environmental conditions, via grafting the stimuli-responsive polymer polyacrylic acid (PAA) and the phage-derived endolysin Lysin81 onto ZnO nanocolumns. During the initial stage of bacterial adhesion, the surface of the nanocolumns exhibited significant mechanical bactericidal activity, while the super hydrophilic PAA layer effectively inhibited bacterial adhesion. At a later stage, when numerous live and dead bacteria adhered to the surface of the nanocolumns, the PAA chains disintegrated, exposing the underlying layer of endolysin that lysed the compromised bacteria. In addition, as the environmental pH increases, the attached dead bacteria can be released once the PAA chains regain their hydrophilicity. This research aimed to apply the antibacterial coating to stainless steel surfaces used in food processing, potentially enhancing surface hygiene and preventing cross-contamination of fresh produce.
Collapse
Affiliation(s)
- Hexue Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Cui Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Li HL, Wang F, Zhang RG, Guo ML, Wang YZ, Song F. Ex Situ pH-Induced Reversible Wettability Switching for an Environmentally Robust and High-Efficiency Stain-Proof Coating. SMALL METHODS 2024:e2401621. [PMID: 39722168 DOI: 10.1002/smtd.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Developing superwetting coatings with environmental adaptability is critical for sustainable industrial applications. However, traditional anti-wetting coatings often fall short due to their susceptibility to environmental factors (UV light, temperature, mold growth, and abrasion) and inadequate stain resistance in complex media. Herein, a durable ex situ pH-responsive coating with reversible wettability switching, engineered by integrating hydrophobic polydimethylsiloxane and tertiary amine structures is presented. The resulting hierarchical micro-nano surface structure, combined with a trapped air cushion, ensures low water adhesion and stable superhydrophobicity. Notably, after ex situ pH treatment, the modulation of surface N+ content synergistically interacts with polydimethylsiloxane chains, enabling a controlled transition in surface wettability from 150° to 68.5°, which can spontaneously revert to a hydrophobic state upon heating and drying. This transition enhances stain resistance in both air and underwater environments, resulting in a 17.2% increase in detergency compared to superhydrophobic controls. Moreover, the coating demonstrates remarkable durability, with no staining, peeling, or mildew growth (grade 0) even after 1500 h of UV radiation and 28 days of mildew resistance testing. This work offers a highly adaptable and stain-resistant coating for applications in building and infrastructure protection, as well as in smart textiles designed for multi-media decontamination.
Collapse
Affiliation(s)
- Hang-Lin Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fang Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Rong-Gang Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Mei-Lin Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Guan J, Wang J, Jia F, Jiang W, Song L, Xie L, Yang H, Han P, Lin H, Wu Z, Zhang X, Huang Y. Layer-by-layer self-assembly coatings on strontium titanate nanotubes with antimicrobial and anti-inflammatory properties to prevent implant-related infections. Colloids Surf B Biointerfaces 2024; 244:114183. [PMID: 39208607 DOI: 10.1016/j.colsurfb.2024.114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
One way to effectively address endophyte infection and loosening is the creation of multifunctional coatings that combine anti-inflammatory, antibacterial, and vascularized osteogenesis. This study started with the preparation of strontium-doped titanium dioxide nanotubes (STN) on the titanium surface. Next, tannic acid (TA), gentamicin sulfate (GS), and pluronic F127 (PF127) were successfully loaded into the STN via layer-by-layer self-assembly, resulting in the STN@TA-GS/PF composite coatings. The findings demonstrated the excellent hydrophilicity and bioactivity of the STN@TA-GS/PF coating. STN@TA-GS/PF inhibited E. coli and S. aureus in vitro to a degree of roughly 80.95 % and 92.45 %, respectively. Cellular investigations revealed that on the STN@TA-GS/PF surface, the immune-system-related RAW264.7, the vasculogenic HUVEC, and the osteogenic MC3T3-E1 showed good adhesion and proliferation activities. STN@TA-GS/PF may influence RAW264.7 polarization toward the M2-type and encourage MC3T3-E1 differentiation toward osteogenesis at the molecular level. Meanwhile, the STN@TA-GS/PF coating achieved effective removal of ROS within HUVEC and significantly promoted angiogenesis. In both infected and non-infected bone defect models, the STN@TA-GS/PF material demonstrated strong anti-inflammatory, antibacterial, and vascularization-promoting osteogenesis properties. In addition, STN@TA-GS/PF had good hemocompatibility and biosafety. The three-step process used in this study to modify the titanium surface for several purposes gave rise to a novel concept for the clinical design of antimicrobial coatings with immunomodulatory properties.
Collapse
Affiliation(s)
- Jiaxin Guan
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Jiali Wang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Fengzhen Jia
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Wenjing Jiang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Lili Song
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Pengde Han
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Zongze Wu
- Shenzhen Yakin Biotechnology Co., Shenzhen 518000, China.
| | - Xuejiao Zhang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China.
| | - Yong Huang
- College of Lab Medicine, Life Science Research Centre, Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
6
|
Teng X, Yao C, McCoy CP, Zhang S. Comparison of Superhydrophilic, Liquid-Like, Liquid-Infused, and Superhydrophobic Surfaces in Preventing Catheter-Associated Urinary Tract Infection and Encrustation. ACS Biomater Sci Eng 2024; 10:1162-1172. [PMID: 38183269 PMCID: PMC10865292 DOI: 10.1021/acsbiomaterials.3c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Over the past decade, superhydrophilic zwitterionic surfaces, slippery liquid-infused porous surfaces, covalently attached liquid-like surfaces, and superhydrophobic surfaces have emerged as the most promising strategies to prevent biofouling on biomedical devices. Despite working through different mechanisms, they have demonstrated superior efficacy in preventing the adhesion of biomolecules (e.g., proteins and bacteria) compared with conventional material surfaces. However, their potential in combating catheter-associated urinary tract infection (CAUTI) remains uncertain. In this research, we present the fabrication of these four coatings for urinary catheters and conduct a comparative assessment of their antifouling properties through a stepwise approach. Notably, the superhydrophilic zwitterionic coating demonstrated the highest antifouling activity, reducing 72.3% of fibrinogen deposition and over 75% of bacterial adhesion (Escherichia coli and Staphylococcus aureus) when compared with an uncoated polyvinyl chloride (PVC) surface. The zwitterionic coating also exhibited robust repellence against blood and improved surface lubricity, decreasing the dynamic coefficient of friction from 0.63 to 0.35 as compared with the PVC surface. Despite the fact that the superhydrophilic zwitterionic and hydrophobic liquid-like surfaces showed great promise in retarding crystalline biofilm formation in the presence of Proteus mirabilis, it is worth noting that their long-term antifouling efficacy may be compromised by the proliferation and migration of colonized bacteria as they are unable to kill them or inhibit their swarming. These findings underscore both the potential and limitations of these ultralow fouling materials as urinary catheter coatings for preventing CAUTI.
Collapse
Affiliation(s)
- Xiao Teng
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Chenghao Yao
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Colin P. McCoy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Shuai Zhang
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| |
Collapse
|
7
|
Zhang R, Liu W, Luan Z, Xia Y, Wang Y, Hu X, Duraihem FZ, Xu X. Effects of the Electric Double Layer Characteristic and Electroosmotic Regulation on the Tribological Performance of Water-Based Cutting Fluids. MICROMACHINES 2023; 14:2029. [PMID: 38004886 PMCID: PMC10673424 DOI: 10.3390/mi14112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
The electroosmosis effect is a complement to the theory of the traditional capillary penetration of cutting fluid. In this study, based on the electric double layer (EDL) characteristics at friction material/solution interfaces, the influences of additives and their concentrations on capillary electroosmosis were investigated, and a water-based cutting-fluid formulation with consideration to the electroosmosis effect was developed. The lubrication performance levels of cutting fluids were investigated by a four-ball tribometer. The results show that the EDL is compressed with increasing ionic concentration, which suppresses the electroosmotic flow (EOF). The specific adsorption of OH- ions or the dissociation of surface groups is promoted as pH rises, increasing the absolute zeta potential and EOF. The polyethylene glycol (PEG) additive adsorbed to the friction material surface can keep the shear plane away from the solid surface, reducing the absolute zeta potential and EOF. The electroosmotic performance of cutting fluid can be improved by compounding additives with different electroosmotic performance functions. Furthermore, electroosmotic regulators can adjust the zeta potential by the electrostatic adsorption mechanism, affecting the penetration performance of cutting fluid in the capillary zone at the friction interface. The improvement in the tribological performance of cutting fluid developed with consideration given to the electroosmosis effect is attributed to the enhancement of the penetration ability of the cutting fluid and the formation of more abundant amounts of lubricating film at the interface.
Collapse
Affiliation(s)
- Ruochong Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; (R.Z.); (W.L.); (Z.L.); (Y.X.); (Y.W.); (X.H.)
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Wenshuai Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; (R.Z.); (W.L.); (Z.L.); (Y.X.); (Y.W.); (X.H.)
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhiqiang Luan
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; (R.Z.); (W.L.); (Z.L.); (Y.X.); (Y.W.); (X.H.)
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yu Xia
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; (R.Z.); (W.L.); (Z.L.); (Y.X.); (Y.W.); (X.H.)
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ying Wang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; (R.Z.); (W.L.); (Z.L.); (Y.X.); (Y.W.); (X.H.)
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaodong Hu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; (R.Z.); (W.L.); (Z.L.); (Y.X.); (Y.W.); (X.H.)
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| | - Faisal Z. Duraihem
- Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Xuefeng Xu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China; (R.Z.); (W.L.); (Z.L.); (Y.X.); (Y.W.); (X.H.)
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
8
|
Wang S, Liu Z, Wang L, Xu J, Mo R, Jiang Y, Wen C, Zhang Z, Ren L. Superhydrophobic Mechano-Bactericidal Surface with Photodynamic Antibacterial Capability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:723-735. [PMID: 36573916 DOI: 10.1021/acsami.2c21310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial invasion and proliferation on various surfaces pose a serious threat to public health worldwide. Conventional antibacterial strategies that mainly rely on bactericides exhibit high bacteria-killing efficiency but might trigger the well-known risk of antibiotic resistance. Here, we report a superhydrophobic mechano-bactericidal surface with photodynamically enhanced antibacterial capability. First, bioinspired nanopillars with polycarbonate as the bulk material were replicated from anodized alumina oxide templates via a simple hot-pressing molding method. Subsequently, a facile bovine serum albumin phase-transition method was used to introduce chlorin e6 onto the nanopillar-patterned surface, which was then perfluorinated to render the surface superhydrophobic. Benefiting from its strong liquid super-repellency and photodynamically enhanced mechano-bactericidal properties, the superhydrophobic nanopillar-patterned surface exhibits 100% antibacterial efficiency after 30 min visible light irradiation (650 nm, 20 mW cm-2). More strikingly, the surface exhibited impressive long-lasting antimicrobial performance, maintaining a very high bactericidal efficiency (≥99%) even after 10 cycles of bacterial contamination tests. Also, the superhydrophobic nanopillar-patterned surface displays good hemocompatibility with a much lower than the 5% hemolysis rate. Overall, this work offers a new method for significantly enhancing the antibacterial efficiency of structural antimicrobial surfaces without involving any bactericidal agents, and this functional surface shows great potential in the field of advanced medical materials and hospital surfaces.
Collapse
Affiliation(s)
- Shujin Wang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
- College of Chemistry, Jilin University, Changchun130022, China
| | - Ziting Liu
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Li Wang
- College of Chemistry, Jilin University, Changchun130022, China
| | - Jianing Xu
- College of Chemistry, Jilin University, Changchun130022, China
| | - Ru Mo
- Jilin Province People's Hospital, Changchun130021, China
| | - Yue Jiang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria3001, Australia
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| |
Collapse
|
9
|
Mérai L, Deák Á, Dékány I, Janovák L. Fundamentals and utilization of solid/ liquid phase boundary interactions on functional surfaces. Adv Colloid Interface Sci 2022; 303:102657. [PMID: 35364433 DOI: 10.1016/j.cis.2022.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
The affinity of macroscopic solid surfaces or dispersed nano- and bioparticles towards liquids plays a key role in many areas from fluid transport to interactions of the cells with phase boundaries. Forces between solid interfaces in water become especially important when the surface texture or particles are in the colloidal size range. Although, solid-liquid interactions are still prioritized subjects of materials science and therefore are extensively studied, the related literature still lacks in conclusive approaches, which involve as much information on fundamental aspects as on recent experimental findings related to influencing the wetting and other wetting-related properties and applications of different surfaces. The aim of this review is to fill this gap by shedding light on the mechanism-of-action and design principles of different, state-of-the-art functional macroscopic surfaces, ranging from self-cleaning, photoreactive or antimicrobial coatings to emulsion separation membranes, as these surfaces are gaining distinguished attention during the ongoing global environmental and epidemic crises. As there are increasing numbers of examples for stimulus-responsive surfaces and their interactions with liquids in the literature, as well, this overview also covers different external stimulus-responsive systems, regarding their mechanistic principles and application possibilities.
Collapse
|