1
|
Jiang D, Tan VGW, Gong Y, Shao H, Mu X, Luo Z, He S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025. [PMID: 40366230 DOI: 10.1021/acs.chemrev.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Semiconductors form the foundational bedrock of modern electronics and numerous cutting-edge technologies. Particularly, semiconductors crafted from organic building blocks hold immense promise as next-generation pioneers, thanks to their vast array of chemical structures, customizable frontier orbital energy levels and bandgap structures, and easily adjustable π electronic properties. Over the past 50 years, advancements in chemistry and materials science have facilitated extensive investigations into small organic π compounds, oligomers, and polymers, resulting in a rich library of organic semiconductors. However, a longstanding challenge persists: how to organize π building units or chains into well-defined π structures, which are crucial for the performance of organic semiconductors. Consequently, the pursuit of methodologies capable of synthesizing and/or fabricating organic semiconductors with ordered structures has emerged as a frontier in organic and polymeric semiconductor research. In this context, covalent organic frameworks (COFs) stand out as unique platforms allowing for the covalent integration of organic π units into periodically ordered π structures, thus facilitating the development of semiconductors with extended yet precisely defined π architectures. Since their initial report in 2008, significant strides have been made in exploring various chemistries to develop semiconducting COFs, resulting in a rich library of structures, properties, functions, and applications. This review provides a comprehensive yet focused exploration of the general structural features of semiconducting COFs, outlining the basic principles of structural design, illustrating the linkage chemistry and synthetic strategies based on typical one-pot polymerization reactions to demonstrate the growth of bulk materials, nanosheets, films, and membranes. By elucidating the interactions between COFs and various entities such as photons, phonons, electrons, holes, ions, molecules, and spins, this review categorizes semiconducting COFs into nine distinct sections: semiconductors, photoconductors, light emitters, sensors, photocatalysts, photothermal conversion materials, electrocatalysts, energy storage electrodes, and radical spin materials, focusing on disclosing structure-originated properties and functions. Furthermore, this review scrutinizes structure-function correlations and highlights the unique features, breakthroughs, and challenges associated with semiconducting COFs. Furnished with foundational knowledges and state-of-the-art insights, this review predicts the fundamental issues to be addressed and outlines future directions for semiconducting COFs, offering a comprehensive overview of this rapidly evolving and remarkable field.
Collapse
Affiliation(s)
- Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Guan Wu Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haipei Shao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyu Mu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhangliang Luo
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuyue He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Wang Y, Zhang F, Zhang K, Zhu G, Gu XK, Lang X. Linkage Engineering of Triazine-Based Covalent Organic Frameworks for Selective Photocatalytic Oxidation of Amines. Chemistry 2025:e202501177. [PMID: 40344174 DOI: 10.1002/chem.202501177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/11/2025]
Abstract
Covalent organic frameworks (COFs) have garnered significant attention as versatile photocatalysts due to their tunable structure and activity. In this work, linkage engineering is applied to two triazine-based COFs, yielding TFPT-sp2c-COF, with a C═C linkage and TFPT-IM-COF, with a C═N linkage. TFPT-sp2c-COF exhibits better thermal stability and a significantly higher specific surface area than TFPT-IM-COF. More importantly, the C═C linkage in TFPT-sp2c-COF leads to better optoelectronic properties than the C═N linkage in TFPT-IM-COF, as it promotes efficient charge separation and transfer and π-delocalization, as evidenced by experiments and density functional theory calculations. Consequently, TFPT-sp2c-COF demonstrates higher activities than TFPT-IM-COF for selective photocatalytic oxidation of amines. Notably, a diverse range of amines achieve high conversions to corresponding imines with high selectivities. Superoxide, generated through photoexcited electron transfer to O2, is identified as the predominant reactive oxygen species. This work underscores the pivotal role of linkage engineering in optimizing COFs for selective reactions.
Collapse
Affiliation(s)
- Yuexin Wang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Keke Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guoqing Zhu
- No.1 Geological Team of Shandong Provincial Bureau of Geology and Mineral Resources, Jinan, 250014, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Mohit, Verma K, Das A, Thomas KRJ. Highly Conjugated Imine-Linked Donor-Acceptor Covalent Organic Framework for Efficient HCl Sensing and Photocatalytic Oxidation of Benzylamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9800-9809. [PMID: 40202495 DOI: 10.1021/acs.langmuir.5c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Covalent organic frameworks (COFs) show potential as photocatalysts for harnessing solar energy, primarily because of their adjustable band gap, which enhances their ability to harvest light energy. However, their efficiency as photocatalysts is frequently hampered by inadequate charge transfer and fast charge recombination. In this work, we integrated a donor-acceptor pair into the 2D COF material to enhance charge transfer and reduce charge recombination, thereby improving the overall photoactivity. The 2D COF (OML-4) was synthesized through the polycondensation of a 4',4‴,4‴″,4‴‴'-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-4-carbaldehyde)) (ETBC) linker serving as the donor and a 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT) linker acting as the acceptor. This imine-linked 2D COF (OML-4) material shows photocatalytic activity toward benzylic amine oxidation in the presence of visible light for the formation of aldehyde molecules in an aqueous medium. This COF was also investigated for HCl gas sensing behavior based on the protonation of the imine linkage and triazine unit present in the COF material. This exhibits exceptionally good sensitivity up to the ppm level and naked eye detection of HCl by changing in color from yellow to red and turning back to yellow in ammonia vapor, showing the reversible and recyclable nature of the COF.
Collapse
Affiliation(s)
- Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kamal Verma
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
4
|
Huang H, Yang Q, Yao K, Geng W, Jing X. Visible-light harvesting 2D copper-cluster-based MOFs as efficient ROS generators for selective oxidation of amines. Dalton Trans 2025; 54:6015-6019. [PMID: 40126519 DOI: 10.1039/d5dt00120j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
We have designed and synthesized an aesthetically appealing two-dimensional copper-cluster-based organic framework material named Cu-BPYC. This material exhibits superior charge separation and transfer efficiency, as well as reactive oxygen species (ROS) generation capability under visible-light irradiation. Through the synergistic mechanisms of photo-induced energy and charge transfer, it effectively promotes the oxidation of amines to imines. Additionally, Cu-BPYC demonstrates excellent structural stability and reusability in heterogeneous catalytic systems.
Collapse
Affiliation(s)
- Huilin Huang
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Qiong Yang
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Kun Yao
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Wenchao Geng
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
5
|
Li Y, Wang Z, Jiang Y, Wu C, Sun C, Zhang Q, Zhang C, Fei H. Precise Single-Atom Modification of Hybrid Lead Chlorides for Electron Donor-Acceptor Effect and Enhanced Photocatalytic Aerobic Oxidation. Angew Chem Int Ed Engl 2025; 64:e202415896. [PMID: 39450503 DOI: 10.1002/anie.202415896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Hybrid lead halides show significant potential in photocatalysis due to their excellent photophysical properties, but the atomically precise modification of their organic component to achieve synergistic interactions with the lead halide units remains a great challenge. Herein, for the first time, we have employed the crystal engineering strategy to construct a class of single-atom-substituted hybrid lead halides with electron donor-acceptor (D-A) effect. The lead halide frameworks consist of 1D linear [PbCl]+ chains as inorganic building units and benzoxadiazole/benzothiadiazole/ benzoselenadiazole-funtionalized dicarboxylates as linkers. The covalent bonding between the organic ligands with electron-withdrawing groups and the electron-rich lead halide units not only facilitate the charge separation, but also enhance structural robustness that is critical for photocatalysis. The D-A structured lead halides serve as highly efficient heterogeneous photooxidation catalysts, including aerobic oxidation of C(sp3)-H bonds, oxidative coupling of primary amines, oxidation of phenylboronic acids and selective oxidation of sulfides that are demonstrated in 30 examples. Importantly, these photooxidation reactions are able to be driven by natural sunlight and ambient air to afford quantitative yields. Moreover, our lead halide photocatalysts are successful to fix into a photocatalytic flow system, which enables the flow-type synthesis of high value-added photooxidation products on a gram scale.
Collapse
Affiliation(s)
- Yukong Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Ziyi Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yilin Jiang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chao Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chen Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chi Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
6
|
Gordo‐Lozano M, Martínez‐Fernández M, Paitandi RP, Martínez JI, Segura JL, Seki S. Boosting Photoconductivity by Increasing the Structural Complexity of Multivariate Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406211. [PMID: 39564700 PMCID: PMC11753490 DOI: 10.1002/smll.202406211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/18/2024] [Indexed: 11/21/2024]
Abstract
The assessment of the photoconductivity of Donor-Acceptor (D-A) ordered bulk heterojunctions is gaining attention for the development of innovative organic semiconductors in optoelectronics. Here, the synthesis of pyrene-based (D) Covalent Organic Frameworks, achieve through a multivariate reaction involving two distinct acceptors is reported (A). The products are characterized using powder x-ray diffraction, N2 sorption isotherms, electronic microscopy, and in silico calculations, among other techniques. These characterizations reveal that the multicomponent synthesis enables the modification of properties (e.g., bandgap) of the framework while preserving its structural features, such as crystallinity and porosity. The ordered D-A arrays position these materials as promising candidates for photoconductive semiconductors, particularly regarding the variation in the composition of isotopological frameworks. Photoconductivity experiments demonstrate a volcano-type correlation with respect to the A moiety content, with the optimal value reaching 7.9 × 10-5 cm2 V-1 s-1 for the bare NIP25%-COF. This study illustrates how introducing diverse acceptor units through multivariate synthesis can enhance the photoconductivity of these materials via "defect" engineering, without sacrificing their crystalline or porous characteristics and avoiding the need for de novo synthesis.
Collapse
Affiliation(s)
- Marta Gordo‐Lozano
- Facultad de CC. QuímicasUniversidad Complutense de MadridAvenida Complutense s/nMadrid28040Spain
| | | | | | - José I. Martínez
- Departamento de Sistemas de Baja DimensionalidadInstituto de Ciencia de Materiales de Madrid (ICMM‐CSIC)Madrid28049Spain
| | - José L. Segura
- Facultad de CC. QuímicasUniversidad Complutense de MadridAvenida Complutense s/nMadrid28040Spain
| | - Shu Seki
- Graduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615–8510Japan
| |
Collapse
|
7
|
Kenari M, Maiti S, Ling J, El-Shamy X, Bagga H, Addicoat MA, Milner PJ, Das A. Toward Pore Size-Selective Photoredox Catalysis Using Bifunctional Microporous 2D Triazine-Based Covalent Organic Frameworks. ACS OMEGA 2024; 9:49249-49258. [PMID: 39713692 PMCID: PMC11656359 DOI: 10.1021/acsomega.4c06171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
The design and synthesis of photoactive metal-free 2D materials for selective heterogeneous photoredox catalysis continue to be challenging due to issues related to nonrecyclability, and limited photo- and chemical stability. Herein, we report the photocatalytic properties of a triazine-based porous COF, TRIPTA, which is found to be capable of facilitating both SET (single electron transfer) for photocatalytic reductive debromination of phenacyl bromide in absence of oxygen and generation of reactive oxygen species (ROS) for benzylamine photo-oxidation in the presence of oxygen, respectively, under visible light irradiation. Inspired by the latter results, we further systematically investigated different-sized benzylamine substrates in this single-component reaction and compared the results with an analogous COF (Micro-COF-2) exhibiting a larger pore size. We observed a marked improvement in the conversion of larger-sized substrates with the latter COF, thereby demonstrating angstrom-level pore size-selective photocatalytic activity of COFs.
Collapse
Affiliation(s)
- Melika
Eshaghi Kenari
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Sayan Maiti
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Jianheng Ling
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Xena El-Shamy
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Hiren Bagga
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Matthew A. Addicoat
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United
Kingdom
| | - Phillip J. Milner
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Anindita Das
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
8
|
Hao J, Tang Y, Qu J, Cai Y, Yang X, Hu J. Robust Covalent Organic Frameworks for Photosynthesis of H 2O 2: Advancements, Challenges and Strategies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404139. [PMID: 38970540 DOI: 10.1002/smll.202404139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Since 2020, covalent organic frameworks (COFs) are emerging as robust catalysts for the photosynthesis of hydrogen peroxide (H2O2), benefiting from their distinct advantages. However, the current efficiency of H2O2 production and solar-to-chemical energy conversion efficiency (SCC) remain suboptimal due to various constraints in the reaction mechanism. Therefore, there is an imperative to propose efficiency improvement strategies to accelerate the development of this reaction system. This comprehensive review delineates recent advances, challenges, and strategies in utilizing COFs for photocatalytic H2O2 production. It explores the fundamentals and challenges (e.g., oxygen (O2) mass transfer rate, O2 adsorption capacity, response to sunlight, electron-hole separation efficiency, charge transfer efficiency, selectivity, and H2O2 desorption) associated with this process, as well as the advantages, applications, classification, and preparation strategies of COFs for this purpose. Various strategies to enhance the performance of COFs in H2O2 production are highlighted. The review aims to stimulate further advancements in utilizing COFs for photocatalytic H2O2 production and discusses potential prospects, challenges, and application areas in this field.
Collapse
Affiliation(s)
- Jiehui Hao
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanqi Tang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Zhang K, Zhang F, Huang F, Xiong K, Zeng B, Lang X. Orientation-Dependent Photocatalysis of Imine-Linked Covalent Organic Frameworks Based on Thienothiophenes for Oxidation of Amines to Imines. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52455-52465. [PMID: 39288029 DOI: 10.1021/acsami.4c11616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Toward visible light photocatalysis, covalent organic frameworks (COFs) have recently garnered growing attention. The effect of different orientations of imine of imine-linked COFs on photocatalysis should be elucidated. Here, two COFs are developed with 2,5-diphenylthieno[3,2-b]thiophene (DPTT) and 1,3,6,8-tetraphenylpyrene (Py) linked by imine, affording DPTT-Py-COF and Py-DPTT-COF, respectively. Distinctly, DPTT-Py-COF and Py-DPTT-COF have high crystallinity and porosity, paving the way to highly efficient photocatalysis. Theoretical calculations demonstrate that both DPTT-Py-COF and Py-DPTT-COF are of similar bandgaps but of varied energy positions due to the different orientations of imine. Besides, characterizations disclose that DPTT-Py-COF delivers more enhanced charge separation and transfer than Py-DPTT-COF. Probed by the oxidation of amine to imine, DPTT-Py-COF exhibits a blue light photocatalytic performance superior to that of Py-DPTT-COF. DPTT-Py-COF, a highly recyclable photocatalyst, enables the oxidation of various amines to imines with oxygen. This work highlights that tuning the microenvironment of COFs unravels tenable performances in photocatalysis.
Collapse
Affiliation(s)
- Keke Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fengwei Huang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kanghui Xiong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bing Zeng
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Li XT, Li MJ, Tian YL, Han SL, Cai L, Ma HC, Zhao YQ, Chen GJ, Dong YB. A reversible photochromic covalent organic framework. Nat Commun 2024; 15:8484. [PMID: 39353931 PMCID: PMC11448497 DOI: 10.1038/s41467-024-52788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Covalent organic frameworks are a type of crystalline porous materials that linked through covalent bond, and they have numerous potential applications in adsorption, separation, catalysis, and more. However, there are rarely relevant reported on photochromism. Fortunately, a hydrazone-linked DBTB-DETH-COF is rapidly generated through ultrasound method. The DBTB-DETH-COF is found to exhibit reversible photochromism (at least 50 cycles) from yellow to olive in the presence of light and air, and subsequently back to the original color upon heating. In addition, the structure of DBTB-DETH-COF remains unchanged after 15 days of light illumination. Furthermore, the reason of photochromic process is discussed by electron paramagnetic resonance, X-ray photoelectron spectroscopy, electrochemistry characterizations and transient absorption measurements. The reversible photochromic DBTB-DETH-COF can be used as anti-counterfeiting ink and optical switch in the presence of air. This work expands a stable organic photochromic material and broadens the applications of COFs.
Collapse
Affiliation(s)
- Xue-Tian Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Meng-Jing Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yuan-Liang Tian
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Shu-Lin Han
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui-Chao Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ying-Qiang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Gong-Jun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
11
|
Zhu A, Niu S, Zhao N, Zhang Z, Xie W. Modulating Copper Ladder Spacing in Copper Phenylacetylide for Enhanced Photocatalysis via Substituent Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50870-50878. [PMID: 39269917 DOI: 10.1021/acsami.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Copper phenylacetylide (PACu) is a promising photocatalyst due to its unique copper ladder (CL) electron transport channel, which facilitates efficient charge transfer. However, the structure-activity relationship between the CL spacing and its catalytic performance has yet to be revealed. In this study, we skillfully selected multiple substituents to regulate the CL spacing of the PACu photocatalyst. Our findings indicate that reducing the CL spacing significantly enhances carrier separation and transport efficiency, leading to improved oxygen adsorption and activation. Specifically, PACu-F demonstrated superior photocatalytic activity, achieving a 99% conversion rate in benzylamine oxidation and maintaining an excellent stability over multiple cycles. This study confirms the feasibility of tuning the CL spacing in PACu using donor/acceptor substituents to achieve a high-efficiency photocatalytic performance, offering crucial insights into the rational design of advanced photocatalysts.
Collapse
Affiliation(s)
- Aonan Zhu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shu Niu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ning Zhao
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhao Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
12
|
Zhai H, Wei Z, Jing X, Duan C. A Porphyrin-Faced Zn 8L 6 Cage for Selective Oxidation of C(sp 3)-H Bonds and Sulfides. Inorg Chem 2024; 63:14375-14382. [PMID: 39038208 DOI: 10.1021/acs.inorgchem.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Catalytic oxidation of benzyl C-H bonds and sulfides from fuel oils stands as an attractive proposition in the quest for clean energy, yet their simultaneous oxidation with a singular, economically friendly catalyst is not well established. In this work, the combination of a cobalt(II) porphyrin ligand with 2-pyridinecarboxaldehyde and ZnII yielded a Zn8L6 cage (Co cube). The three-dimensional conjugated structure effectively enhances energy transfer efficiency, enabling the Co cube to show a good ability to activate oxygen under light conditions for photooxidation. Moreover, this catalytic system demonstrates high selectivity for the photocatalytic oxidation of C(sp3)-H bonds and sulfides, employing the Co cube as a single component catalyst, molecular oxygen as the oxidant, and activating oxygen into 1O2 under mild reaction conditions. This provides significant insights for organic synthesis and future design of photocatalysts with complex molecular components.
Collapse
Affiliation(s)
- Haoyu Zhai
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Zhong Wei
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Xu Jing
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Chunying Duan
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
13
|
Che G, Zhao Y, Yang W, Zhou Q, Li X, Pan Q, Su Z. Preparation of a Nanosheeted Uranyl-Organic Framework for Enhanced Photocatalytic Oxidation of Toluene. Inorg Chem 2024; 63:10767-10774. [PMID: 38781222 DOI: 10.1021/acs.inorgchem.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Preparation of ultrathin metal-organic framework (MOF) nanosheets is an effective way to improve the catalytic efficiency of MOF photocatalysts owing to their superiority in reducing the recombination rate of photogenerated electrons and holes and enhancing charge transfer. Herein, a light-sensitive two-dimensional uranyl-organic framework named HNU-68 was synthesized. Due to its interlayer stacking structure, the corresponding ultrathin nanosheets with a thickness of 4.4 nm (HNU-68-N) can be obtained through ultrasonic exfoliation. HNU-68-N exhibited an enhanced ability to selectively oxidize toluene to benzaldehyde, with the value of turnover frequency being approximately three times higher than that of the bulk HNU-68. This enhancement is attributed to the smaller size and interface resistance of the layered HNU-68-N nanosheets, which facilitate more thorough substrate contact and faster charge transfer, leading to an improvement in the photocatalytic efficiency. This work provides a potential candidate for the application of ultrathin uranyl-based nanosheets.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Yixin Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Zhongmin Su
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Fang Y, Liu Y, Huang H, Sun J, Hong J, Zhang F, Wei X, Gao W, Shao M, Guo Y, Tang Q, Liu Y. Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling. Nat Commun 2024; 15:4856. [PMID: 38849337 PMCID: PMC11161580 DOI: 10.1038/s41467-024-49036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Developing highly active materials that efficiently utilize solar spectra is crucial for photocatalysis, but still remains a challenge. Here, we report a new donor-acceptor (D-A) covalent organic framework (COF) with a wide absorption range from 200 nm to 900 nm (ultraviolet-visible-near infrared light). We find that the thiophene functional group is accurately introduced into the electron acceptor units of TpDPP-Py (TpDPP: 5,5'-(2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo [3,4-c]pyrrole-1,4-diyl)bis(thiophene-2-carbaldehyde), Py: 1,3,6,8-tetrakis(4-aminophenyl)pyrene) COFs not only significantly extends its spectral absorption capacity but also endows them with two-photon and three-photon absorption effects, greatly enhancing the utilization rate of sunlight. The selective coupling of benzylamine as the target reactant is used to assess the photocatalytic activity of TpDPP-Py COFs, showing high photocatalytic conversion of 99% and selectivity of 98% in 20 min. Additionally, the TpDPP-Py COFs also exhibit the universality of photocatalytic selective coupling of other imine derivatives with ~100% conversion efficiency. Overall, this work brings a significant strategy for developing COFs with a wide absorption range to enhance photocatalytic activity.
Collapse
Affiliation(s)
- Yuanding Fang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiaxing Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Mingchao Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China.
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
15
|
Kunz S, Barnå F, Urrutia MP, Ingner FJL, Martínez-Topete A, Orthaber A, Gates PJ, Pilarski LT, Dyrager C. Derivatization of 2,1,3-Benzothiadiazole via Regioselective C-H Functionalization and Aryne Reactivity. J Org Chem 2024; 89:6138-6148. [PMID: 38648018 PMCID: PMC11077497 DOI: 10.1021/acs.joc.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Despite growing interest in 2,1,3-benzothiadiazole (BTD) as an integral component of many functional molecules, methods for the functionalization of its benzenoid ring have remained limited, and many even simply decorated BTDs have required de novo synthesis. We show that regioselective Ir-catalyzed C-H borylation allows access to versatile 5-boryl or 4,6-diboryl BTD building blocks, which undergo functionalization at the C4, C5, C6, and C7 positions. The optimization and regioselectivity of C-H borylation are discussed. A broad reaction scope is presented, encompassing ipso substitution at the C-B bond, the first examples of ortho-directed C-H functionalization of BTD, ring closing reactions to generate fused ring systems, as well as the generation and capture reactions of novel BTD-based heteroarynes. The regioselectivity of the latter is discussed with reference to the Aryne Distortion Model.
Collapse
Affiliation(s)
- Susanna Kunz
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Fredrik Barnå
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | | | | | | | - Andreas Orthaber
- Department
of Chemistry—Ångström, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Paul J. Gates
- School
of Chemistry, University of Bristol, Cantock’s Close, Clifton, Bristol BS8 1TS, U.K.
| | - Lukasz T. Pilarski
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Christine Dyrager
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| |
Collapse
|
16
|
Tao H, Guo W, Liu J, Shi Y, Tao H, Shuai Q, Huang L. Deciphering the relationship between the ordered pore structure and solid-phase microextraction behavior of covalent organic frameworks for phenols. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133764. [PMID: 38354438 DOI: 10.1016/j.jhazmat.2024.133764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The extraction performance of materials is highly related to their physical structure. However, the precise impact of ordered pore structure in covalent organic frameworks (COFs) on extraction performance are still puzzling. To look insight into this, a series of COFs with varying degrees of ordered pore structures were prepared at room temperature by adjusting reaction time and their extraction efficiencies toward phenolic compounds were investigated. The experimental results revealed that the COF with a short range ordered pore structure exhibited a higher affinity for phenolic compounds along with a larger enrichment factor, while the COF with a long range ordered pore structure demonstrated faster extraction kinetics. The investigation into interaction mechanism revealed that the density of available sites is responsible for these differences. Taking COF-OMe-0.5 h as solid-phase microextraction fiber coating, a highly efficient and sensitive quantitative analysis method for phenolic compounds was established by combining it with gas chromatograph-mass spectrometer. The established method boasts high enrichment factors (7192-29440), wide linear ranges (2.0-10000 ng L-1), and low detection limits (0.24-0.54 ng L-1). This study provides a conceptual guide for constructing desirable COFs with controlled pore structures for specific applications.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Jiale Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Yanke Shi
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| |
Collapse
|
17
|
Ding B, Cai J, Guo Q, Huang L, Duan C. Bioinspired Photoactive Cu-Halide Coordination Polymers for Reduction Activation and Oxygen Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13938-13947. [PMID: 38451748 DOI: 10.1021/acsami.3c17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Natural copper oxygenases provide fundamental principles for catalytic oxidation with kinetically inert molecular oxygen, but it remains a marked challenge to mimic both their structure and function in an entity. Inspired by the CuA enzymatic sites, herein we report two new photoactive binuclear copper-iodine- and bisbenzimidazole-comodified coordination polymers to reproduce the natural oxo-functionalization repertoire in a unique photocatalytic pathway. Under light irradiation, the Cu-halide coordination polymers effectively reduce NHP esters and complete oxygen reduction activation via photoinduced electron transfer for the aerobic oxidative coupling of hydroquinone with terminal alkynes, affording hydroxyl-functionalized ketones with high efficiency and selectivity. This supramolecular approach to developing bioinspired artificial oxygenases that merge transition metal- and photocatalysis supplies a new way to fabricate distinctive photocatalysts with desirable catalytic performances and controllable precise active sites.
Collapse
Affiliation(s)
- Baotong Ding
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Junkai Cai
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiaojia Guo
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
18
|
Lin Z, Liu S, Weng W, Wang C, Guo J. Photostimulated Covalent Linkage Transformation Isomerizing Covalent Organic Frameworks for Improved Photocatalytic Performances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307138. [PMID: 37875766 DOI: 10.1002/smll.202307138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Covalent organic frameworks (COFs) offer a desirable platform to explore multichoromophoric arrays for photocatalytic conversion. Symmetric arrangement of choromophoric modules over π-extended frameworks enhances exciton delocalization while impairing excitation density and accordingly photochemical reactivity. Herein, a photoisomerization-driven strategy is proposed to break the excited-state symmetry of ketoenamine-linked COFs with multichoromophoric arrays. Incorporating electron-withdrawing benzothiadiazole facilitates the ultrafast excited-state intramolecular proton transfer (ESIPT) from enamine to keto within 140 fs, resulting in partially enolized COF isomers. The hybrid linkages containing imine and enamine bonds at the node of framework alter the symmetry of electronic structure and enforce the photoinduced charge separation. Increasing the imine-to-enamine ratio further promotes the electron transferred number in a long range, thereby affording the optimum photocatalytic hydrogen evolution rate. This work put forward an ESIPT-induced photoisomerization to build a symmetry-breaking COF with weakened exciton effect and enhanced photochemical reactivity.
Collapse
Affiliation(s)
- Zheng Lin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shujing Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Weijun Weng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
19
|
Yang MY, Zhang SB, Zhang M, Li ZH, Liu YF, Liao X, Lu M, Li SL, Lan YQ. Three-Motif Molecular Junction Type Covalent Organic Frameworks for Efficient Photocatalytic Aerobic Oxidation. J Am Chem Soc 2024; 146:3396-3404. [PMID: 38266485 DOI: 10.1021/jacs.3c12724] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Covalent organic frameworks (COFs), with the features of flexible structure regulation and easy introduction of functional groups, have aroused broad interest in the field of photocatalysis. However, due to the low light absorption intensity, low photoelectron conversion efficiency, and lack of suitable active sites, it remains a great challenge to achieve efficient photocatalytic aerobic oxidation reactions. Herein, based on reticular chemistry, we rationally designed a series of three-motif molecular junction type COFs, which formed dual photosensitizer coupled redox molecular junctions containing multifunctional COF photocatalysts. Significantly, due to the strong light adsorption ability of dual photosensitizer units and integrated oxidation and reduction features, the PY-BT COF exhibited the highest activity for photocatalytic aerobic oxidation. Especially, it achieved a photocatalytic benzylamine conversion efficiency of 99.9% in 2.5 h, which is much higher than that of the two-motif molecular junctions with only one photosensitizer or redox unit lacking COFs. The mechanism of selective aerobic oxidation was studied through comprehensive experiments and density functional theory calculations. The results showed that the photoinduced electron transfer occurred from PY and then through triphenylamine to BT. Furthermore, the thermodynamics energy for benzylamine oxidation on PY-BT COF was much lower than that for others, which confirmed the synergistic effect of dual photosensitizer coupled redox molecular junction COFs. This work provided a new strategy for the design of functional COFs with three-motif molecular junctions and also represented a new insight into the multifunctional COFs for organic catalytic reactions.
Collapse
Affiliation(s)
- Ming-Yi Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shuai-Bing Zhang
- School of Chemistry and Environment Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ze-Hui Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yu-Fei Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xing Liao
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Meng Lu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
20
|
Fang L, Gou G, Wang M, Fan T, Yin Y, Li L. Regulating the Flexibility to Assemble Porous Single-Atom Fe-Coordinated Metallopolymers for Efficient Heterogeneous Catalytic Oxidations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5823-5833. [PMID: 38285621 DOI: 10.1021/acsami.3c15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Metallopolymers as organic-inorganic hybrid materials formulated by metal embedding organic polymers show great potential for novel heterogeneous catalysis, in terms of the facile structural design and tunability. Herein, the disadvantage of nonporous stacking of one-dimensional (1D) structures has been suppressed by chain modulation of the 1D metallopolymers, allowing for the convenient construction of porous assemblies with single-atom dispersion and accessible active sites. By postmodification, the Fe/CM-1 catalyst readily synthesized by coordinating the Fe(II) to the twisted chain of 1D Schiff-base polymer possesses expedient flexibility, showing the highest porosity, remarkable heterogeneous recyclability, and thus prominent catalytic activity for the selective oxidation of benzylamine and alcohols. Moreover, control experiments supported by computational studies demonstrated that the unique pincer structure of Fe/CM-1 effectively maintains the valence state of the anchored single-atom iron, facilitating single-electron transfer and promoting efficient iron redox cycling during the catalytic process. Notably, these 1D metallopolymers have the advantage of cost-effectiveness, easy preparation in gram-scale, and utilization in continuous reaction, providing inspirations for facile synthesis of efficient heterogeneous catalysts from the well-developed 1D metallopolymers.
Collapse
Affiliation(s)
- Lei Fang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ying Yin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
21
|
Tripathi NP, Jain S, Singh RK, Sengupta S. Tripodal Triazine and 1,8-Naphthalimide-based Small Molecules as Efficient Photocatalysts for Visible-light Oxidative Condensation. Chemistry 2024; 30:e202303244. [PMID: 38038268 DOI: 10.1002/chem.202303244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Tripodal donor-acceptor (D-A) small molecules Tr-Np3 and Tr-T-Np3 consisting of triphenyl triazine and 1,8-naphthalimide, without and with a thiophene spacer have been synthesized. Their optical and redox properties were thoroughly investigated along with their utilization as photocatalysts in organic transformations. Compounds Tr-Np3 and Tr-T-Np3 showed broad absorption in the range of 290-480 nm in solutions and 300-510 nm in thin films. These tripodal molecules displayed wide optical bandgaps of (Eg opt ) 3.10 eV and 2.64 eV with very deep-lying HOMO energy levels (-6.60 eV and -6.03 eV) and low-lying LUMO levels (-3.50 eV and -3.40 eV). Appreciable electron mobilities of 5.24×10-4 cm2 /Vs and 6.14×10-4 cm2 /Vs were obtained for compounds Tr-Np3 and Tr-T-Np3 respectively by space-charge limited current (SCLC) measurements. Metal-free tripodal molecules Tr-Np3 and Tr-T-Np3 showed excellent photocatalytic abilities towards condensation of aromatic aldehydes and o-phenylenediamine followed by cyclization under visible light to yield benzimidazole derivatives that are of high medicinal value.
Collapse
Affiliation(s)
- Narendra Pratap Tripathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Punjab, 140306, India
| | - Sanyam Jain
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India
| | - Rajiv K Singh
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Punjab, 140306, India
| |
Collapse
|
22
|
Wen F, Wu X, Li X, Huang N. Two-Dimensional Covalent Organic Frameworks as Tailor-Made Scaffolds for Water Harvesting. Chemistry 2023; 29:e202302399. [PMID: 37718650 DOI: 10.1002/chem.202302399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Developing materials to harvest water from the air is of great importance to alleviate the water shortage for people living in arid regions, where the annual average relative humidity (RH) is lower than 0.4. In this work, we report a general nitrogen atom incorporation strategy to prepare high-performance covalent organic frameworks (COFs) for water harvesting from the air in arid areas. A series of COFs, namely COF-W1, COF-W2, and COF-W3 were developed for this purpose. Different contents of nitrogen were embedded into COFs by incorporating pyridine units into the building blocks. With the increasing content of nitrogen from COF-W1 to COF-W3, the inflection points of their water isotherms shift distinctly from RH values from 0.65 to 0.25. Significantly, COF-W3 exhibits the lowest inflection point at a low RH value of 0.25 and reaches a high uptake capacity of 0.28 g g-1 at 25 °C with a low hysteresis loop. Moreover, the gram-scale COF-W3 retains its high performance, which renders it more attractive in water harvesting. This work demonstrates the feasibility of this nitrogen incorporation strategy to acquire high-performance COFs as water harvesters in the future.
Collapse
Affiliation(s)
- Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xiangyu Li
- Dalian Ecological and Environmental Affairs Service Center, Dalian Municipal Bureau of Ecological Environment, 116023, Dalian, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
23
|
Ge B, Ye Y, Yan Y, Luo H, Chen Y, Meng X, Song X, Liang Z. Thiazolo[5,4- d]thiazole-Based Metal-Organic Framework for Catalytic CO 2 Cycloaddition and Photocatalytic Benzylamine Coupling Reactions. Inorg Chem 2023; 62:19288-19297. [PMID: 37956183 DOI: 10.1021/acs.inorgchem.3c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Metal-organic frameworks (MOFs) with permanent porosity and multifunctional catalytic sites constructed by two or more organic ligands are regarded as effective heterogeneous catalysts to improve certain organic catalytic reactions. In this work, a pillared-layer Zn-MOF (MOF-LS10) was constructed by 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (H4TCPP) and 2,5-di(pyridin-4-yl)thiazolo[5,4-d]thiazole (DPTZTZ). After activation, MOF-LS10 has a permanent porosity and moderate CO2 adsorption capacity. The introduction of thiazolo[5,4-d]thiazole (TZTZ), a photoactive unit, into the framework endows MOF-LS10 with excellent photocatalytic performance. MOF-LS10 can not only efficiently catalyze the formation of cyclic carbonates from CO2 and epoxide substrates under mild conditions but also can photocatalyze benzylamine coupling at room temperature. In addition, we used another two ligands 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (H4BTEB) and 1,4-di(pyridin-4-yl)benzene (DPB) to synthesize MOF-LS11 (constructed by BTEB4- and DPTZTZ) and MOF-LS12 (constructed by TCPP4- and DPB) in order to explore whether the pyrazine structural unit and the TZTZ structural unit synergistically catalyze the reaction. The electron paramagnetic resonance spectrum demonstrates that the superoxide radical (·O2-), generated by electron transfer from the MOF excited by light to the oxidant, is the main active substance of oxidation. The design and synthesis of MOF-LS10 provide an effective synthetic strategy for the development of versatile heterogeneous catalysts for various organic reactions and a wide range of substrates.
Collapse
Affiliation(s)
- Bangdi Ge
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yu Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Huairou Branch of Beijing No. 101 Middle School, Beijing 100005, China
| | - Yan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hao Luo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yuze Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xianyu Meng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhiqiang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
24
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
25
|
Wang K, Geng TM, Guo C, Zhou XH, Zhu F. The syntheses of fluorescein-based conjugated microporous polymers by direct arylation polymerization and fluorescence sensing Fe 3+ in aqueous solutions. Anal Chim Acta 2023; 1279:341747. [PMID: 37827661 DOI: 10.1016/j.aca.2023.341747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023]
Abstract
Determination of ferri ions in environment and human bodies is very important for environmental protection and disease diagnosis. Recently, conjugated microporous polymers (CMPs) used for fluorescence sensing metal ions have attracted much attention, but this technique is done in organic solvents. In this study, the two new fluorescein-based CMPs named FLEDOT and FLBTh were synthesized by "greener method", direct arylation polymerization, with tetraiodofluorescein sodium salt (TIFS) and 3,4-ethylenedioxy thiophene or 2,2'-bithiophene. Pleasely, the prepared fluorescein-based CMPs can fluorescently sense for Fe3+ in water with high sensitivity and selectivity. The quenching constants (KSV) of FLEDOT and FLBTh are 1.51 × 104 and 1.09 × 104 L mol-1, and the limits of detection (LODs) as low as 1.99 × 10-10 and 2.75 × 10-10 mol L-1, which are comparable to the sensitivity found in organic solvents' dispersions such as N,N-dimethylformamide (DMF)' dispersions. UV-Vis absorption spectra show that the fluorescence quenching mechanisms of Fe3+ are absorption competition quenching process and energy transfer process.
Collapse
Affiliation(s)
- Kang Wang
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Tong-Mou Geng
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China.
| | - Chang Guo
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Xue-Hua Zhou
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Feng Zhu
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| |
Collapse
|
26
|
Das A, Mohit, Thomas KRJ. Donor-Acceptor Covalent Organic Frameworks as a Heterogeneous Photoredox Catalyst for Scissoring Alkenes to Carbonyl Constituents. J Org Chem 2023; 88:14065-14077. [PMID: 37695568 DOI: 10.1021/acs.joc.3c01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The conversion of alkenes to carbonyl constituents via the cleavage of the C═C bond is unique due to its biological and pharmacological significance. Though a number of oxidative C═C cleavage protocols have been demonstrated for terminal and electron-rich alkene systems, none of them were optimized for electron-deficient and conjugated alkenes. In this work, a covalent organic framework containing triphenylamine and triazine units was revealed to cleave the C═C bond of alkenes under very mild conditions involving visible light irradiation due to its photoredox property. The alkenes can be conveniently broken across the double bond to their constituent carbonyl derivatives on light irradiation in the presence of air and the covalent organic framework photocatalyst. This protocol is applicable for a wide range of alkenes in an aqueous acetonitrile medium with high functional group tolerance and regioselectivity. Though the electron-deficient alkenes required tetramethylethylene diamine as a sacrificial donor, the electron-rich alkenes do not demand any additives.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
27
|
Liu H, Li QQ, Zhou L, Deng B, Pan PH, Zhao SY, Liu P, Wang YY, Li JL. Confinement of Organic Dyes in UiO-66-Type Metal-Organic Frameworks for the Enhanced Synthesis of [1,2,5]Thiadiazole[3,4- g]benzoimidazoles. J Am Chem Soc 2023; 145:17588-17596. [PMID: 37454391 DOI: 10.1021/jacs.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Organic dyes as non-noble metal photosensitizers have attracted increasing attention due to their environmental friendliness and sustainability but suffer from fast deactivation and low stability. Here, we reported a fruitful strategy by the confinement and stabilization of visible light-active signal unit organic dyes within the metal-organic frameworks (MOFs) and developed a series of heterogeneous photocatalysts dye@UiO-66s [dye = fluorescein (FL)/rhodamine B (RhB)/eosin Y (EY), UiO-66s = UiO-66, and Bim-UiO-66]. It has been demonstrated that the encapsulated dyes can effectively sensitize MOF hosts and dominate the band structures and photocatalytic activities of dye@UiO-66s regardless of the ligand functionalization of MOFs. Photocatalytic experiments showed that these dye@UiO-66s exhibit enhanced activities relative to free dyes and among them, FL@Bim-UiO-66 displays excellent efficiencies toward the green synthesis of new carbon-bridged annulations, [1,2,5]thiadiazole[3,4-g]benzoimidazoles in the yield of up to 98% at room temperature with outstanding stability and reusability. Furthermore, the intramolecular cyclization intermediate was captured and characterized by the single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Hua Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Quan-Quan Li
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, P. R. China
| | - Li Zhou
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Bing Deng
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Peng-Hui Pan
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Shu-Ya Zhao
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Ping Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Jian-Li Li
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
28
|
Bai D, Qiu J, Li J, Zhou S, Cui X, Tang X, Tang Y, Liu W, Chen B. Mesoporous Mixed-Metal-Organic Framework Incorporating a [Ru(Phen) 3] 2+ Photosensitizer for Highly Efficient Aerobic Photocatalytic Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37312235 DOI: 10.1021/acsami.3c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
[Ru(Phen)3]2+ (phen = phenanthroline) as a very classical photosensitizer possesses strong absorption in the visible range and facilitates photoinduced electron transfer, which plays a vital role in regulating photochemical reactions. However, it remains a significant challenge to utilize more adequately and exploit more efficiently the ruthenium-based materials due to the uniqueness, scarcity, and nonrenewal of the noble metal. Here, we integrate the intrinsic advantages of the ruthenium-based photosensitizer and mesoporous metal-organic frameworks (meso-MOFs) into a [Ru(Phen)3]2+ photosensitizer-embedded heterometallic Ni(II)/Ru(II) meso-MOF (LTG-NiRu) via the metalloligand approach. LTG-NiRu, with an extremely robust framework and a large one-dimensional (1D) channel, not only makes ruthenium photosensitizer units anchored in the inner wall of meso-MOF tubes to circumvent the problem of product/catalyst separation and recycling of catalysts in heterogeneous systems but also exhibits exceptional activities for the aerobic photocatalytic oxidative coupling of amine derivatives as a general photocatalyst. The conversion of the light-induced oxidative coupling reaction for various benzylamines is ∼100% in 1 h, and more than 20 chemical products generated by photocatalytic oxidative cycloaddition of N-substituted maleimides and N,N-dimethylaniline can be synthesized easily in the presence of LTG-NiRu upon visible light irradiation. Moreover, recycling experiments demonstrate that LTG-NiRu is an excellent heterogeneous photocatalyst with high stability and excellent reusability. LTG-NiRu represents a great potential photosensitizer-based meso-MOF platform with an efficient aerobic photocatalytic oxidation function that is convenient for gram-scale synthesis.
Collapse
Affiliation(s)
- Dongjie Bai
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinlin Qiu
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jingzhe Li
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shengbin Zhou
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Cui
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Xiaoliang Tang
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Yu Tang
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
29
|
Li X, Wang Y, Zhang F, Lang X. Benzothiadiazole covalent organic framework photocatalysis with an electron transfer mediator for selective aerobic sulfoxidation. J Colloid Interface Sci 2023; 648:683-692. [PMID: 37321087 DOI: 10.1016/j.jcis.2023.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) are promising visible light photocatalysts for aerobic oxidation reactions. However, COFs usually suffer from the assault of reactive oxygen species, leading to hindered electron transfer. This scenario could be addressed by integrating a mediator to promote photocatalysis. Starting with 4,4'-(benzo-2,1,3-thiadiazole-4,7-diyl)dianiline (BTD) and 2,4,6-triformylphloroglucinol (Tp), TpBTD-COF is developed as a photocatalyst for aerobic sulfoxidation. Adding an electron transfer mediator 2,2,6,6-tetramethylpiperidine-1‑oxyl (TEMPO), the conversions are radically accelerated, over 2.5 times of that without TEMPO. Moreover, the robustness of TpBTD-COF is preserved by TEMPO. Remarkably, TpBTD-COF could endure multiple cycles of sulfoxidation, even with higher conversions than the fresh one. TpBTD-COF photocatalysis with TEMPO implements diverse aerobic sulfoxidation by an electron transfer pathway. This work highlights that benzothiadiazole COFs are an avenue for tailor-made photocatalytic transformations.
Collapse
Affiliation(s)
- Xia Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
30
|
Xiong K, Zhang F, Wang Y, Zeng B, Lang X. Selective oxidation of amines powered with green light and oxygen over an anthraquinone covalent organic framework. J Colloid Interface Sci 2023; 643:340-349. [PMID: 37080041 DOI: 10.1016/j.jcis.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
The exploration of emerging photocatalysts like covalent organic frameworks (COFs) is an essential but challenging endeavor to find sustainable solutions for selective organic transformations. Anthraquinones are envisaged to construct COFs for visible light photocatalysis because their derivatives are employed industrially as oxidation catalysts or organic dyes. Herein, an anthraquinone COF, TpAQ-COF, is successfully constructed with 1,3,5-triformylphloroglucinol (Tp) and 2,6-diaminoanthraquinone (AQ). Then, the selective oxidation of amines over TpAQ-COF is implemented. Amines can be effectively converted into corresponding imines over TpAQ-COF powered with green light and oxygen, during which superoxide radical anion is discerned as the pivotal reactive oxygen species. This work suggests that COFs could inherit the advantages of molecular building blocks for selective reactions powered with broad visible light.
Collapse
Affiliation(s)
- Kanghui Xiong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bing Zeng
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Zhang L, Tan QG, Xiao SJ, Yang GP, Zheng QQ, Sun C, Mao XL, Fan JQ, Liang RP, Qiu JD. Reversed Regulation Effects of ssDNA on the Mimetic Oxidase and Peroxidase Activities of Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207798. [PMID: 37012604 DOI: 10.1002/smll.202207798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials with enzyme mimetic activity have attracted extensive attention, especially in the regulation of their catalytic activities by biomolecules or other polymers. Here, a covalent organic framework (Tph-BT COF) with excellent photocatalytic activity is constructed by Schiff base reaction, and its mimetic oxidase activity and peroxidase activity is inversely regulated via single-stranded DNA (ssDNA). Under light-emitting diode (LED) light irradiation, Tph-BT exhibited outstanding oxidase activity, which efficiently catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB, and ssDNA, especially those with poly-thymidine (T) sequences, can significantly inhibit its oxidase activity. On the contrary, Tph-BT showed weak peroxidase activity, and the presence of ssDNA, particularly poly-cytosine (C) sequences, can remarkably enhance the peroxidase activity. The influence of base type, base length, and other factors on the activities of two enzymes is also studied, and the results reveal that the adsorption of ssDNA on the surface of Tph-BT prevented intersystem crossing (ISC) and energy transfer processes to reduce 1 O2 generation, while the electrostatic interaction between ssDNA and TMB enhanced Tph-BT's affinity for TMB to facilitate the electron transfer from TMB to • OH. This study investigates multitype mimetic enzyme activities of nonmetallic D-A conjugated COFs and demonstrates their feasibility of regulation by ssDNA.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, P. R. China
| | - Gui-Ping Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jia-Qi Fan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, P. R. China
| |
Collapse
|
32
|
Wang J, Zhu W, Meng F, Bai G, Zhang Q, Lan X. Integrating Dual-Metal Sites into Covalent Organic Frameworks for Enhanced Photocatalytic CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wanbo Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Fanyu Meng
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
33
|
Feng HJ, Sun X, Wang JW. A novel thiazole-based luminescent porous organic polymer as recyclable and selective turn-off fluorescent sensor for ultrasensitive detection of Pd2+. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
34
|
Huang H, Jing X, Deng J, Meng C, Duan C. Enzyme-Inspired Coordination Polymers for Selective Oxidization of C(sp 3)-H Bonds via Multiphoton Excitation. J Am Chem Soc 2023; 145:2170-2182. [PMID: 36657380 DOI: 10.1021/jacs.2c09348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nature's blueprint provides the fundamental principles for expanding the use of abundant metals in catalysis; however, mimicking both the structure and function of copper enzymes simultaneously in one artificial system for selective C-H bond oxidation faces marked challenges. Herein, we report a new approach to the assembly of artificial monooxygenases utilizing a binuclear Cu2S2Cl2 cluster to duplicate the identical structure and catalysis of the CuA enzyme. The designed monooxygenase Cu-Cl-bpyc facilitates well-defined redox potential that initially activated O2via photoinduced electron transfer, and generated an active chlorine radical via a ligand-to-metal charge transfer (LMCT) process from the consecutive excitation of the in situ formed copper(II) center. The chlorine radical abstracts a hydrogen atom selectively from C(sp3)-H bonds to generate the radical intermediate; meanwhile, the O2•- species interacted with the mimic to form mixed-valence species, giving the desired oxidization products with inherent product selectivity of copper monooxygenases and recovering the catalyst directly. This enzymatic protocol exhibits excellent recyclability, good functional group tolerance, and broad substrate scope, including some biological and pharmacologically relevant targets. Mechanistic studies indicate that the C-H bond cleavage was the rate-determining step and the cuprous interactions were essential to stabilize the active oxygen species. The well-defined structural characters and the fine-modified catalytic properties open a new avenue to develop robust artificial enzymes with uniform and precise active sites and high catalytic performances.
Collapse
Affiliation(s)
- Huilin Huang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Jiangtao Deng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
35
|
Zhu YH, Du ZY, Wang JL, Yang JB, Mei H, Xu Y. Efficient Visible-Light-Driven Hydrogen Production over Cu-Modified Polyoxotungstate Hybrids. Inorg Chem 2022; 61:20397-20404. [DOI: 10.1021/acs.inorgchem.2c03028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yin-Hua Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ze-Yu Du
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jian-Bo Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
36
|
Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Singh A, Gogoi R, Sharma K, Kumar R, Felix Siril P. Continuous flow synthesis of disordered covalent organic framework for ultra-high removal of industrial pollutants in flow. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Liu Y, Wang J, Ji K, Meng S, Luo Y, Li H, Ma P, Niu J, Wang J. Construction of Polyoxometalate-based Metal−Organic Frameworks through Covalent Bonds for Enhanced Visible Light-Driven Coupling of Alcohols with Amines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Che G, Yang W, Wang C, Li M, Li X, Pan Q. Efficient Photocatalytic Oxidative Coupling of Benzylamine over Uranyl-Organic Frameworks. Inorg Chem 2022; 61:12301-12307. [PMID: 35881495 DOI: 10.1021/acs.inorgchem.2c01594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible-light-driven organic transformation photocatalyzed by metal-organic frameworks (MOFs) under mild conditions is considered a feasible route to conserve energy and simplify synthesis. Herein, a light-sensitized, three-dimensional uranyl-organic framework (HNU-64) with twofold interpenetration and its derivatives HNU-64-CH3 and HNU-64-Cl with functionalized ligands of -CH3 and -Cl groups were obtained. These MOFs have broad optical absorption bands and suitable band energy levels in photooxidation, which makes them exhibit high activity and selectivity for the photooxidation of benzylamine to N-benzylbenzoimide under mild conditions. This work provides an efficient and simple synthetic option for oxidative coupling of amines to directly produce imines.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
40
|
Zhou C, Wang R, Gao L, Huang X, Zhang X. Unveiling the Synthetic Potential of 1,3,5-Tri(10 H-phenothiazin-10-yl)benzene-Based Optoelectronic Material: A Metal-Free and Recyclable Photocatalyst for Sequential Functionalization of C(sp 2)-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30962-30968. [PMID: 35759530 DOI: 10.1021/acsami.2c08766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
1,3,5-Tri(10H-phenothiazin-10-yl)benzene (3PTZ) is endowed with unique redox and photoresponsive characteristics and has been utilized as a p-type redox center for organic battery cathode material and a room-temperature phosphorescence (RTP) material, respectively. Conversely, its exploration in other research fields, particularly organic synthesis, remains unknown. Here, we demonstrate that 3PTZ-POP synthesized via cross-linking of 3PTZ is capable of harvesting visible-light photons and selectively converting solar energy to chemical energy. Specifically, 3PTZ-POP functions as a metal-free and recyclable photocatalyst to promote the sequential C(sp2)-H functionalizations of N-arylacrylamides with readily available trifluoromethylsulfonyl chloride as the radical precursor. An array of 3,3-disubstituted 2-oxindoles bearing a pharmaceutically important CF3 moiety are delivered in moderate to excellent yields under mild and sustainable conditions.
Collapse
Affiliation(s)
- Cen Zhou
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Rui Wang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Lang Gao
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiaozhou Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| |
Collapse
|
41
|
Huang X, Cui W, Liu S, Liu G, Zhang Y, Zhang Z, Shen G, Li Z, Wang J, Chen Y. One-step assembly of Pd-Keggin polyoxometalates for catalytic benzothiadiazole Generation and derived cell-imaging probe application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Liu Y, Ji K, Wang J, Li H, Zhu X, Ma P, Niu J, Wang J. Enhanced Carrier Separation in Visible-Light-Responsive Polyoxometalate-Based Metal-Organic Frameworks for Highly Efficient Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27882-27890. [PMID: 35675907 DOI: 10.1021/acsami.2c05654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic technology is widely studied, while it comes with drawbacks such as low sunlight utilization efficiency and high carrier recombination rates. Herein, for the first time, we present two crystalline polyoxometalate (POM)-based metal-organic frameworks (POMOFs), {[Cd(DMF)2Ru(bpy)2(dcbpy)]2(POMs)(DMF)2} xDMF (PMo-1, POMs = [PMoVI11MoVO40]4-, x = 5; SiW-2, POMs = [SiW12O40]4-, x = 4) through assembling the photosensitizer [Ru(bpy)2(H2dcbpy)]Cl2 and POMs into a single framework. The assembly not only enhances light absorption in the visible light regime but also improves carrier separation efficiency; atop of that, both POMOFs demonstrate activities in the photocatalytic oxidative coupling of amines. Particularly, PMo-1 enables the quantitative completion of oxidative coupling of benzylamine reaction within 30 min (yield = 99.6%) with a high turnover frequency (TOF = 6631.6 h-1). To our knowledge, the PMo-1 catalyst outperforms any other photocatalysts previously reported in similar use cases where TOF values were usually obtained <2000 h-1.
Collapse
Affiliation(s)
- Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Kaihui Ji
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Xueyu Zhu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| |
Collapse
|
43
|
Chen Y, Sun D, Du L, Jiao Y, Han W, Tian G. Sandwich-Structured Hybrid of NiCo Nanoparticles-Embedded Carbon Nanotubes Grafted on C 3N 4 Nanosheets for Efficient Photodehydrogenative Coupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24425-24434. [PMID: 35603740 DOI: 10.1021/acsami.2c04826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploring cheap and efficient hybrid catalysts offers exciting opportunities for enhancing the performance of photocatalysts in the green organic synthesis field. Herein, a facile and effective approach is designed for the synthesis of a sandwich-structured hybrid in which NiCo bimetallic nanoparticles are embedded in the tip of nitrogen-doped carbon nanotubes (N-CNTs) grafted on both sides of a nitrogen deficient C3N4 (Nv-C3N4) nanosheet for photodehydrogenative coupling reactions. Such a brand-new type of sandwich-structured hybrid comprises Nv-C3N4 nanosheets and surrounding N-CNTs embedded with NiCo nanoparticles at their tips. Remarkably, the resultant hybrid exhibits integrated functionalities, abundant active sites, enhanced visible light absorption, and excellent interfacial charge transfer ability. As a result, the optimized NiCo@N-CNTs@Nv-C3N4 photocatalyst shows significantly improved photodehydrogenative coupling performance of amines to imines compared to the control single-metal-based catalysts (Ni@N-CNTs@Nv-C3N4 and Co@N-CNTs@Nv-C3N4). The mechanistic investigation through experimental and computational study demonstrates that, compared with single-metal-based hybrids, the NiCo bimetallic hybrid exhibits stronger amine adsorption and weaker photogenerated hydrogen atom adsorption, thus promoting the dehydrogenative activation of primary amines and fast generation of imines. This work presents a promising insight for designing and preparing efficient photocatalysts to trigger organic synthesis in high yields.
Collapse
Affiliation(s)
- Yajie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Dan Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Lizhi Du
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Yuzhen Jiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Wei Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| |
Collapse
|
44
|
Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry 2022; 28:e202200600. [DOI: 10.1002/chem.202200600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liting Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Jialin Wang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Ya Chen
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Wuxuan Sun
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| |
Collapse
|
45
|
Deshmukh SA, Bhagat PR. Metal Free Porphyrin Photocatalyst Comprising Ionic Liquid with Electron Donor Acceptor Moiety for Visible Light Assisted Oxidative Amination. ChemistrySelect 2022. [DOI: 10.1002/slct.202200189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shubham Avinash Deshmukh
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 India
| | - Pundlik Rambhau Bhagat
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 India
| |
Collapse
|
46
|
Wang M, Guo H, Wu N, Zhang J, Zhang T, Liu B, Pan Z, Peng L, Yang W. A novel triazine-based covalent organic framework combined with AuNPs and reduced graphene oxide as an electrochemical sensing platform for the simultaneous detection of uric acid, dopamine and ascorbic acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|