1
|
Wang Q, Zhang H, Zhou J, Dai H, Mai M, Huang T, Wang L, Wang X, Zhang D, Duan L. Linear Annulation Engineering of Indolocarbazole Multiple Resonance Emitter to Overcome Efficiency-Stability-Color Purity Trilemma in Deep-Blue OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503839. [PMID: 40348598 DOI: 10.1002/adma.202503839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Indexed: 05/14/2025]
Abstract
Deep-blue emitters for organic light-emitting diodes (OLEDs) still confront the critical challenge of balancing high efficiency, operational stability, and color purity, particularly for the ones with peak wavelengths (λmax) ≤ 460 nm. Here, the study demonstrates deep-blue devices featuring ultrapure emission (λmax = 458 nm, full-width at half-maximum = 19 nm), high maximum external quantum efficiency of 34.3% with small roll-off (26.9% at 1 000 cd m- 2; 20.9% at 5 000 cd m- 2), and long operational LT80 (time to 80% of the initial luminance) of 101 hours at 1,000 cd m- 2, being one of the longest lifetime among OLEDs with λmax ≤ 460 nm and EQE >20%. This breakthrough stems from an indolocarbazole narrowband emitter employing a linear annulation strategy, which not only narrows spectral bandwidth while red-shifting emission peak through multiple resonance framework extension, but also energetically and dynamically enhances device longevity via triplet energy reduction. Furthermore, strategic integration of steric hindrance on the emitting backbone suppresses intermolecular interactions and directs reactivity pathways. This emitter concurrently achieves a λmax of 456 nm, FWHM of 15 nm and photoluminescence (PL) quantum yield of 98% in dilute toluene. The work highlights linear annulation engineering as a potential approach to resolve the efficiency-stability-color purity trilemma in deep-blue OLEDs.
Collapse
Affiliation(s)
- Qian Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hai Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianping Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Minqiang Mai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430000, P. R. China
| | - Xuewen Wang
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Wu Y, Huang M, Cheng L, Zhang J, Pan Y, Yiu SM, Chung Lau K, Yan J, Yang C, Chi Y. Iridium(III) Blue Phosphors with Heteroleptic Carbene Cyclometalates: Isomerization, Emission Tuning, and OLED Fabrications. Angew Chem Int Ed Engl 2025; 64:e202421664. [PMID: 39834246 DOI: 10.1002/anie.202421664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Ir(III) complexes are particularly noted for their excellent photophysical properties in giving blue OLED phosphors. In this study, two distinctive carbene pro-chelates LAH2 + and LBH2 + (or LCH2 +) were employed in preparation of heteroleptic Ir(III) complexes, to which LAH2 + bears a cyano substituted benzoimidazolium along with N-mesityl appendage, while LBH2 + (or LCH2 +) carries the symmetrical benzoimidazolium entity. Notably, the reversible equilibration at high temperature was observed for m, f-ct14 and m, f-ct15 with a single LA chelate. In contrast, only the mer-substituted m-ct16 was obtained upon employing two LA chelates. All Ir(III) complexes exhibited blue photoluminescence (ΦPL ≥ ${\ge }$ 78 %) with short radiative lifetimes (τrad ≤ ${\le }$ 1.05 μs) in solution. The Ph OLED device with m-ct16 afforded an external quantum efficiency (EQE) of 22.8 % at 5000 cd ⋅ m-2. Moreover, the hyper-OLED based on m-ct16 and v-DABNA exhibited EQE1000 of 32.1 % (EQE recorded at 1000 cd ⋅ m-2) and J90 of 15.0 mA cm-2 (current density at 90 % of max. EQE). Its suppressed efficiency roll-off (EQE of 32.1 % and 27.7 % at 1000 cd ⋅ m-2 and 10000 cd ⋅ m-2) demonstrated a milestone in fabrication of blue OLED devices.
Collapse
Affiliation(s)
- Yixin Wu
- Department of Chemistry, Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Lin Cheng
- Department of Chemistry, Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR
| | - Junyao Zhang
- Department of Chemistry, Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR
| | - Yi Pan
- Department of Chemistry, Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR
| | - Shek-Man Yiu
- Department of Chemistry, Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR
| | - Kai Chung Lau
- Department of Chemistry, Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR
| | - Jie Yan
- Department of Chemistry, Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yun Chi
- Department of Chemistry, Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR
| |
Collapse
|
3
|
Xiao Z, Zou Y, Chen Z, Miao J, Qiu Y, Huang Z, Cao X, Peng X, Yang C. Deep-Blue OLEDs with BT. 2020 Blue Gamut, External Quantum Efficiency Approaching 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419601. [PMID: 39935145 DOI: 10.1002/adma.202419601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The hyperfluorescence (HF) technology holds great promise for the development of high-quality organic light-emitting diodes (OLEDs) for their excellent color purity, high efficiency, and low-efficiency roll-off. Sensitizer plays a crucial role in the performance of HF devices. However, designing sensitizers with simultaneous high photoluminescence quantum yield (PLQY), rapid radiative decay (kr), and fast reverse intersystem crossing rate (kRISC) poses a great challenge, particularly for the thermally activated delayed fluorescence (TADF) sensitizers targeting deep-blue HF device. Herein, by introducing a boron-containing multi-resonance-type acceptor into the multi-tert-butyl-carbazole encapsulated benzene molecular skeleton, two TADF emitters featuring hybridized multi-channel charge-transfer pathways, including short-range multi-resonance, weakened through-bond, and compact face-to-face through-space charge-transfer. Benefiting from the rational molecular design, the proof-of-concept sensitizers exhibit simultaneous rapid kr of 5.3 × 107 s-1, fast kRISC up to 5.9 × 105 s-1, a PQLY of near-unity, as well as ideal deep-blue emission in both solution and film. Consequently, the corresponding deep-blue HF devices not only achieve chromaticity coordinates that fully comply with the latest BT. 2020 standards, but also showcase record-high maximum external quantum efficiencies nearing 40%, along with suppressed efficiency roll-off.
Collapse
Affiliation(s)
- Zhengqi Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuntao Qiu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Diev VV, Zou Y, Kondakov D, Yap GPA. A Hybrid BN-Doped Nanographene with Narrow Emission Bandwidths for OLEDs. Chemistry 2025; 31:e202404078. [PMID: 39823239 DOI: 10.1002/chem.202404078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/19/2025]
Abstract
We describe synthesis of BN-doped nanographene containing five phenylene units, boron and nitrogen atoms with alternating ortho-disposition, as well as direct B-N connections. Resulting BN doped nanographene exhibits blue fluorescence at 441 nm with an extraordinarily narrow fluorescence peak with a full width at half maximum (FWHM)=10-11 nm. Crystallography reveals supramolecular organization of this compound in the crystal phase. Initial organic light emitting device (OLED) data suggest that the presence of a directly connected B-N isostere can lead to devices with sufficiently long lifetime as well as narrow emission electro-luminescence peaks necessary for OLED applications.
Collapse
Affiliation(s)
- Vyacheslav V Diev
- DuPont Specialty Products USA LLC, Experimental Station, Wilmington, DE, 19803, USA
| | - Yunlong Zou
- DuPont Specialty Products USA LLC, Experimental Station, Wilmington, DE, 19803, USA
| | - Denis Kondakov
- DuPont Specialty Products USA LLC, Experimental Station, Wilmington, DE, 19803, USA
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
5
|
Yu L, Huang X, Feng N, Fu W, Xin X, Hao J, Li H. Solvent-Free Artificial Light-Harvesting System in a Fluid Donor with Highly Efficient Förster Resonance Energy Transfer. J Phys Chem Lett 2025; 16:1305-1311. [PMID: 39873336 DOI: 10.1021/acs.jpclett.4c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Multi-step Förster resonance energy transfer (FRET) plays a vital role in photosynthesis. While the energy transfer efficiency (ΦET) of a naturally occurring system can reach 95%, that of most artificial light-harvesting systems (ALHSs) is still limited. Herein, we propose a strategy to construct highly efficient ALHSs using a blue-emitting, supercooled ionic compound of naphthalimide (NPI) as the donor, a green-emitting BODIPY derivate as a relay acceptor, and a commercially available, red-emitting dye [rhodamine B (RhB)] as the final acceptor. The broad emission of the fluid donor can overlap simultaneously with the absorption of BODIPY and RhB, enabling the occurrence of a sequential FRET from NPI to BODIPY to RhB as well as a parallel FRET directly from NPI to RhB. These two complementary energy transfer routes lead to an overall ΦET up to 97.4%, which is the champion among all of the reported ALHSs and is also higher than that found in plants and photosynthetic bacteria. This strategy is universal, and ΦET of the system could be further improved by optimizing the structures of the fluid donor and relay acceptor.
Collapse
Affiliation(s)
- Longyue Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xionghui Huang
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Wenwen Fu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xia Xin
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
6
|
Mandal S, Lahkar B, Muduli G, Rawat A, Sahu A, Tsutsumi O, Prabusankar G. Fluorescent zinc(II) thione and selone complexes for light-emitting applications. Dalton Trans 2025; 54:1384-1392. [PMID: 39718013 DOI: 10.1039/d4dt02924k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Three 1-(anthracene-9-ylmethyl)-3-isopropyl-imidazol-2-thione Zn(II) halide complexes (1-3) and one 1-(anthracene-9-ylmethyl)-3-isopropyl-imidazol-2-selone Zn(II) dichloride complex (4) were synthesized and characterized. Complexes 2, 3, and 4 exhibited distorted tetrahedral geometries, while complex 1 adopted a regular tetrahedral geometry. All these complexes displayed emission in the crystalline state, with complex 3 emitting in the yellow region and complex 1 and 4 in the blue region, while complex 2 gave a bluish-green emission. The ligands L1 and L2, however, showed no emission in the solution and crystalline state. The photophysical properties of these four complexes were studied, and their quantum yields in the crystalline states were determined. Complex 1 exhibited the highest quantum yield of 7.72%, and complexes 2 and 3 demonstrated 5.95% and 5.07% yield, respectively. Complex 4 exhibited a relatively lower quantum yield of 3.87%. The crystalline state quantum yields for the complexes were found to vary with the variation of the halide ion coordinated to the metal center, following the trend Cl- > Br- > I-. The quantum yield for the thione complexes 1-3 was found to be superior to that of the selone complex 4. Density functional theory calculations were performed to study their structural properties and emissive nature. TD-DFT natural transition orbital calculations revealed that the observed emission behaviour is primarily driven by intra-ligand charge transfer (1ILCT) mediated through the metal center.
Collapse
Affiliation(s)
- Suman Mandal
- Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| | - Bikash Lahkar
- Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| | - Gopendra Muduli
- Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| | - Arushi Rawat
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Abhilash Sahu
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Ganesan Prabusankar
- Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
7
|
Jhun BH, Park Y, Kim HS, Baek JH, Kim J, Lee E, Moon H, Oh C, Jung Y, Choi S, Baik MH, You Y. The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials. Nat Commun 2025; 16:392. [PMID: 39755694 DOI: 10.1038/s41467-024-55620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules. Electroluminescent devices incorporating these compounds display varied operational lifetimes, uncorrelated with excitonic stability or external quantum efficiency roll-off. Bulk electrolysis reveals significant instability in the radical cationic forms of MR-TADF compounds, with device lifetime linked to the Faradaic yield of oxidation. Comprehensive chemical analyses corroborate that the degradation byproducts originated from intramolecular cyclization of radical cation, followed by hydrogen atom transfer. The mechanism is further supported by enhanced stability observed in a deuterated MR-TADF emitter, attributed to a secondary kinetic isotope effect. These findings provide insights into the stabilizing effects of deuteration and mechanism-driven strategies for designing MR-TADF compounds with improved operational longevity.
Collapse
Affiliation(s)
- Byung Hak Jhun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hwang Suk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Ji Hye Baek
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joonghyuk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Eunji Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyejin Moon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changjin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Seunghee Choi
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Meng QY, Wen XL, Qiao J. "Impossible Trinity" between Efficiency, Stability, and Color Purity for Blue OLEDs: Challenges and Opportunities. J Phys Chem Lett 2024; 15:12571-12583. [PMID: 39680682 DOI: 10.1021/acs.jpclett.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Organic light-emitting diodes (OLEDs) have become the cutting-edge technology in the display market. However, compared with green and red stacks, blue stacks still remain an obstacle for OLED technology. There seems to be an "impossible trinity" between efficiency, stability, and color-purity for blue OLEDs. In this trilemma, advances in device stability have lagged far behind. In this Perspective, focusing on the critical role of bond-dissociation energy (BDE), we first summarize recent advances in the chemical degradation mechanism of high-efficiency blue OLED materials and then highlight strategies to improve the intrinsic stability and device lifetime from the material point-of-view. Finally, future challenges and opportunities for developing robust blue OLED materials and devices are envisioned, including the rational design of robust blue materials with high BDEs, two-pronged approaches from both thermodynamic and kinetic aspects, the great need for robust host materials, deep insights into host-guest interactions, collaborative efforts from the aspect of devices, and data-driven screening and iteration development.
Collapse
Affiliation(s)
- Qing-Yu Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xue-Liang Wen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
10
|
Itsoponpan T, Wongkaew P, Prakanpo N, Sukthawee T, Suyoadsuk T, Promarak V. Deep Blue Emitter with a Combination of Hybridized Local and Charge Transfer Excited State and Aggregation-Induced Emission Features for Efficient Non-Doped OLED. Chempluschem 2024; 89:e202400438. [PMID: 39116088 DOI: 10.1002/cplu.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Herein, a deep blue emitter (PI-TPB-CN) with a synergistic effect of hybridized local and charge transfer excited state (HLCT) and aggregation-induced emission (AIE) properties is successfully designed and synthesized to improve the performance of deep blue organic light-emitting diodes (OLEDs). It is constructed using a 1,2,4,5-tetraphenylbenzene (TPB) as an π-conjugated AIE core being asymmetrically functionalized with a phenanthro[9,10-d]imidazole (PI) as a weak donor (D) and a benzonitrile (CN) as an acceptor (A), thereby formulating D-π-A type fluorophore. Its HLCT and AIE properties verified by theoretical calculations, solvatochromic effects, and transient photoluminescence decay experiments, bring about a strong blue emission (452 nm) with a high photoluminescence quantum yield of 74 % in the thin film. PI-TPB-CN is successfully employed as a blue emitter in OLEDs. Non-doped OLED with the structure of ITO/HAT-CN (6 nm)/NPB (30 nm)/TCTA (10 nm)/PI-TPB-CN (30 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm) demonstrates excellent electroluminescence (EL) performance with blue emission (451 nm) and maximum external quantum efficiency (EQEmax) of 7.38 %. The device with a thinner layer of PI-TPB-CN (20 nm) and TPBi (30 nm) exhibits a deeper blue emission (444 nm) with CIE coordinates of (0.156, 0.096), a low turn-on voltage of 3.0 V, and EQEmax of 6.45 %.
Collapse
Affiliation(s)
- Teerapat Itsoponpan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Praweena Wongkaew
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Nipanan Prakanpo
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Trirath Sukthawee
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Taweesak Suyoadsuk
- Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
11
|
Wan D, Zhou J, Yang Y, Meng G, Zhang D, Duan L, Ding J. Peripheral Substitution Engineering of MR-TADF Emitters Embedded With B‒N Covalent Bond Towards Efficient BT.2020 Blue Electroluminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409706. [PMID: 39403797 DOI: 10.1002/adma.202409706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Indexed: 12/06/2024]
Abstract
Compared with the classical boron/nitrogen (B/N) doped ones, multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters embedded with B-N covalent bond behave a significantly blue-shifted narrowband TADF, and thus show a greater potential in ultrapure blue organic light-emitting diodes (OLEDs). As a proof of concept, herein a peripheral substitution engineering is demonstrated based on such a B‒N embedded parent core. The simple approach is found to ensure easy synthesis via a one-pot lithium-free borylation-annulation, manipulate the excited states through different electronic coupling between core and substituent, and introduce the steric hindrance to minimize the unwanted spectral broadening. Impressively, ultrapure blue OLEDs are realized to give a high external quantum efficiency of 20.3% together with Commission Internationale de l'Éclairage coordinates of (0.152, 0.046). The performance is well competent with those of B/N doped MR-TADF emitters, clearly highlighting that the B‒N embedded framework is a novel promising paradigm towards efficient BT.2020 blue standard.
Collapse
Affiliation(s)
- Danrui Wan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
- Southwest United Graduate School, Kunming, 650092, P. R. China
| | - Jianping Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Guoyun Meng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Southwest United Graduate School, Kunming, 650092, P. R. China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junqiao Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
- Southwest United Graduate School, Kunming, 650092, P. R. China
| |
Collapse
|
12
|
Starykov H, Bezvikonnyi O, Sych G, Simokaitiene J, Volyniuk D, Lazauskas A, Grazulevicius JV. Effects of donor substituents on the conformational heterogeneity, photophysical, mechanochromic and electroluminescent properties of the donor-substituted fluorine-containing triphenylpyrimidines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124668. [PMID: 38963947 DOI: 10.1016/j.saa.2024.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Three derivatives of fluorinated triphenylpyrimidine with the attached carbazole, phenothiazine, or acridan donor moieties are synthesized by Buchwald-Hartwig reactions. The impact of the donor units on emissive and other properties of the compounds is reported. The compounds exhibit excellent thermal stability, competitive photophysical phenomena such as room temperature phosphorescence (RTP) appearing when compounds are molecularly dispersed in the rigid polymer matrix and thermally activated delayed fluorescence (TADF). The compounds with carbazole and phenothiazine donor moieties show the manifestation of triplet-triplet annihilation in the electroluminescence when used as emitters in organic light-emitting diodes (OLEDs). The phenothiazine-containing compound exhibit dual photoluminescence with the blue-shifted peak corresponding to the quasi-axial conformer and a red-shifted peak to the quasi-equatorial conformer. This derivative shows reversible shifts of emission spectra exceeding 100 nm due to the stable (at least 4 cycles) mechanochromic luminescence under the application of external stimuli. After grinding the emission intensity maximum is observed at 555 nm, after fuming at. ca 448 nm and after melting at 555 nm. The photoluminescence shifts and ON/OFF delayed fluorescence of the phenothiazine-based emitter occur due to the alteration between the crystalline and amorphous states. Optimization of the device structure allows to control the charge balance resulting in external quantum efficiency of up to 5.7 % observed for the OLED based on the phenothiazine-based emitter. This compound also shows the biggest response to the presence of oxygen acting as the quencher of triplet excited energy. The film of the compound doped in rigid Zeonex shows an 8.4-fold increase in emission intensity after evacuation. The optical sensor fabricated using the derivative of fluorinated triphenylpyrimidine and phenothiazine is characterized by the Stern-Volmer constant 1.37 × 10-4 ppm-1.
Collapse
Affiliation(s)
- Hryhorii Starykov
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Oleksandr Bezvikonnyi
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania; Department of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentų St. 50 LT-51369, Kaunas, Lithuania.
| | - Galyna Sych
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Jurate Simokaitiene
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Algirdas Lazauskas
- Institute of Materials Sciences, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania.
| |
Collapse
|
13
|
Kuila S, Miranda-Salinas H, Eng J, Li C, Bryce MR, Penfold TJ, Monkman AP. Rigid and planar π-conjugated molecules leading to long-lived intramolecular charge-transfer states exhibiting thermally activated delayed fluorescence. Nat Commun 2024; 15:9611. [PMID: 39511188 PMCID: PMC11544105 DOI: 10.1038/s41467-024-53740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Intramolecular charge transfer (ICT) occurs when photoexcitation causes electron transfer from an electron donor to an electron acceptor within the same molecule and is usually stabilized by decoupling of the donor and acceptor through an orthogonal twist between them. Thermally activated delayed fluorescence (TADF) exploits such twisted ICT states to harvest triplet excitons in OLEDs. However, the highly twisted conformation of TADF molecules results in limited device lifetimes. Rigid molecules offer increased stability, yet their typical planarity and π-conjugated structures impedes ICT. Herein, we achieve dispersion-free triplet harvesting using fused indolocarbazole-phthalimide molecules that have remarkably stable co-planar ICT states, yielding blue/green-TADF with good photoluminescence quantum yield and small singlet-triplet energy gap < 50 meV. ICT formation is dictated by the bonding connectivity and excited-state conjugation breaking between the donor and acceptor fragments, that stabilises the planar ICT excited state, revealing a new criterion for designing efficient TADF materials.
Collapse
Affiliation(s)
- Suman Kuila
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK.
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado, 80309, US.
| | | | - Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Chunyong Li
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Martin R Bryce
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew P Monkman
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
14
|
Yuan W, Jin Q, Du M, Duan L, Zhang Y. Tailoring Ultra-Narrowband Tetraborylated Multiple Resonance Emitter for High-Performance Blue OLED. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410096. [PMID: 39385644 DOI: 10.1002/adma.202410096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Ultra-narrowband multiple resonance (MR) emitters are a key component in the fabrication of highly efficient and stable blue organic light-emitting diodes (OLEDs). To explore the theoretical boundaries of wavelength and full width at half maximum (FWHM) in blue emitters, the currently narrowest boron-based MR emitter is carefully designed by integrating the superior v-DABNA and BBCz-DB structures under the auspices of the ingenious short-range charge-transfer region regulation strategy. The target tetraboron compound TB-PB demonstrates a blue emission with an emission maximum of 473 nm, a small FWHM of 12 nm and a CIEy coordinate of 0.14. Benefiting from the emitter's high photoluminescence quantum yield (99%), low excited-state energy (2.74 eV) and short delayed fluorescence lifetime (0.53 µs), the corresponding OLED achieves exceptional efficiencies of 36.4%, 49.1 cd A-1, and 51.4 lm W-1 with a record-high luminescence of 9.0 × 105 cd m-2, an ultra-narrow FWHM of 15 nm and a CIEy coordinate of 0.20. These breakthroughs will accelerate the development of next-generation blue emitters and lead to the advancement of OLED technology.
Collapse
Affiliation(s)
- Wenbo Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qian Jin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingxu Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
15
|
Yan J, Wu C, Tong KN, Zhou F, Chen Y, Pan Y, Xie G, Chi Y, Lau KC, Wei G. Structural Engineering of Iridium(III) Phosphors with Imidazo[4,5-b]pyrazin-2-ylidene Cyclometalates for Efficient Blue Electroluminescence. SMALL METHODS 2024; 8:e2301555. [PMID: 38185747 DOI: 10.1002/smtd.202301555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Iridium(III) complexes are particularly noted for their excellent potentials in fabrication of blue organic light-emitting diodes (OLEDs), but the severe efficiency roll-off largely hampered their practical applications. To reveal the underlying characteristics, three Ir(III) complexes, namely f-ct5c, f-ct5d, and f-ct11, bearing imidazo[4,5-b]pyrazin-2-ylidene cyclometalates are prepared and characterized in detail. Both f-ct5c and f-ct5d (also their mixture f-ct5mix) gave intensive blue emissions peaking at ≈465 nm with short radiative lifetimes of 1.76 and 2.45 µs respectively, in degassed toluene. Alternatively, f-ct11 with two 4-tert-butylphenyl substituents on each imidazo[4,5-b]pyrazin-2-ylidene entity, possessed a bluish-green emission (508 nm) together with an extended radiative lifetime of 34.3 µs in the dispersed PMMA matrix. Consequently, the resulting solution-processed OLED with f-ct11 delivered a maximum external quantum efficiency (EQEmax) of 6.5% with serious efficiency roll-offs. In contrast, f-ct5mix based device achieved a high EQEmax of 27.2% and the EQE maintained at 23.0% of 1000 cd m-2. Furthermore, the hyper-OLEDs with f-ct5mix as the sensitizer and v-DABNA as the terminal emitter afford narrowed emission with a considerably high EQEmax exceeding 32%, affirming the potential of f-ct5mix to serve as both the emitter and sensitizer in OLEDs.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Chengcheng Wu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Kai-Ning Tong
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Fan Zhou
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Yidong Chen
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Yi Pan
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Guohua Xie
- The Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Kai-Chung Lau
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Guodan Wei
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
16
|
Tannir S, Pan Y, Josephs N, Cunningham C, Hendrick NR, Beckett A, McNeely J, Beeler A, Jeffries-El M, Kolaczyk ED. Predicting Emission Wavelengths in Benzobisoxazole-Based OLEDs with Gradient Boosted Ensemble Models. J Phys Chem A 2024; 128:6116-6123. [PMID: 39008894 DOI: 10.1021/acs.jpca.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We demonstrate the use of gradient-boosted ensemble models that accurately predict emission wavelengths in benzobis[1,2-d:4,5-d']oxazole (BBO) based fluorescent emitters. We have curated a database of 50 molecules from previously published data by the Jeffries-EL group using density functional theory (DFT) computed ground and excited state features. We consider two machine learning (ML) models based on (i) whole cruciform molecules and (ii) their constituent fragment molecules. Both ML models provide accurate predictions with root-mean-square errors between 30 and 36 nm, competitive with state-of-the-art deep learning models trained on orders of magnitude more molecules, and this accuracy holds even when tested on four new BBO emitters unseen by the models. We also provide an interpretable feature importance analysis and discuss the relevant relationships between DFT and changes in predicted emission wavelength.
Collapse
Affiliation(s)
- Shambhavi Tannir
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Yuning Pan
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, United States
| | - Nathaniel Josephs
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | - Nathan R Hendrick
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Annie Beckett
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - James McNeely
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Aaron Beeler
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Malika Jeffries-El
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Eric D Kolaczyk
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, United States
- Department of Mathematics and Statistics, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
17
|
Mamada M, Aoyama A, Uchida R, Ochi J, Oda S, Kondo Y, Kondo M, Hatakeyama T. Efficient Deep-Blue Multiple-Resonance Emitters Based on Azepine-Decorated ν-DABNA for CIE y below 0.06. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402905. [PMID: 38695744 DOI: 10.1002/adma.202402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Ultrapure deep-blue emitters are in high demand for organic light-emitting diodes (OLEDs). Although color coordinates serve as straightforward parameters for assessing color purity, precise control over the maximum wavelength and full-width at half-maximum is necessary to optimize OLED performance, including luminance efficiency and luminous efficacy. Multiple-resonance (MR) emitters are promising candidates for achieving ideal luminescence properties; consequently, a wide variety of MR frameworks have been developed. However, most of these emitters experience a wavelength displacement from the ideal color, which limits their practical applicability. Therefore, a molecular design that is compatible with MR emitters for modulating their energy levels and color output is particularly valuable. Here, it is demonstrated that the azepine donor unit induces an appropriate blue-shift in the emission maximum while maintaining efficient MR characteristics, including high photoluminescence quantum yield, narrow emission, and a fast reverse intersystem crossing rate. OLEDs using newly developed MR emitters based on the ν-DABNA framework simultaneously exhibit a high quantum efficiency of ≈30%, luminous efficacy of ≈20 lm W-1, exceptional color purity with Commission Internationale de l'Éclairage coordinates as low as (0.14, 0.06), and notably high operational stability. These results demonstrate unprecedentedly high levels compared with those observed in previously reported deep-blue emitters.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akio Aoyama
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ryota Uchida
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Susumu Oda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Yasuhiro Kondo
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Masakazu Kondo
- JNC Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
18
|
Wu Y, Xin Y, Pan Y, Yiu S, Yan J, Lau KC, Duan L, Chi Y. Ir(III) Metal Emitters with Cyano-Modified Imidazo[4,5-b]pyridin-2-ylidene Chelates for Deep-Blue Organic Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309389. [PMID: 38689505 PMCID: PMC11234470 DOI: 10.1002/advs.202309389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Ir(III) carbene complexes have been explored as one of the best blue phosphors for their high performance. Herein, the authors designed and synthesized a series of blue-emitting Ir(III) phosphors (f-ct9a-c), featuring fac-coordinated cyano-imidazo[4,5-b]pyridin-2-ylidene cyclometalates. These Ir(III) complexes exhibit true-blue emission with a peak maximum spanning 448-467 nm, with high photoluminescence quantum yields of 81-88% recorded in degassed toluene. Moreover, OLED devices bearing phosphors f-ct9a and f-ct9b deliver maximum external quantum efficiencies (EQEmax) of 25.9% and 30.3%, together with Commission Internationale de L'Eclairage (CIEx,y) coordinates of (0.157, 0.225) and (0.142, 0.169), respectively. Remarkably, the f-ct9b-based device displays an incredible EQE of 29.0% at 5000 cd·m-2. The hyper-OLED device based on f-ct9b and ν-DABNA exhibits an EQEmax of 34.7% and CIEx,y coordinates of (0.122, 0.131), affirming high potentials in achieving efficient blue electroluminescence.
Collapse
Affiliation(s)
- Yixin Wu
- Department of ChemistryDepartment of Materials Science and EngineeringCenter of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong KongSAR999077China
| | - Yangyang Xin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084China
| | - Yi Pan
- Department of ChemistryDepartment of Materials Science and EngineeringCenter of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong KongSAR999077China
| | - Shek‐Man Yiu
- Department of ChemistryDepartment of Materials Science and EngineeringCenter of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong KongSAR999077China
| | - Jie Yan
- Department of ChemistryDepartment of Materials Science and EngineeringCenter of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong KongSAR999077China
| | - Kai Chung Lau
- Department of ChemistryDepartment of Materials Science and EngineeringCenter of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong KongSAR999077China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084China
| | - Yun Chi
- Department of ChemistryDepartment of Materials Science and EngineeringCenter of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong KongSAR999077China
| |
Collapse
|
19
|
Fang H, Li J, Gong S, Lin J, Xie G. Inkjet Printing of High-Color-Purity Blue Organic Light-Emitting Diodes with Host-Free Inks. Molecules 2024; 29:2147. [PMID: 38731637 PMCID: PMC11085598 DOI: 10.3390/molecules29092147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Inkjet printing technology offers a unique approach to producing direct-patterned pixels without fine metal masks for active matrix displays. Organic light-emitting diodes (OLEDs) consisting of thermally activated delayed fluorescence (TADF) emitters facilitate efficient light emission without heavy metals, such as platinum and iridium. Multi-resonance TADF molecules, characterized by their small full width at half maxima (FWHM), are highly suitable for the requirements of wide color-gamut displays. Herein, host-free TADF inks with a low concentration of 1 mg/mL were developed and inkjet-printed onto a seeding layer, concurrently serving as the hole-transporting layer. Attributed to the proof-of-concept of host-free inks printed on a mixed seeding layer, a maximum external quantum efficiency of 13.1% (improved by a factor of 21.8) was achieved in the inkjet-printed OLED, with a remarkably narrow FWHM of only 32 nm. Highly efficient energy transfer was facilitated by the effective dispersion of the sensitizer around the terminal emitters.
Collapse
Affiliation(s)
- Hui Fang
- Sauvage Center for Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China; (H.F.); (J.L.); (J.L.)
| | - Jiale Li
- Sauvage Center for Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China; (H.F.); (J.L.); (J.L.)
| | - Shaolong Gong
- Sauvage Center for Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China; (H.F.); (J.L.); (J.L.)
| | - Jinliang Lin
- Sauvage Center for Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China; (H.F.); (J.L.); (J.L.)
- The Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen 361005, China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China; (H.F.); (J.L.); (J.L.)
- The Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Gawale Y, Palanisamy P, Lee HS, Chandra A, Kim HU, Ansari R, Chae MY, Kwon JH. Structural Optimization of BODIPY Derivatives: Achieving Stable and Long-Lived Green Emission in Hyperfluorescent OLEDs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22274-22281. [PMID: 38650524 DOI: 10.1021/acsami.4c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Boron dipyrromethene (BODIPY) derivatives are widely studied as terminal emitters in organic light-emitting diodes (OLED) due to their narrow emission and high photoluminescence quantum yield (PLQY). However, the strategy for precisely tuning their emission toward a high color purity is still challenging. Herein, we developed a new design strategy to regulate the emission of BODIPY derivatives by modifying the electronic and steric dominance using functionalities, such as nitrile, pentafluorophenyl, diethyl, and monobenzyl. These rational modifications yielded a series of four novel green BODIPY emitters, namely, tPN-BODIPY, tPPP-BODIPY, tPBn-BODIPY, and tPEN-BODIPY, each benefited with a tuned emissions range of 517 to 542 nm with a narrow fwhm of 25 nm and high photoluminescence quantum yield up to 96%. Among these synthesized BODIPYs, an unsymmetrical tPBn-BODIPY was chosen as a final dopant (FD) to explore its application in OLED devices. The fabricated TADF sensitized fluorescence-OLED (TSF-OLED) exhibits a narrow band pure green emission at 531 nm with corresponding CIE coordinates of (x, y) = (0.27, 0.68) and a maximum external quantum efficiency (EQE) of 20%. Furthermore, the TSF-OLED displayed an exceptionally prolonged device operational lifetime (LT90) of 210 h at an initial luminescence of 3000 cd m-2.
Collapse
Affiliation(s)
- Yogesh Gawale
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Paramasivam Palanisamy
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyun Seung Lee
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ajeet Chandra
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hae Ung Kim
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rasheeda Ansari
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Mi Young Chae
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jang Hyuk Kwon
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Park S, Lee C, Lee H, Lee K, Kwon H, Park S, Park J. Improving the Electroluminescence Properties of New Chrysene Derivatives with High Color Purity for Deep-Blue OLEDs. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1887. [PMID: 38673244 PMCID: PMC11052429 DOI: 10.3390/ma17081887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Two blue-emitting materials, 4-(12-([1,1':3',1″-terphenyl]-5'-yl)chrysen-6-yl)-N,N-diphenylaniline (TPA-C-TP) and 6-([1,1':3',1″-terphenyl]-5'-yl)-12-(4-(1,2,2-triphenylvinyl)phenyl)chrysene (TPE-C-TP), were prepared with the composition of a chrysene core moiety and terphenyl (TP), triphenyl amine (TPA), and tetraphenylethylene (TPE) moieties as side groups. The maximum photoluminescence (PL) emission wavelengths of TPA-C-TP and TPE-C-TP were 435 and 369 nm in the solution state and 444 and 471 nm in the film state. TPA-C-TP effectively prevented intermolecular packing through the introduction of TPA, a bulky aromatic amine group, and it showed an excellent photoluminescence quantum yield (PLQY) of 86% in the film state. TPE-C-TP exhibited aggregation-induced emission; the PLQY increased dramatically from 0.1% to 78% from the solution state to the film state. The two synthesized materials had excellent thermal stability, with a high decomposition temperature exceeding 460 °C. The two compounds were used as emitting layers in a non-doped device. The TPA-C-TP device achieved excellent electroluminescence (EL) performance, with Commission Internationale de L'Eclairage co-ordinates of (0.15, 0.07) and an external quantum efficiency of 4.13%, corresponding to an EL peak wavelength of 439 nm.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jongwook Park
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea; (S.P.); (C.L.); (H.L.); (K.L.); (H.K.); (S.P.)
| |
Collapse
|
22
|
Kwon Y, Lee S, Kim J, Jun J, Jeon W, Park Y, Kim HJ, Gierschner J, Lee J, Kim Y, Kwon MS. Ultraviolet light blocking optically clear adhesives for foldable displays via highly efficient visible-light curing. Nat Commun 2024; 15:2829. [PMID: 38565557 PMCID: PMC10987679 DOI: 10.1038/s41467-024-47104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
In developing an organic light-emitting diode (OLED) panel for a foldable smartphone (specifically, a color filter on encapsulation) aimed at reducing power consumption, the use of a new optically clear adhesive (OCA) that blocks UV light was crucial. However, the incorporation of a UV-blocking agent within the OCA presented a challenge, as it restricted the traditional UV-curing methods commonly used in the manufacturing process. Although a visible-light curing technique for producing UV-blocking OCA was proposed, its slow curing speed posed a barrier to commercialization. Our study introduces a highly efficient photo-initiating system (PIS) for the rapid production of UV-blocking OCAs utilizing visible light. We have carefully selected the photocatalyst (PC) to minimize electron and energy transfer to UV-blocking agents and have chosen co-initiators that allow for faster electron transfer and more rapid PC regeneration compared to previously established amine-based co-initiators. This advancement enabled a tenfold increase in the production speed of UV-blocking OCAs, while maintaining their essential protective, transparent, and flexible properties. When applied to OLED devices, this OCA demonstrated UV protection, suggesting its potential for broader application in the safeguarding of various smart devices.
Collapse
Affiliation(s)
- Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seokju Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Junkyu Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jinwon Jun
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Youngjoo Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Joong Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain
| | - Jaesang Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Youngdo Kim
- Samsung Display Co., Ltd., Cheonan, Republic of Korea.
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Cho HH, Congrave DG, Gillett AJ, Montanaro S, Francis HE, Riesgo-Gonzalez V, Ye J, Chowdury R, Zeng W, Etherington MK, Royakkers J, Millington O, Bond AD, Plasser F, Frost JM, Grey CP, Rao A, Friend RH, Greenham NC, Bronstein H. Suppression of Dexter transfer by covalent encapsulation for efficient matrix-free narrowband deep blue hyperfluorescent OLEDs. NATURE MATERIALS 2024; 23:519-526. [PMID: 38480865 PMCID: PMC10990937 DOI: 10.1038/s41563-024-01812-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/18/2024] [Indexed: 03/21/2024]
Abstract
Hyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient 'matrix-free' blue hyperfluorescence.
Collapse
Affiliation(s)
- Hwan-Hee Cho
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Daniel G Congrave
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | | | - Stephanie Montanaro
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Haydn E Francis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK
| | - Víctor Riesgo-Gonzalez
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Weixuan Zeng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Marc K Etherington
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne, UK
| | - Jeroen Royakkers
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Oliver Millington
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough, UK
| | | | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Hugo Bronstein
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Yan J, Feng ZQ, Wu Y, Zhou DY, Yiu SM, Chan CY, Pan Y, Lau KC, Liao LS, Chi Y. Blue Electrophosphorescence from Iridium(III) Phosphors Bearing Asymmetric Di-N-aryl 6-(trifluoromethyl)-2H-imidazo[4,5-b]pyridin-2-ylidene Chelates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305273. [PMID: 37461316 DOI: 10.1002/adma.202305273] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 09/22/2023]
Abstract
Efficient blue phosphors remain a formidable challenge for organic light-emitting diodes (OLEDs). To circumvent this obstacle, a series of Ir(III)-based carbene complexes bearing asymmetric di-N-aryl 6-(trifluoromethyl)-2H-imidazo[4,5-b]pyridin-2-ylidene chelates, namely, f-ct6a‒c, are synthesized, and their structures and photophysical properties are comprehensively investigated. Moreover, these emitters can undergo interconversion in refluxing 1,2,4-trichlorobenzene, catalyzed by a mixture of sodium acetate (NaOAc) and p-toluenesulfonic acid monohydrate (TsOH·H2O) without decomposition. All Ir(III) complexes present good photoluminescence quantum yield (ΦPL = 83-88%) with peak maximum (max.) at 443-452 nm and narrowed full width at half maximum (FWHM = 66-73 nm). Among all the fabricated OLED devices, f-ct6b delivers a max. external quantum efficiency (EQE) of 23.4% and Commission Internationale de L'Eclairage CIEx , y coordinates of (0.14, 0.12), whereas the hyper-OLED device based on f-ct6a and 5H,9H,11H,15H-[1,4] benzazaborino [2,3,4-kl][1,4]benzazaborino[4',3',2':4,5][1,4]benzazaborino[3,2-b]phenazaborine-7,13-diamine, N7,N7,N13,N13,5,9,11,15-octaphenyl (ν-DABNA) exhibits max. EQE of 26.2% and CIEx , y of (0.12, 0.13). Finally, the corresponding tandem OLED with f-ct6b as dopant gives a max. luminance of over 10 000 cd m-2 and max. EQE of 42.1%, confirming their candidacies for making true-blue OLEDs.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zi-Qi Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yixin Wu
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Dong-Ying Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shek-Man Yiu
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Chin-Yiu Chan
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yi Pan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Kai Chung Lau
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yun Chi
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
25
|
Huang Y, Jia M, Li C, Yang Y, He Y, Luo Y, Huang Y, Zhou L, Lu Z. A spiroacridine-based thermally activated delayed fluorescence emitter for high-efficiency and narrow-band deep-blue OLEDs. Chem Commun (Camb) 2024; 60:3194-3197. [PMID: 38415749 DOI: 10.1039/d4cc00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel deep-blue thermally activated delayed fluorescence molecule of SAC-BOC was reported. The SAC-BOC-based device exhibits a narrow full width at half maximum of 57 nm, an impressive maximum external quantum efficiency (EQEmax) of 15.3% and CIE coordinates of (0.144, 0.129).
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Mengjiao Jia
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chuan Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yang Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yuling He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yanju Luo
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
26
|
Cheong K, Jo U, Hong WP, Lee JY. Fused Cycloalkyl Unit-Functionalized Tetradentate Pt(II) Complexes for Efficient and Narrow-Emitting Deep Blue Organic Light-Emitting Diodes. SMALL METHODS 2024; 8:e2300862. [PMID: 37926779 DOI: 10.1002/smtd.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Indexed: 11/07/2023]
Abstract
A blue tetradentate Pt(II) complex named Pt-tmCyCz is developed by introducing a cycloalkyl unit fused to carbazole to improve the rigidity and bulkiness of the complex. The introduction of the tetramethylcyclohexyl (tmCy) group results in a narrow full width at half maximum (FWHM), a high horizontal emitting dipole orientation, doping concentration resistant stable spectrum, and extremely small efficiency roll-off, and little concentration quenching effect. Phosphorescent organic light-emitting diodes (OLEDs) doped with Pt-tmCyCz achieve a high external quantum efficiency (EQE) of 21.5%, with a small EQE roll-off of 3.8% up to 1000 cd m-2 , a small FWHM of 24 nm, and a color coordinate of (0.132, 0.138). Moreover, Pt-tmCyCz is investigated as a sensitizer in phosphor-sensitized OLEDs using N7 ,N7 ,N13 ,N13 ,5,9,11,15-octaphenyl-5,9,11,15-tetrahydro-5,9,11,15-tetraaza-19b,20b-diboradinaphtho[3,2,1-de:1',2',3'-jk]pentacene-7,13-diamine (νDABNA) as a terminal emitter. The Pt-tmCyCz:νDABNA device achieves a high EQE of 33.9%, with a small EQE roll-off of only 8.0% up to 1 000 cd m-2 . The results demonstrate that fused tmCy group in carbazole can be an effective building block for the development of high-performance Pt(II) complexes, which can be utilized as efficient phosphors or sensitizers in OLEDs.
Collapse
Affiliation(s)
- Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Unhyeok Jo
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Wan Pyo Hong
- Department of Chemistry, Gachon University, 1342, Seongnam-daero,Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
27
|
Luo X, Jin Q, Du M, Wang D, Duan L, Zhang Y. An Ideal Molecular Construction Strategy for Ultra-Narrow-Band Deep-Blue Emitters: Balancing Bathochromic-Shift Emission, Spectral Narrowing, and Aggregation Suppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307675. [PMID: 38161235 PMCID: PMC10953554 DOI: 10.1002/advs.202307675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Narrowband emissive multiple resonance (MR) emitters promise high efficiency and stability in deep-blue organic light-emitting diodes (OLEDs). However, the construction of ideal ultra-narrow-band deep-blue MR emitters still faces formidable challenges, especially in balancing bathochromic-shift emission, spectral narrowing, and aggregation suppression. Here, DICz is chosen, which possesses the smallest full-width-at-half-maximum (FWHM) in MR structures, as the core and solved the above issue by tuning its peripheral substitution sites. The 1-substituted molecule Cz-DICz is able to show a bright deep-blue emission with a peak at 457 nm, an extremely small FWHM of 14 nm, and a CIE coordinate of (0.14, 0.08) in solution. The corresponding OLEDs exhibit high maximum external quantum efficiencies of 22.1%-25.6% and identical small FWHMs of 18 nm over the practical mass-production concentration range (1-4 wt.%). To the best of the knowledge, 14 and 18 nm are currently the smallest FWHM values for deep-blue MR emitters with similar emission maxima under photoluminescence and electroluminescence conditions, respectively. These discoveries will help drive the development of high-performance narrowband deep-blue emitters and bring about a revolution in OLED industry.
Collapse
Affiliation(s)
- Xiaofeng Luo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Qian Jin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Mingxu Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Dong Wang
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijing100084P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijing100084P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijing100084P. R. China
- Applied Mechanics LabSchool of Aerospace EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
28
|
Price J, Tallaie T, Eisler S. Pericyclic Cascade Reactions Affording Thienyl- and Benzo[ b]thienyl-Fused Architectures: A Synthetic and Density Functional Theory Analysis of Asynchronous Diels-Alder Reactions of Thioarylmaleimides. J Org Chem 2024; 89:1379-1388. [PMID: 38215402 DOI: 10.1021/acs.joc.3c01797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Herein, we report the synthesis and characterization of a series of thioarylmaleimides and their varied propensity toward highly selective domino Diels-Alder (D-A)/rearrangement, D-A/ene/elimination, and D-A/oxidation reactions to give three types of thienyl-fused architectures. Stereochemical assignment was achieved using a combination of nuclear magnetic resonance (NMR) studies, gauge independent atomic orbital (GIAO) NMR chemical shift calculations, and DP4+ analysis. Transition-state calculations support an asynchronous concerted mechanism and provide support for rationalizing the observed regio- and stereoselectivity.
Collapse
Affiliation(s)
- Jayden Price
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Tabassom Tallaie
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Sara Eisler
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
29
|
Tankelevičiūtė E, Samuel IDW, Zysman-Colman E. The Blue Problem: OLED Stability and Degradation Mechanisms. J Phys Chem Lett 2024; 15:1034-1047. [PMID: 38259039 PMCID: PMC10839906 DOI: 10.1021/acs.jpclett.3c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
OLED technology has revolutionized the display industry and is promising for lighting. Despite its maturity, there remain outstanding device and materials challenges to address. Particularly, achieving stable and highly efficient blue OLEDs is still proving to be difficult; the vast array of degradation mechanisms at play, coupled with the precise balance of device parameters needed for blue high-performance OLEDs, creates a unique set of challenges in the quest for a suitably stable yet high-performance device. Here, we discuss recent progress in the understanding of device degradation pathways and provide an overview of possible strategies to increase device lifetimes without a significant efficiency trade-off. Only careful consideration of all variables that go into OLED development, from the choice of materials to a deep understanding of which degradation mechanisms need to be suppressed for the particular structure, can lead to a meaningful positive change toward commercializable blue devices.
Collapse
Affiliation(s)
- Eglė Tankelevičiūtė
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
- Organic
Semiconductor Centre, School of Physics & Astronomy, University of St Andrews, St Andrews, U.K., KY16 9SS
| | - Ifor D. W. Samuel
- Organic
Semiconductor Centre, School of Physics & Astronomy, University of St Andrews, St Andrews, U.K., KY16 9SS
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| |
Collapse
|
30
|
Isci R, Ozturk T. Thienothiophene-based organic light-emitting diode: synthesis, photophysical properties and application. Beilstein J Org Chem 2023; 19:1849-1857. [PMID: 38090628 PMCID: PMC10714501 DOI: 10.3762/bjoc.19.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
A donor-π-acceptor (D-π-A)-type pull-push compound, DMB-TT-TPA (8), comprising triphenylamine as donor and dimesitylboron as acceptor linked through a thieno[3,2-b]thiophene (TT) π-conjugated linker bearing a 4-MeOPh group, was designed, synthesized, and fabricated as an emitter via a solution process for an organic light-emitting diode (OLED) application. DMB-TT-TPA (8) exhibited absorption and emission maxima of 411 and 520 nm, respectively, with a mega Stokes shift of 109 nm and fluorescence quantum yields both in the solid state (41%) and in solution (86%). The optical properties were supported by computational chemistry using density functional theory for optimized geometry and absorption. A solution-processed OLED was fabricated using low turn-on voltage, which had performances with maximum power, current, and external quantum efficiencies of 6.70 lm/W, 10.6 cd/A, and 4.61%, respectively.
Collapse
Affiliation(s)
- Recep Isci
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Turan Ozturk
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
- TUBITAK UME, Chemistry Group Laboratories, 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
31
|
Jung SH, Park SH, Kwon NY, Park JY, Kang MJ, Koh CW, Cho MJ, Park S, Choi DH. Novel π-Extended Indolocarbazole-Based Deep-Blue Fluorescent Emitter with Remarkably Narrow Bandwidth for Solution-Processed Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56106-56115. [PMID: 37994594 DOI: 10.1021/acsami.3c11702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In solution-processed organic light-emitting diodes (OLEDs), achieving high color purity and efficiency is as important as that in vacuum processes. Emitters suitable for solution processing must have excellent solubility in organic solvents, high molecular weight, and compatibility with the host materials. In this study, we synthesized a deep-blue emitter that satisfies the above conditions by introducing a 1,4-bis(indolo[3,2,1-jk]carbazol-2-yl)benzene-based planar emitting core (DICz) structure and four 3,6-di-tert-butyl-9-phenyl-9H-carbazole (tCz) peripheral units, namely, 4tCz-DICz. A comparative compound, 4Hex-DICz, incorporating hexyl phenyl groups was synthesized. In contrast to 4Hex-DICz, 4tCz-DICz exhibited exceptional solubility in organic solvents and superior film-forming properties attributed to the presence of tCz units. Additionally, in the film state, the effective encapsulation of the emitting core (DICz) by the tCz units in 4tCz-DICz helps prevent undesirable molecular aggregation. The solution-processed OLEDs employing the CH-2D1 film, doped with 5 wt % 4tCz-DICz as the emitting layer, exhibited a deep-blue emission at 424 nm, characterized by a narrow bandwidth of 22 nm, and achieved a maximum external quantum efficiency (EQE) of approximately 4.0%. In contrast, the 4Hex-DICz-based device demonstrated an EQE of 2.91%. Consequently, we have successfully demonstrated that the introduction of four bulky tCz units into the DICz core is a promising molecular design strategy for the development of soluble indolocarbazole-based emitters, especially those used in high-performance deep-blue fluorescent OLEDs.
Collapse
Affiliation(s)
- Sung Hoon Jung
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Ji Kang
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Kim J, Kim J, Kim Y, Son Y, Shin Y, Bae HJ, Kim JW, Nam S, Jung Y, Kim H, Kang S, Jung Y, Lee K, Choi H, Kim WY. Critical role of electrons in the short lifetime of blue OLEDs. Nat Commun 2023; 14:7508. [PMID: 37980350 PMCID: PMC10657374 DOI: 10.1038/s41467-023-43408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Designing robust blue organic light-emitting diodes is a long-standing challenge in the display industry. The highly energetic states of blue emitters cause various degradation paths, leading to collective luminance drops in a competitive manner. However, a key mechanism of the operational degradation of organic light-emitting diodes has yet to be elucidated. Here, we show that electron-induced degradation reactions play a critical role in the short lifetime of blue organic light-emitting diodes. Our control experiments demonstrate that the operational lifetime of a whole device can only be explained when excitons and electrons exist together. We examine the atomistic mechanisms of the electron-induced degradation reactions by analyzing their energetic profiles using computational methods. Mass spectrometric analysis of aged devices further confirm the key mechanisms. These results provide new insight into rational design of robust blue organic light-emitting diodes.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Joonghyuk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Yongjun Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngmok Son
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Youngsik Shin
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hye Jin Bae
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Ji Whan Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sungho Nam
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyeonsu Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sungwoo Kang
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Innovation Center, Samsung Electronics Co., Ltd., 1 Samsungjeonja-ro, Hwasung-si, Gyeonggi-do, 18448, Republic of Korea
| | - Yoonsoo Jung
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyunghoon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonho Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
33
|
Yan J, Zhou DY, Liao LS, Kuhn M, Zhou X, Yiu SM, Chi Y. Electroluminescence and hyperphosphorescence from stable blue Ir(III) carbene complexes with suppressed efficiency roll-off. Nat Commun 2023; 14:6419. [PMID: 37828017 PMCID: PMC10570383 DOI: 10.1038/s41467-023-42090-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Efficient Förster energy transfer from a phosphorescent sensitizer to a thermally activated delayed fluorescent terminal emitter constitutes a potential solution for achieving superb blue emissive organic light-emitting diodes, which are urgently needed for high-performance displays. Herein, we report the design of four Ir(III) metal complexes, f-ct1a ‒ d, that exhibit efficient true-blue emissions and fast radiative decay lifetimes. More importantly, they also undergo facile isomerization in the presence of catalysts (sodium acetate and p-toluenesulfonic acid) at elevated temperature and, hence, allow for the mass production of either emitter without decomposition. In this work, the resulting hyper-OLED exhibits a true-blue color (Commission Internationale de I'Eclairage coordinate CIEy = 0.11), a full width at half maximum of 18 nm, a maximum external quantum efficiency of 35.5% and a high external quantum efficiency 20.3% at 5000 cd m‒2, paving the way for innovative blue OLED technology.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong, SAR, China
| | - Dong-Ying Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China.
| | - Martin Kuhn
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiuwen Zhou
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, SAR, China
| | - Yun Chi
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong, SAR, China.
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, SAR, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Hong Kong, SAR, China.
| |
Collapse
|
34
|
Woo JY, Park MH, Jeong SH, Kim YH, Kim B, Lee TW, Han TH. Advances in Solution-Processed OLEDs and their Prospects for Use in Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207454. [PMID: 36300804 DOI: 10.1002/adma.202207454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This review outlines problems and progress in development of solution-processed organic light-emitting diodes (SOLEDs) in industry and academia. Solution processing has several advantages such as low consumption of materials, low-cost processing, and large-area manufacturing. However, use of a solution process entails complications, such as the need for solvent resistivity and solution-processable materials, and yields SOLEDs that have limited luminous efficiency, severe roll-off characteristics, and short lifetime compared to OLEDs fabricated using thermal evaporation. These demerits impede production of practical SOLED displays. This review outlines the industrial demands for commercial SOLEDs and the current status of SOLED development in industries and academia, and presents research guidelines for the development of SOLEDs that have high efficiency, long lifetime, and good processability to achieve commercialization.
Collapse
Affiliation(s)
- Joo Yoon Woo
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Min-Ho Park
- Department of Organic Materials and Fiber Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Su-Hun Jeong
- Future Technology Research Center, LG Chem, Ltd., 30, Magokjunang 10-ro, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Young-Hoon Kim
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Byungjae Kim
- Future Technology Research Center, LG Chem, Ltd., 30, Magokjunang 10-ro, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, School of Chemical and Biological Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Hee Han
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
35
|
Gu J, Shi W, Zheng H, Chen G, Wei B, Wong WY. The Novel Organic Emitters for High-Performance Narrow-Band Deep Blue OLEDs. Top Curr Chem (Cham) 2023; 381:26. [PMID: 37632653 DOI: 10.1007/s41061-023-00436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Narrow-band deep-blue organic light-emitting diodes (OLEDs) have played a key role in the field of high-quality full-color displays. However, because of the considerable challenges of inherent band gaps, unbalanced carrier injection and the lack of molecular structures, narrow-band deep-blue emitters develop slowly compared with red- and green-emitting materials. Encouragingly, with the continuous efforts of scientists in recent years, great progress has been made in the molecule design and material synthesis of highly efficient narrow-band deep-blue emitters. The typical deep-blue emitters which exhibit narrow emission with a full width at half maximum of < 50 nm are summarized in this article. They are divided into the three categories: fluorescence, phosphorescence and thermally activated delayed fluorescence. The methods of molecular design for realizing narrow-band deep-blue emission are described in detail and future research directions are also discussed in this article.
Collapse
Affiliation(s)
- Jialu Gu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Wei Shi
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Haixia Zheng
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Guo Chen
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Bin Wei
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
36
|
Sobolewski AL, Domcke W. Excited-state singlet-triplet inversion in hexagonal aromatic and heteroaromatic compounds. Phys Chem Chem Phys 2023; 25:21875-21882. [PMID: 37566410 DOI: 10.1039/d3cp01666h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The inversion of the energies of the lowest singlet (S1) and lowest triplet (T1) excited states in violation of Hund's multiplicity rule is a rare phenomenon in stable organic molecules. S1-T1 inversion has significant consequences for the photophysics and photochemistry of organic chromophores. In this work, wave-function based ab initio computational methods were employed to explore the possibility of S1-T1 inversion in hexagonal polycyclic aromatic and heteroaromatic compounds. In these molecules, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are two-fold degenerate. The HOMO-LUMO transition gives rise to three singlet and three triplet excited states. While the singlet-triplet energy gap ΔST, defined as the energy difference between the S1 state and the T1 state, is clearly positive for benzene, it is predicted to be close to zero for borazine, the boron nitride analogue of benzene. Although ΔST decreases with increasing size of hexagonal polycyclic aromatics, it remains positive up to circumcoronene (19 rings). However, symmetry-preserving substitution of C-C pairs by B-N groups in the interior, keeping the conjugation of the outer rim intact, results in compounds with robustly negative ΔST. These findings establish the existence of a new family of boron carbon nitrides with inverted singlet-triplet gaps.
Collapse
Affiliation(s)
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-75747 Garching, Germany.
| |
Collapse
|
37
|
Khan AAT, Gobeze HB, Islam T, Arman HD, Schanze KS. Effect of bromine substitution on blue phosphorescent trans-(N-heterocyclic carbene)Pt(II) acetylide complexes. Dalton Trans 2023; 52:11535-11542. [PMID: 37540137 DOI: 10.1039/d3dt01483e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
N-heterocyclic carbene complexes of the type trans-(NHC)2PtII(CC-Ar)2 (where Ar = phenyl or substituted phenyl) are of interest as violet and blue phosphors. These complexes emit efficient phosphorescence in solution and in the solid state, and they have been applied as phosphors in organic light emitting diodes. This study explores the effect of bromine substitution on the trans-(NHC)2PtII(CC-Ar)2 chromophore through photophysical studies of a pair of complexes in which the phenyl groups feature either 3,5-dibromo- or 4-monobromo-substituents (IPt-DB and IPt-MB, respectively). The Br atoms were introduced as heavy atom(s) with the aim to enhance spin-orbit coupling and increase the radiative and non-radiative decay rates of the phosphorescent triplet state. Both IPt-MB and IPt-DB exhibit sky-blue phosphorescence in solution and in PMMA matrix. Interestingly, the emission quantum yield and lifetime of IPt-MB are substantially lower compared to IPt-DB in solution. This effect is attributed to a substantially larger non-radiative decay rate in the mono-bromo complex. Analysis of the photophysical data, combined with DFT and TD-DFT calculations, suggest that the difference in photophysical properties of the two complexes is related to the position of the Br-substituents on the phenyl acetylide rings. In short, in IPt-MB, the Br-substituents are located para-to the Pt-CC-unit, and this gives rise to stronger electron-vibrational coupling in the excited state, enhancing the rate of non-radiative decay.
Collapse
Affiliation(s)
- Amran A T Khan
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Habtom B Gobeze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Tanjila Islam
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
38
|
Park SW, Kim D, Rhee YM. Overcoming the Limitation of Spin Statistics in Organic Light Emitting Diodes (OLEDs): Hot Exciton Mechanism and Its Characterization. Int J Mol Sci 2023; 24:12362. [PMID: 37569740 PMCID: PMC10418923 DOI: 10.3390/ijms241512362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Triplet harvesting processes are essential for enhancing efficiencies of fluorescent organic light-emitting diodes. Besides more conventional thermally activated delayed fluorescence and triplet-triplet annihilation, the hot exciton mechanism has been recently noticed because it helps reduce the efficiency roll-off and improve device stability. Hot exciton materials enable the conversion of triplet excitons to singlet ones via reverse inter-system crossing from high-lying triplet states and thereby the depopulation of long-lived triplet excitons that are prone to chemical and/or efficiency degradation. Although their anti-Kasha characteristics have not been clearly explained, numerous molecules with behaviors assigned to the hot exciton mechanism have been reported. Indeed, the related developments appear to have just passed the stage of infancy now, and there will likely be more roles that computational elucidations can play. With this perspective in mind, we review some selected experimental studies on the mechanism and the related designs and then on computational studies. On the computational side, we examine what has been found and what is still missing with regard to properly understanding this interesting mechanism. We further discuss potential future points of computational interests toward aiming for eventually presenting in silico design guides.
Collapse
Affiliation(s)
- Soo Wan Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
39
|
Hong Y, Yu C, Je H, Park JY, Kim T, Baik H, Tomboc GM, Kim Y, Ha JM, Joo J, Kim CW, Woo HY, Park S, Choi DH, Lee K. Perovskite Nanocrystals Protected by Hermetically Sealing for Highly Bright and Stable Deep-Blue Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302906. [PMID: 37271888 PMCID: PMC10427390 DOI: 10.1002/advs.202302906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Metal-halide perovskite nanocrystals (NCs) have emerged as suitable light-emitting materials for light-emitting diodes (LEDs) and other practical applications. However, LEDs with perovskite NCs undergo environment-induced and ion-migration-induced structural degradation during operation; therefore, novel NC design concepts, such as hermetic sealing of the perovskite NCs, are required. Thus far, viable synthetic conditions to form a robust and hermetic semiconducting shell on perovskite NCs have been rarely reported for LED applications because of the difficulties in the delicate engineering of encapsulation techniques. Herein, a highly bright and durable deep-blue perovskite LED (PeLED) formed by hermetically sealing perovskite NCs with epitaxial ZnS shells is reported. This shell protects the perovskite NCs from the environment, facilitates charge injection/transport, and effectively suppresses interparticle ion migration during the LED operation, resulting in exceptional brightness (2916 cd m-2 ) at 451 nm and a high external quantum efficiency of 1.32%. Furthermore, even in the unencapsulated state, the LED shows a long operational lifetime (T50 ) of 1192 s (≈20 min) in the air. These results demonstrate that the epitaxial and hermetic encapsulation of perovskite NCs is a powerful strategy for fabricating high-performance deep-blue-emitting PeLEDs.
Collapse
Affiliation(s)
- Yongju Hong
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Chungman Yu
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Hyeondoo Je
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jin Young Park
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Taekyung Kim
- Korea Basic Science Institute (KBSI)Seoul02841Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI)Seoul02841Republic of Korea
| | - Gracita M. Tomboc
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Youngseo Kim
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jung Min Ha
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jinwhan Joo
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Chai Won Kim
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Han Young Woo
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural SciencesKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
40
|
Lee H, Nam H, Yeo HJ, Yang H, Kim T. High Efficiency over 15% by Breaking the Theoretical Efficiency Limit of Fluorescent Organic Light-Emitting Diodes with Localized Surface Plasmon Resonance Effects. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35290-35301. [PMID: 37458705 DOI: 10.1021/acsami.3c07064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The theoretical efficiency limit of fluorescence organic light-emitting diodes (OLEDs) was successfully surpassed by utilizing the localized surface plasmon resonance (LSPR) effect with conventional emissive materials. The interaction between polaritons and plexcitons generated during the LSPR process was also analyzed experimentally. As a result, the external quantum efficiency (EQE) increased dramatically from 6.01 to 15.43%, significantly exceeding the theoretical efficiency limit of fluorescent OLEDs. Additionally, we introduced a new concept of the LSPR effect, called "LSPR sensitizer", which allowed for simultaneous improvement in color conversion and efficiency through cascade transfer of the LSPR effect. To the best of our knowledge, the EQE and the current efficiency of our LSPR-OLED are the highest among LSPR-based fluorescent OLEDs to date.
Collapse
Affiliation(s)
- Hakjun Lee
- Department of Information Display, Hongik University, Seoul 04066, Korea
| | - Hyewon Nam
- Department of Information Display, Hongik University, Seoul 04066, Korea
| | - Hyo-Jin Yeo
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Taekyung Kim
- Department of Information Display, Hongik University, Seoul 04066, Korea
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Korea
| |
Collapse
|
41
|
Madushani B, Mamada M, Goushi K, Nguyen TB, Nakanotani H, Kaji H, Adachi C. Multiple donor-acceptor design for highly luminescent and stable thermally activated delayed fluorescence emitters. Sci Rep 2023; 13:7644. [PMID: 37169821 PMCID: PMC10175249 DOI: 10.1038/s41598-023-34623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
A considerable variety of donor-acceptor (D-A) combinations offers the potential for realizing highly efficient thermally activated delayed fluorescence (TADF) materials. Multiple D-A type compounds are one of the promising families of TADF materials in terms of stability as well as efficiencies. However, those emitters are always composed of carbazole-based donors despite a wide choice of moieties used in linearly linked single D-A molecules. Herein, we developed a multiple D-A type TADF compound with two distinct donor units of 9,10-dihydro-9,9-dimethylacridine (DMAC) and carbazole as the hetero-donor design. The new emitter exhibits high photoluminescence quantum yield (PLQY) in various conditions including polar media blend and high concentrations. Organic light-emitting diodes (OLEDs) showed a reasonably high external quantum efficiency (EQE). In addition, we revealed that the multiple-D-A type molecules showed better photostability than the single D-A type molecules, while the operational stability in OLEDs involves dominant other factors.
Collapse
Affiliation(s)
- Bhagya Madushani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan.
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Kenichi Goushi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Thanh Ba Nguyen
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka, 819-0395, Japan.
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.
| |
Collapse
|
42
|
Hayakawa M, Kameda M, Kawasumi R, Nakatsuka S, Yasuda N, Hatakeyama T. Spiroborate-Based Host Materials with High Triplet Energies and Ambipolar Charge-Transport Properties. Angew Chem Int Ed Engl 2023; 62:e202217512. [PMID: 36718823 DOI: 10.1002/anie.202217512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Organic light-emitting diodes (OLEDs) receive considerable attention because of their commercial use in flat panel displays. Herein, highly efficient spiroborate-based host materials are reported for use in blue OLEDs. Our designed spiroborates (SBOX) were simple to synthesize and exhibited high triplet excitation energies, narrow S-T gaps, and balanced charge carrier mobilities. A blue OLED containing one of the designed spiroborates, SBON, as a host exhibited a high external quantum efficiency (27.6 %) and low turn-on voltage (3.7 V) compared to those observed using 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl (17.6 % and 4.5 V, respectively), indicating their potential as host materials in OLEDs.
Collapse
Affiliation(s)
- Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mayu Kameda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ryosuke Kawasumi
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Nobuhiro Yasuda
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
43
|
Mackenzie CFR, Kwak SY, Kim S, Zysman-Colman E. The design and synthesis of green emissive iridium(III) complexes guided by calculations of the vibrationally-resolved emission spectra. Dalton Trans 2023; 52:4112-4121. [PMID: 36883433 DOI: 10.1039/d3dt00304c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A key challenge in developing emissive materials for organic light-emitting diodes is to optimize their colour saturation, which means targeting narrowband emitters. In this combined theoretical and experimental study, we investigate the use of heavy atoms in the form of trimethylsilyl groups as a tool to reduce the intensity of the vibrations in the 2-phenylpyridinato ligands of emissive iridium(III) complexes that contribute to the vibrationally coupled modes that broaden the emission profile. An underutilised computational technique, Frank-Condon vibrationally coupled electronic spectral modelling, was used to identify the key vibrational modes that contribute to the broadening of the emission spectra in known benchmark green-emitting iridium(III) complexes. Based on these results, a family of eight new green-emitting iridium complexes containing trimethylsilyl groups substituted at different positions of the cyclometalating ligands has been prepared to explore the impact that these substituents have on reducing the intensity of the vibrations and the resulting reduction in the contribution of vibrationally coupled emission modes to the shape of the emission spectra. We have demonstrated that locating a trimethylsilyl group at the N4 or N5 position of the 2-phenylpyridine ligand damps the vibrational modes of the iridium complex and provides a modest narrowing of the emission spectrum of 8-9 nm (or 350 cm-1). The strong correlation between experimental and calculated emission spectra highlights the utility of this computational method to understand how the vibrational modes contribute to the profile of the emission spectra in phosphorescent iridium(III) emitters.
Collapse
Affiliation(s)
- Campbell Frank Ross Mackenzie
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| | - Seung-Yeon Kwak
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon, Gyeonggi-do 16678, Republic of Korea
| | - Sungmin Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon, Gyeonggi-do 16678, Republic of Korea
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
44
|
Zhang B, Xu H, Xia Y, Wen J, Zhu M. Effect of void-carbon on blue-shifted luminescence in TADF molecules by theoretical simulations. Front Chem 2023; 11:1094574. [PMID: 36778032 PMCID: PMC9908751 DOI: 10.3389/fchem.2023.1094574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Thermally activated delayed fluorescence (TADF) molecules have a theoretical 100% photoluminescence quantum yield in comparison with traditional fluorescent materials, leading to broad application in organic light-emitting diode (OLED). However, the application of TADF molecules with conjugated donor-acceptor structures in blue OLED remains a challenge due to their generally narrow energy gap between frontier molecular orbitals. Recently, a strategy has been approved in the improvement of the performance in TADF, in which void-carbon atoms between donor and acceptor fragments (donor-void-acceptor (D-v-A)) could regulate blue light emission. In this study, we first select three reported isomers followed by two proposed D-v-A TADF isomers to verify the feasibility of the void-carbon strategy through evaluation of the electronic structures in the excited state and photophysical properties. We further proposed a series of TADF molecules by replacing different donor and acceptor fragments to assess the applicability of the void-carbon strategy from the aspect of simulations in electronic structures, different properties of donor and acceptor fragments, photophysical properties, and analysis in the molecular conjugation. The results indicate that void-carbon strategy has conditional feasibility and applicability. Donor-acceptor molecular properties could be tuned through void-carbon strategy on aromatic acceptor fragments during the selection of promising candidates of TADF molecules. However, the void-carbon strategy does not work for the molecules with antiaromatic acceptor fragments, where the steric hindrance of the molecules plays a dominant role. Our work provides insightful guidance for the design of the blue-emission TADF molecules.
Collapse
Affiliation(s)
| | | | - Yumin Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | | |
Collapse
|
45
|
Kleybolte ME, Vagin SI, Rieger B. A Polymer Lost in the Shuffle: The Perspective of Poly(para)phenylenes. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Moritz E. Kleybolte
- WACKER‐Chair of Macromolecular Chemistry Catalysis Research Center Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Sergei I. Vagin
- WACKER‐Chair of Macromolecular Chemistry Catalysis Research Center Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Bernhard Rieger
- WACKER‐Chair of Macromolecular Chemistry Catalysis Research Center Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| |
Collapse
|
46
|
Bae J, Sakai M, Tsuchiya Y, Ando N, Chen XK, Nguyen TB, Chan CY, Lee YT, Auffray M, Nakanotani H, Yamaguchi S, Adachi C. Multiple resonance type thermally activated delayed fluorescence by dibenzo [1,4] azaborine derivatives. Front Chem 2022; 10:990918. [PMID: 36199661 PMCID: PMC9527295 DOI: 10.3389/fchem.2022.990918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
We studied the photophysical and electroluminescent (EL) characteristics of a series of azaborine derivatives having a pair of boron and nitrogen aimed at the multi-resonance (MR) effect. The computational study with the STEOM-DLPNO-CCSD method clarified that the combination of a BN ring-fusion and a terminal carbazole enhanced the MR effect and spin-orbit coupling matrix element (SOCME), simultaneously. Also, we clarified that the second triplet excited state (T2) plays an important role in efficient MR-based thermally activated delayed fluorescence (TADF). Furthermore, we obtained a blue–violet OLED with an external EL quantum efficiency (EQE) of 9.1%, implying the presence of a pronounced nonradiative decay path from the lowest triplet excited state (T1).
Collapse
Affiliation(s)
- Jaehyun Bae
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Kyushu University, Fukuoka, Japan
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
- *Correspondence: Youichi Tsuchiya, ; Shigehiro Yamaguchi, ; Chihaya Adachi,
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Xian-Kai Chen
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Thanh Ba Nguyen
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Kyushu University, Fukuoka, Japan
| | - Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Kyushu University, Fukuoka, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
- Research Center for Materials Science (RCMS) and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- *Correspondence: Youichi Tsuchiya, ; Shigehiro Yamaguchi, ; Chihaya Adachi,
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Kyushu University, Fukuoka, Japan
- International Institute for Carbon Neutral Energy Research (WPI-ICNER), Kyushu University, Fukuoka, Japan
- *Correspondence: Youichi Tsuchiya, ; Shigehiro Yamaguchi, ; Chihaya Adachi,
| |
Collapse
|
47
|
Yang X, Zhou X, Zhang Y, Li D, Li C, You C, Chou T, Su S, Chou P, Chi Y. Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5-b]pyridin-2-ylidene-Based Iridium(III) Phosphors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201150. [PMID: 35822668 PMCID: PMC9443441 DOI: 10.1002/advs.202201150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Indexed: 05/19/2023]
Abstract
Four isomeric, homoleptic iridium(III) metal complexes bearing 5-(trifluoromethyl)imidazo[4,5-b]pyridin-2-ylidene and 6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-ylidene-based cyclometalating chelates are successfully synthesized. The meridional isomers can be converted to facial isomers through acid induced isomerization. The m-isomers display a relatively broadened and red-shifted emission, while f-isomers exhibit narrowed blue emission band, together with higher photoluminescent quantum yields and reduced radiative lifetime relative to the mer-counterparts. Maximum external quantum efficiencies of 13.5% and 22.8% are achieved for the electrophosphorescent devices based on f-tpb1 and m-tpb1 as dopant emitter together with CIE coordinates of (0.15, 0.23) and (0.22, 0.45), respectively. By using f-tpb1 as the sensitizing phosphor and t-DABNA as thermally activated delayed fluorescence (TADF) terminal emitter, hyperluminescent OLEDs are successfully fabricated, giving high efficiency of 29.6%, full width at half maximum (FWHM) of 30 nm, and CIE coordinates of (0.13, 0.11), confirming the efficient Förster resonance energy transfer (FRET) process.
Collapse
Affiliation(s)
- Xilin Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Xiuwen Zhou
- School of Mathematics and PhysicsThe University of QueenslandBrisbaneQueensland4072Australia
| | - Ye‐Xin Zhang
- Suzhou Joysun Advanced Materials Co., Ltd. SuzhouJiangsu215126China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Chensen Li
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Caifa You
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Tai‐Che Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Pi‐Tai Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Yun Chi
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| |
Collapse
|
48
|
Lee HL, Jeon SO, Kim I, Kim SC, Lim J, Kim J, Park S, Chwae J, Son WJ, Choi H, Lee JY. Multiple-Resonance Extension and Spin-Vibronic-Coupling-Based Narrowband Blue Organic Fluorescence Emitters with Over 30% Quantum Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202464. [PMID: 35762112 DOI: 10.1002/adma.202202464] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Achieving narrow-bandwidth emission and high external quantum efficiency (EQE) simultaneously is a challenge for next-generation blue-emitting organic light-emitting diodes (OLEDs). In this study, novel multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters are developed by fusing an indolocarbazole unit with two carbazole skeletons using para-oriented nitrogen atoms. The resulting rigid and planar π-system without electron-accepting atoms exhibits pure blue photoluminescence at 470 nm, reaching a 100% quantum yield with a full-width-at-half-maximum (FWHM) of 25 nm. Higher-level quantum chemistry calculations confirm an MR effect within the extended π-conjugation and an enhanced triplet-to-singlet crossover (104 s-1 ) through a reduced energy gap (ΔEST ) coupled with large spin-vibronic coupling mediated by low-lying triplet excited states. An OLED fabricated using the MR-TADF emitter with CIE color coordinates of (0.12, 0.16) exhibits a record high EQE of 30.9% and a small FWHM of 23 nm. With further optimization of the device structure, a high EQE of 33.8% is achieved without additional outcoupling enhancements owing to the near-perfect horizontal alignment of the emitting dipoles.
Collapse
Affiliation(s)
- Ha Lim Lee
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Soon Ok Jeon
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, Gyeonggi, 16678, Republic of Korea
| | - Inkoo Kim
- Innovation Center, Samsung Electronics, Hwaseong, 18448, Republic of Korea
| | - Seung Chan Kim
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Junseop Lim
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Joonghyuk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, Gyeonggi, 16678, Republic of Korea
| | - Sangho Park
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, Gyeonggi, 16678, Republic of Korea
| | - Jun Chwae
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, Gyeonggi, 16678, Republic of Korea
| | - Won-Joon Son
- Innovation Center, Samsung Electronics, Hwaseong, 18448, Republic of Korea
| | - Hyeonho Choi
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, Gyeonggi, 16678, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
49
|
Wang Y, Guo Z, Gao Y, Tian Y, Deng Y, Ma X, Yang W. Tuning Hybridized Local and Charge-Transfer Mixing for Efficient Hot-Exciton Emission with Improved Color Purity. J Phys Chem Lett 2022; 13:6664-6673. [PMID: 35839081 DOI: 10.1021/acs.jpclett.2c01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delayed fluorescence (DF) emitters with high color purity are of high interest for applications in high-resolution displays. However, the charge transfer required by high emitting efficiency usually conflicts with the expected color purity. In this work, we investigated the S1/S0 conformational relaxation, spin-orbital coupling (SOC), and vibronic coupling of hot-exciton emitters while hybrid local and charge transfer (HLCT) state tuning was achieved by a structural meta-effect. The meta-linkage leads to suppressed S1/S0 conformational relaxation and weakened vibronic coupling, while the unsacrificed emitting efficiency is largely ensured by multiple rISC channels (Tn → Sm) with thermally accessible triplet-singlet energy gap (ΔEST) and effective SOC. We demonstrated that the unique excited-state mechanism provides opportunities to improve the emitting color purity of hot-exciton emitters without sacrificing emitting efficiency by HLCT state tuning with simple chemical structural modification, for which hot-exciton emitters might play a more important role for high-resolution organic light-emitting diode displays.
Collapse
Affiliation(s)
- Yaxin Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Yiran Tian
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Yingyi Deng
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P.R. China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
50
|
Yan J, Xue Q, Yang H, Yiu SM, Zhang YX, Xie G, Chi Y. Regioselective Syntheses of Imidazo[4,5- b]pyrazin-2-ylidene-Based Chelates and Blue Emissive Iridium(III) Phosphors for Solution-Processed OLEDs. Inorg Chem 2022; 61:8797-8805. [PMID: 35652376 DOI: 10.1021/acs.inorgchem.2c00750] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Six homoleptic Ir(III) complexes bearing imidazo[4,5-b]pyrazin-2-ylidene chelates were successfully designed and synthesized. Narrowband blue emission (λmax = 466-485 nm) and broadened green emission (λmax = 518-532 nm) in degassed toluene solution with high photoluminescent quantum yields in the range of 75-81 and 45-48% were observed for f-timpz, t2impz, and t2empz as well as m-timpz, t2impz, and t2empz, respectively. In addition, the tert-butylphenyl cyclometalate is more electron donating than N-phenyl cyclometalate and, hence, all tert-butylphenyl-substituted derivatives, that is, m- and f-t2impz and m- and f-t2empz, give more red-shifted emission in comparison to that of m- and f-timpz. Moreover, solution-processed OLED with f-t2empz (20 wt %) as the dopant gave electrophosphorescence at 474 nm with maximum external quantum efficiency (max. EQE) of 5.1%, while hyper-OLED with assistant sensitizer f-t2empz (10 wt %) and the multi-resonance thermally activated delayed fluorescence emitter BCzBN (0.5 wt %) afforded narrowband emission centered at 485 nm and max. EQE up to 17.4%, confirming the high potential of this class of Ir(III) metal phosphors.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Qin Xue
- Department of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Hui Yang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Shek-Man Yiu
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Ye-Xin Zhang
- Suzhou Joysun Advanced Materials Co., Ltd., Suzhou 215126, Jiangsu, China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|