1
|
Kumar N, Bryantsev VS. Self-Assembled Oligomers Facilitate Amino Acid-Driven CO 2 Capture at the Air-Aqueous Interface. J Phys Chem B 2025; 129:1818-1826. [PMID: 39879123 DOI: 10.1021/acs.jpcb.4c05994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Direct air capture of CO2 using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO2 through the air-aqueous interface. Our recent study showed a marked improvement in CO2 capture by introducing CO2-permeable oligo-dimethylsiloxane (ODMS-MIM+) oligomers with cationic (imidazolium, MIM+) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO2 and the glycinate anions (Gly-) at the ODMS-MIM+ decorated air-aqueous interfaces. We show that the cationic head groups of the surfactants enhance the concentration and lifetime of Gly- in the interfacial region, while ODMS tails promote the physisorption of CO2 in the interfacial region. Together, these two factors increase the effective region of contact and the probability of interactions between CO2 and Gly- compared to that of the pure air-aqueous interface. The fundamental insights gained in this work establish essential foundations for developing hybrid systems with oligomer-decorated interfaces to maximize the overall CO2 capture rates.
Collapse
Affiliation(s)
- Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Sun P, Binter EA, Sapkota B, Brown MA, Gelis AV, Bera MK, Lin B, Bu W, Schlossman ML. X-ray Induced Cycling of Rare-Earth Elements between Bulk and Interfacial Liquid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49935-49943. [PMID: 39253788 DOI: 10.1021/acsami.4c09905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Reversible cycling of rare-earth elements between an aqueous electrolyte solution and its free surface is achieved by X-ray exposure. This exposure alters the competitive equilibrium between lanthanide ions bound to a chelating ligand, diethylenetriamine pentaacetic acid (DTPA), in the bulk solution and to insoluble monolayers of extractant di-hexadecyl phosphoric acid (DHDP) at its surface. Evidence for the exposure-induced temporal variations in the lanthanide surface density is provided by X-ray fluorescence near total reflection measurements. Comparison of results when X-rays are confined to the aqueous surface region to results when X-rays transmit into the bulk solution suggests the importance of aqueous radiolysis in the adsorption cycle. Amine binding sites in DTPA are identified as a likely target of radiolysis products. The molecules DTPA and DHDP are like those used in the separation of lanthanides from ores and in the reprocessing of nuclear fuel. These results suggest that an external source of X-rays can be used to drive rare-earth element separations. More generally, use of X-rays to controllably dose a liquid interface with lanthanides could trigger a range of interfacial processes, including enhanced metal ion extraction, catalysis, and materials synthesis.
Collapse
Affiliation(s)
- Pan Sun
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Erik A Binter
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Bikash Sapkota
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - M Alex Brown
- Chemical and Fuel Cycle Technologies Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Artem V Gelis
- Radiochemistry Program, Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89141, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mark L Schlossman
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Liu Z, Lin L, Li T, Premadasa UI, Hong K, Ma YZ, Sacci RL, Katsaras J, Carrillo JM, Doughty B, Collier CP. Physicochemical control of solvation and molecular assembly of charged amphiphilic oligomers at air-aqueous interfaces. J Colloid Interface Sci 2024; 669:552-560. [PMID: 38729003 DOI: 10.1016/j.jcis.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
HYPOTHESIS Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.
Collapse
Affiliation(s)
- Zening Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
4
|
Pagaduan J, Hight-Huf N, Zhou L, Dix N, Premadasa UI, Doughty B, Russell TP, Ramasubramaniam A, Barnes M, Katsumata R, Emrick T. Spatial and Bidirectional Work Function Modulation of Monolayer Graphene with Patterned Polymer "Fluorozwitterists". ACS CENTRAL SCIENCE 2024; 10:1629-1639. [PMID: 39220689 PMCID: PMC11363338 DOI: 10.1021/acscentsci.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Understanding the electronic properties resulting from soft-hard material interfacial contact has elevated the utility of functional polymers in advanced materials and nanoscale structures, such as in work function engineering of two-dimensional (2D) materials to produce new types of high-performance devices. In this paper, we describe the electronic impact of functional polymers, containing both zwitterionic and fluorocarbon components in their side chains, on the work function of monolayer graphene through the preparation of negative-tone photoresists, which we term "fluorozwitterists." The zwitterionic and fluorinated groups each represent dipole-containing moieties capable of producing distinct surface energies as thin films. Kelvin probe force microscopy revealed these polymers to have a p-doping effect on graphene, which contrasts the work function decrease typically associated with polymer-to-graphene contact. Copolymerization of fluorinated zwitterionic monomers with methyl methacrylate and a benzophenone-substituted methacrylate produced copolymers that were amenable to photolithographic fabrication of fluorozwitterist structures. Consequently, spatial alteration of zwitterion coverage across graphene yielded stripes that resemble a lateral p-i-n diode configuration, with local increase or decrease of work function. Overall, this polymeric fluorozwitterist design is suitable for enabling simple, solution-based surface patterning and is anticipated to be useful for spatial work function modulation of 2D materials integrated into electronic devices.
Collapse
Affiliation(s)
- James
Nicolas Pagaduan
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas Hight-Huf
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Le Zhou
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas Dix
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Uvinduni I. Premadasa
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Thomas P. Russell
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ashwin Ramasubramaniam
- Department
of Mechanical and Industrial Engineering and Materials Science Graduate
Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael Barnes
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Premadasa UI, Kumar N, Zhu Z, Stamberga D, Li T, Roy S, Carrillo JMY, Einkauf JD, Custelcean R, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Synergistic Assembly of Charged Oligomers and Amino Acids at the Air-Water Interface: An Avenue toward Surface-Directed CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12052-12061. [PMID: 38411063 DOI: 10.1021/acsami.3c18225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zewen Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Premadasa UI, Bocharova V, Lin L, Genix AC, Heller WT, Sacci RL, Ma YZ, Thiele NA, Doughty B. Tracking Molecular Transport Across Oil/Aqueous Interfaces: Insight into "Antagonistic" Binding in Solvent Extraction. J Phys Chem B 2023. [PMID: 37216432 DOI: 10.1021/acs.jpcb.3c00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Liquid/liquid (L/L) interfaces play a key, yet poorly understood, role in a range of complex chemical phenomena where time-evolving interfacial structures and transient supramolecular assemblies act as gatekeepers to function. Here, we employ surface-specific vibrational sum frequency generation combined with neutron and X-ray scattering methods to track the transport of dioctyl phosphoric acid (DOP) and di-(2-ethylhexyl) phosphoric acid (DEHPA) ligands used in solvent extraction at buried oil/aqueous interfaces away from equilibrium. Our results show evidence for a dynamic interfacial restructuring at low ligand concentrations in contrast to expectation. These time-varying interfaces arise from the transport of sparingly soluble interfacial ligands into the neighboring aqueous phase. These results support a proposed "antagonistic" role of ligand complexation in the aqueous phase that could serve as a holdback mechanism in kinetic liquid extractions. These findings provide new insights into interfacially controlled chemical transport at L/L interfaces and how these interfaces vary chemically, structurally, and temporally in a concentration-dependent manner and present potential avenues to design selective kinetic separations.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anne-Caroline Genix
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, F-34095 Montpellier, France
| | - William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Premadasa UI, Dong D, Stamberga D, Custelcean R, Roy S, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Chemical Feedback in the Self-Assembly and Function of Air-Liquid Interfaces: Insight into the Bottlenecks of CO 2 Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19634-19645. [PMID: 36944180 DOI: 10.1021/acsami.3c00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dengpan Dong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Preferential recovery and separation of rhodium in the concentrated hydrochloric acid using thin-layer oil membrane extraction based on laminar flow. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Lin L, Liu Z, Premadasa UI, Li T, Ma YZ, Sacci RL, Katsaras J, Hong K, Collier CP, Carrillo JMY, Doughty B. The Unexpected Role of Cations in the Self-Assembly of Positively Charged Amphiphiles at Liquid/Liquid Interfaces. J Phys Chem Lett 2022; 13:10889-10896. [PMID: 36394318 DOI: 10.1021/acs.jpclett.2c02921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional wisdom suggests that cations play a minimal role in the assembly of cationic amphiphiles. Here, we show that at liquid/liquid (L/L) interfaces, specific cation effects can modulate the assemblies of hydrophobic tails in an oil phase despite being attached to cationic headgroups in the aqueous phase. We used oligo-dimethylsiloxane (ODMS) methyl imidazolium amphiphiles to identify these specific interactions at hexadecane/aqueous interfaces. Small cations, such as Li+, bind to the O atoms in the ODMS tail and pin it to the interface, thereby imposing a kinked conformation─as evidenced by vibrational sum frequency generation spectroscopy and molecular dynamics simulations. While larger Cs+ ions more readily partition to the interface, they do not form analogous complexes. Our data not only point to ways for controlling amphiphile structure at L/L interfaces but also suggest a means for the separation of Li+, or related applications, in soft-matter electronics.
Collapse
Affiliation(s)
- Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Zening Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - John Katsaras
- Laboratories and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| |
Collapse
|
10
|
On the mechanisms of ion adsorption to aqueous interfaces: air-water vs. oil-water. Proc Natl Acad Sci U S A 2022; 119:e2210857119. [PMID: 36215494 PMCID: PMC9586313 DOI: 10.1073/pnas.2210857119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adsorption of ions to water-hydrophobe interfaces influences a wide range of phenomena, including chemical reaction rates, ion transport across biological membranes, and electrochemical and many catalytic processes; hence, developing a detailed understanding of the behavior of ions at water-hydrophobe interfaces is of central interest. Here, we characterize the adsorption of the chaotropic thiocyanate anion (SCN-) to two prototypical liquid hydrophobic surfaces, water-toluene and water-decane, by surface-sensitive nonlinear spectroscopy and compare the results against our previous studies of SCN- adsorption to the air-water interface. For these systems, we observe no spectral shift in the charge transfer to solvent spectrum of SCN-, and the Gibb's free energies of adsorption for these three different interfaces all agree within error. We employed molecular dynamics simulations to develop a molecular-level understanding of the adsorption mechanism and found that the adsorption for SCN- to both water-toluene and water-decane interfaces is driven by an increase in entropy, with very little enthalpic contribution. This is a qualitatively different mechanism than reported for SCN- adsorption to the air-water and graphene-water interfaces, wherein a favorable enthalpy change was the main driving force, against an unfavorable entropy change.
Collapse
|
11
|
Kumal RR, Wimalasiri PN, Servis MJ, Uysal A. Thiocyanate Ions Form Antiparallel Populations at the Concentrated Electrolyte/Charged Surfactant Interface. J Phys Chem Lett 2022; 13:5081-5087. [PMID: 35653184 DOI: 10.1021/acs.jpclett.2c00934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anions play significant roles in the separation of lanthanides and actinides. The molecular-scale details of how these anions behave at aqueous interfaces are not well understood, especially at high ionic strengths. Here, we describe the interfacial structure of thiocyanate anions at a soft charged interface up to 5 M bulk concentration with combined classical and phase-sensitive vibrational sum frequency generation (PS-VSFG) spectroscopy and molecular dynamics (MD) simulations. At low concentrations thiocyanate ions are mostly oriented with their sulfur end pointing toward the charged surfactants. The VSFG signal reaches a plateau at around 100 mM bulk concentration, followed by significant changes above 1 M. At high concentrations a new thiocyanate population emerges with their sulfur end pointing toward the bulk liquid. The -CN stretch frequency is different for up and down oriented SCN- ions, indicating different coordination environments. These results provide key molecular-level insights for the interfacial behavior of complex anions in highly concentrated solutions.
Collapse
Affiliation(s)
- Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Pubudu N Wimalasiri
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
12
|
Considerations in upconversion: A practical guide to sum-frequency generation spectrometer design and implementation. Biointerphases 2022; 17:021201. [PMID: 35473296 DOI: 10.1116/6.0001817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this tutorial review, we discuss how the choice of upconversion pulse shape in broadband vibrational sum-frequency generation (SFG) spectrometer design impacts the chemical or physical insights one can obtain from a set of measurements. A time-domain picture of a vibrational coherence being mapped by a second optical field is described and the implications of how this mapping, or upconversion process, takes place are given in the context of several popular and emerging approaches found in the literature. Emphasis is placed on broadband frequency-domain measurements, where the choice of upconversion pulse enhances or limits the information contained in the SFG spectrum. We conclude with an outline for a flexible approach to SFG upconversion using pulse-shaping methods and a simple guide to design and optimize the associated instrumentation.
Collapse
|
13
|
Mangin T, Schurhammer R, Wipff G. Liquid-Liquid Extraction of the Eu(III) Cation by BTP Ligands into Ionic Liquids: Interfacial Features and Extraction Mechanisms Investigated by MD Simulations. J Phys Chem B 2022; 126:2876-2890. [PMID: 35389658 DOI: 10.1021/acs.jpcb.2c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
What happens at the ionic-liquid (IL)/water interface when the Eu3+ cation is complexed and extracted by bis(dimethyltriazinyl) pyridine "BTP" ligands has been investigated by molecular dynamics and potential of mean force simulations on the interface crossing by key species: neutral BTP, its protonated BTPH+ form, Eu3+, and the Eu(BTP)33+ complex. At both the [BMI][Tf2N]/water and [OMI][Tf2N]/water interfaces, neither BTP nor Eu(BTP)33+ are found to adsorb. The distribution of Eu(BTP)23+ and Eu(BTP)3+ precursors of Eu(BTP)33+, and of their nitrate adducts, implies the occurrence of a stepwise complexation process in the interfacial domain, however. The analysis of the ionic content of the bulk phases and of their interface before and after extraction highlights the role of charge buffering by interfacial IL cations and anions, by different amounts depending on the IL. Comparison of ILs with octanol as the oil phase reveals striking differences regarding the extraction efficiency, the affinity of Eu(BTP)33+ for the interface, the effects of added nitric acid and of counterions (NO3- vs Tf2N-), charge neutralization mechanisms, and the extent of "oil" heterogeneity. Extraction into octanol is suggested to proceed via adsorption at the surface of water pools, nanoemulsions, or droplets, with marked counterion effects.
Collapse
Affiliation(s)
- Thomas Mangin
- Laboratoire MSM, UMR CNRS 7140, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Rachel Schurhammer
- Laboratoire MSM, UMR CNRS 7140, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Georges Wipff
- Laboratoire MSM, UMR CNRS 7140, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
14
|
Liu Z, Lin L, Li T, Kinnun J, Hong K, Ma YZ, Sacci RL, Katsaras J, Carrillo JM, Doughty B, Collier CP. Squeezing Out Interfacial Solvation: The Role of Hydrogen-Bonding in the Structural and Orientational Freedom of Molecular Self-Assembly. J Phys Chem Lett 2022; 13:2273-2280. [PMID: 35239358 DOI: 10.1021/acs.jpclett.1c03941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioinspired membrane molecules with improved physical properties and enhanced stability can serve as functional models for conventional lipid or amphiphilic species. Importantly, these molecules can also provide new insights into emergent phenomena that manifest during self-assembly at interfaces. Here, we elucidate the structural response and mechanistic steps underlying the self-assembly of the amphiphilic, charged oligodimethylsiloxane imidazolium cation (ODMS-MIM+) at the air-aqueous interface using Langmuir trough methods with coincident surface-specific vibrational sum-frequency generation (SFG) spectroscopy. We find evidence for a new compression-induced desolvation step that precedes commonly known disordered-to-ordered phase transitions to form nanoscopic assemblies. The experimental data was supported by atomistic molecular dynamics (MD) simulations to provide a detailed mechanistic picture underlying the assembly and the role of water in these phase transitions. The sensitivity of the hydrophobic ODMS tail conformations to compression─owing to distinct water-ODMS interactions and tail-tail solvation properties─offers new strategies for the design of interfaces that can be further used to develop soft-matter electronics and low-dimensional materials using physical and chemical controls.
Collapse
Affiliation(s)
- Zening Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Kinnun
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charles Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Lin L, Chowdhury AU, Ma YZ, Sacci RL, Katsaras J, Hong K, Collier CP, Carrillo JMY, Doughty B. Ion Pairing and Molecular Orientation at Liquid/Liquid Interfaces: Self-Assembly and Function. J Phys Chem B 2022; 126:2316-2323. [PMID: 35289625 DOI: 10.1021/acs.jpcb.2c01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular orientation plays a pivotal role in defining the functionality and chemistry of interfaces, yet accurate measurements probing this important feature are few, due, in part, to technical and analytical limitations in extracting information from molecular monolayers. For example, buried liquid/liquid interfaces, where a complex and poorly understood balance of inter- and intramolecular interactions impart structural constraints that facilitate the formation of supramolecular assemblies capable of new functions, are difficult to probe experimentally. Here, we use vibrational sum-frequency generation spectroscopy, numerical polarization analysis, and atomistic molecular dynamics simulations to probe molecular orientations at buried oil/aqueous interfaces decorated with amphiphilic oligomers. We show that the orientation of self-assembled oligomers changes upon the addition of salts in the aqueous phase. The evolution of these structures can be described by competitive ion effects in the aqueous phase altering the orientations of the tails extending into the oil phase. These specific anionic effects occur via interfacial ion pairing and associated changes in interfacial solvation and hydrogen-bonding networks. These findings provide more quantitative insight into orientational changes encountered during self-assembly and pave the way for the design of functional interfaces for chemical separations, neuromorphic computing applications, and related biomimetic systems.
Collapse
Affiliation(s)
- Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Azhad U Chowdhury
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
16
|
Premadasa UI, Ma YZ, Sacci RL, Bocharova V, Thiele NA, Doughty B. Understanding Self-Assembly and the Stabilization of Liquid/Liquid Interfaces: The Importance of Ligand Tail Branching and Oil-Phase Solvation. J Colloid Interface Sci 2021; 609:807-814. [PMID: 34872722 DOI: 10.1016/j.jcis.2021.11.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS Organophosphorus-based ligands represent a versatile set of solvent extraction reagents whose chemical makeup plays an important role in extraction mechanism. We hypothesize that the branching of the extractant hydrophobic tail and its oil-phase solvation affect the liquid/liquid interfacial structure. Understanding the structure mediated adsorption and interfacial ordering becomes key in designing ligands with enhanced selectivity and efficiency for targeted extractions. EXPERIMENT We employed vibrational sum frequency generation spectroscopy and interfacial tension measurements to extract thermodynamic adsorption energies, map interfacial ordering, and rationalize disparate behaviors of model di-(2-ethylhexyl) phosphoric acid and dioctyl phosphoric acid ligands at the hexadecane water interface. FINDINGS With increased surface loading, ligands with branched hydrophobic tails formed stable interfaces at much lower concentrations than those observed for ligands with linear alkyl tails. The lack of an oil phase and associated solvation results in markedly different interfacial properties, and thus measurements made at air/liquid surfaces cannot be assumed to correlate with the processes occurring at buried liquid/liquid interfaces. We attribute these differences in the surface mediated self-assembly to key variations in hydrophobic interactions and tail solvation taking place in the oil phase demonstrating that interactions in both the polar and nonpolar phases are essential to understand self-assembly and function.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|