1
|
Wei Y, Jia J, Yu X, Huo S, Xu Z. A range of surfactant-accelerated hydrogels based on terpyridine-based assembly via strong dipole-dipole interactions. Chem Commun (Camb) 2025; 61:8067-8070. [PMID: 40326830 DOI: 10.1039/d5cc01205h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A universal hydrogelation strategy employs surfactant-coassembled supramolecular terpyridine (DA-BET) aggregates. Dipole-dipole interactions between DA-BET's distinct binding sites and surfactant ions primarily drive hydrogel formation. This platform integrates hydrophobic organics with surfactants, establishing a novel supramolecular approach for advancing environmental remediation soft materials.
Collapse
Affiliation(s)
- Yi Wei
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, P. R. China.
| | - Jie Jia
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, P. R. China.
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, P. R. China.
| | - Suhong Huo
- School of Chemical Safety, North China Institute of Science and Technology, Langfang 065201, P. R. China.
| | - Zhice Xu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, P. R. China.
| |
Collapse
|
2
|
Jiang Y, Zhu C, Ma X, Fan D. Smart hydrogel-based trends in future tendon injury repair: A review. Int J Biol Macromol 2024; 282:137092. [PMID: 39489238 DOI: 10.1016/j.ijbiomac.2024.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Despite advances in tissue engineering for tendon repair, rapid functional repair is still challenging due to its specificity and is prone to complications such as postoperative infections and tendon adhesions. Smart responsive hydrogels provide new ideas for tendon therapy with their flexibly designed three-dimensional cross-linked polymer networks that respond to specific stimuli. In recent years, a variety of smart-responsive hydrogels have been developed for the treatment of tendon disorders, showing great research promise and ability to address complex challenges. This article provides a comprehensive review of recent advances in the field of smart-responsive hydrogels for the treatment of tendon disorders, with a special focus on their response properties to different physical, chemical and biological stimuli. The multiple functional properties of these innovative materials are discussed in depth, including excellent biocompatibility and biodegradability, excellent mechanical properties, biomimetic structural design, convenient injectability, and unique self-healing capabilities. These properties enable the smart-responsive hydrogels to demonstrate significant advantages in solving difficult problems in the treatment of tendon disorders, such as precise drug delivery, tendon adhesion prevention and postoperative infection control. In addition, the article looks at the future prospects of smart-responsive hydrogels and analyses the challenges they may face in achieving widespread application.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
3
|
Yu M, Chen S, Yu X. Reusable, Green, Portable Ionogels Based on Terpyridine-Imidazole Salt for Visual Monitoring of Pork Spoilage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11713-11722. [PMID: 38775965 DOI: 10.1021/acs.langmuir.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Ionogels have emerged as a promising approach because they combine the advantageous properties of ionic liquids and gels. Herein, a novel gelator bearing terpyridine and imidazolium salt units was designed and synthesized, which assembled into ionogels in three ionic liquids by a heating-cooling procedure. The properties of ionogels were characterized by FT-IR, UV-vis spectroscopy, POM, XRD, and rheology, and resonance light scattering and opacity measurements were conducted to investigate the gelation kinetics. Furthermore, the ionogels incorporating pH-sensitive dyes (BTB and MR) were exploited as colorimetric sensor to monitor total volatile basic nitrogen (TVB-N) of meat at -4 °C, which can easily and reliably estimate the quality of meat by naked eye recognition, and the results demonstrated a positive correlation between the color variation and TVB-N levels. Notably, the hydrophobic ionogel indicators are more suitable for potential application at high humidity thanks to their antiswelling advantage, which could prevent the inaccurate information produced by hydrogel indicators. In addition, the ionogels could be reused up to three times as colorimetric indicators, suggesting potential applications and competitiveness. Our research sheds new light on the novel application of ionogels in the food industry.
Collapse
Affiliation(s)
- Mingqi Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Shaorui Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| |
Collapse
|
4
|
Dong X, Wang Z, Zhang P, Liu Y, Ji L, Wang Y, Zhou X, Ma K, Yu H. Substituent alkyl-chain-dependent supramolecular chirality, tunable chiroptical property, and dye adsorption in azobenzene-glutamide-amphiphile based hydrogel. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123018. [PMID: 37392534 DOI: 10.1016/j.saa.2023.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Controlling the supramolecular chirality of a self-assembly system by molecular structure design and external stimuli in aqueous solution is significant but challenging. Here, we design and synthesize several glutamide-azobenzene-based amphiphiles with different length alkyl chains. The amphiphiles can form self-assemblies in aqueous solution and show CD signals. As the number of the alkyl chain of amphiphiles increases, the CD signals of the assemblies can be enhanced. However, the long alkyl chains conversely restrict the isomerization of the azobenzene and the corresponding chiroptical property. Moreover, the alkyl length can determine the nanostructure of the assemblies and exert critical influence on the dye adsorption efficiency. This work exhibits some insights into the tunable chiroptical property of the self-assembly by delicate molecular design and external stimuli, and emphasizes the molecular structure can determine the corresponding application.
Collapse
Affiliation(s)
- Xuan Dong
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China; Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhixia Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Penghui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Yuanyuan Wang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiaoqin Zhou
- School of Chemistry and Chemical Engineering Institute of Physical Chemistry, Lingnan Normal University, Development Centre for New Materials Engineering & Technology in Universities of Guangdong Zhanjiang 524048, PR China
| | - Kai Ma
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China.
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
5
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Rational Design of Multifunctional Hydrogels for Wound Repair. J Funct Biomater 2023; 14:553. [PMID: 37998122 PMCID: PMC10672203 DOI: 10.3390/jfb14110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The intricate microenvironment at the wound site, coupled with the multi-phase nature of the healing process, pose significant challenges to the development of wound repair treatments. In recent years, applying the distinctive benefits of hydrogels to the development of wound repair strategies has yielded some promising results. Multifunctional hydrogels, by meeting the different requirements of wound healing stages, have greatly improved the healing effectiveness of chronic wounds, offering immense potential in wound repair applications. This review summarized the recent research and applications of multifunctional hydrogels in wound repair. The focus was placed on the research progress of diverse multifunctional hydrogels, and their mechanisms of action at different stages of wound repair were discussed in detail. Through a comprehensive analysis, we found that multifunctional hydrogels play an indispensable role in the process of wound repair by providing a moist environment, controlling inflammation, promoting angiogenesis, and effectively preventing infection. However, further implementation of multifunctional hydrogel-based therapeutic strategies also faces various challenges, such as the contradiction between the complexity of multifunctionality and the simplicity required for clinical translation and application. In the future, we should work to address these challenges, further optimize the design and preparation of multifunctional hydrogels, enhance their effectiveness in wound repair, and promote their widespread application in clinical practice.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Potter M, Debnath S, Drover MW, Rondeau-Gagné S, Mutus B. An Azomethine-H-Based Fluorogenic Sensor for Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43880-43886. [PMID: 37671912 DOI: 10.1021/acsami.3c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Formic acid (FA) is an important C1-containing feedstock that serves as a masked source of dihydrogen gas (H2). To encourage the adoption of cleaner (noncarbonaceous) energy sources, FA detection and sensing is thus of considerable interest. Here, we examine the use of a commercially available dye, azomethine-H (Az-H), for FA sensing. Solution studies confirm that FA quenches both the absorbance and the luminescence properties of Az-H. FA was additionally found to attenuate a known Az-H (E)-to-(Z) conformational change, suggesting an Az-H/FA interaction, possibly through hydrogen bonding; this phenomenon was probed using 1H NMR spectroscopy. Moving toward a solid-state sensor, the Az-H probe was incorporated into a gelatin-based matrix. On exposure to FA, the luminescence of this system was found to increase in a FA-dependent manner, attributed to the formation of stable hydrogen-bonded structures, facilitating a (Z)-to-(E) isomerization via imine protonation, allowing for production of the more luminescent (E)-isomer. This fluorogenic signal was used as a FA sensor with an estimated detection limit of ca. 0.4 ppb FA vapor. This work constitutes an important step toward a highly sensitive FA sensor in both the solution and solid state, opening new space for the detection of organic acids in differing chemical environments.
Collapse
Affiliation(s)
- Mark Potter
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Suman Debnath
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Marcus W Drover
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Bulent Mutus
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
7
|
Cao J, Yuan P, Wu B, Liu Y, Hu C. Advances in the Research and Application of Smart-Responsive Hydrogels in Disease Treatment. Gels 2023; 9:662. [PMID: 37623116 PMCID: PMC10454421 DOI: 10.3390/gels9080662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Smart-responsive hydrogels have been widely used in various fields, particularly in the biomedical field. Compared with traditional hydrogels, smart-responsive hydrogels not only facilitate the encapsulation and controlled release of drugs, active substances, and even cells but, more importantly, they enable the on-demand and controllable release of drugs and active substances at the disease site, significantly enhancing the efficacy of disease treatment. With the rapid advancement of biomaterials, smart-responsive hydrogels have received widespread attention, and a wide variety of smart-responsive hydrogels have been developed for the treatment of different diseases, thus presenting tremendous research prospects. This review summarizes the latest advancements in various smart-responsive hydrogels used for disease treatment. Additionally, some of the current shortcomings of smart-responsive hydrogels and the strategies to address them are discussed, as well as the future development directions and prospects of smart-responsive hydrogels.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Fluorescent sensors and rapid detection films for Fe3+ and Cu2+ based on naphthalene and cholesterol derivative organogels. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Poirier A, Le Griel P, Hoffmann I, Perez J, Pernot P, Fresnais J, Baccile N. Ca 2+ and Ag + orient low-molecular weight amphiphile self-assembly into "nano-fishnet" fibrillar hydrogels with unusual β-sheet-like raft domains. SOFT MATTER 2023; 19:378-393. [PMID: 36562421 DOI: 10.1039/d2sm01218a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water when triggered by an external stimulus. A great majority of SAFiN gels involve an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. In some rare cases, a combination of attractive van der Waals and repulsive electrostatic forces drives the formation of bundles with a suprafibrillar hexagonal order. In this work, an unexpected micelle-to-fiber transition is triggered by Ca2+ or Ag+ ions added to a micellar solution of a novel glycolipid surfactant, whereas salt-induced fibrillation is not common for surfactants. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and β-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but not known for SAFiNs. The β-sheet-like raft domains are characterized by a combination of cryo-TEM and SAXS and seem to contribute to the stability of glycolipid gels. Furthermore, glycolipid is obtained by fermentation from natural resources (glucose, rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Laboratoire de Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX - UMR 8234, F-75252, Paris Cedex 05, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| |
Collapse
|
10
|
Poirier A, Le Griel P, Perez J, Baccile N. Cation-Induced Fibrillation of Microbial Glycolipid Biosurfactant Probed by Ion-Resolved In Situ SAXS. J Phys Chem B 2022; 126:10528-10542. [PMID: 36475558 DOI: 10.1021/acs.jpcb.2c03739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological amphiphiles are molecules with a rich phase behavior. Micellar, vesicular, and even fibrillar phases can be found for the same molecule by applying a change in pH or by selecting the appropriate metal ion. The rich phase behavior paves the way toward a broad class of soft materials, from carriers to hydrogels. The present work contributes to understanding the fibrillation of a microbial glycolipid, glucolipid G-C18:1, produced by Starmerella bombicola ΔugtB1 and characterized by a micellar phase at alkaline pH and a vesicular phase at acidic pH. Fibrillation and prompt hydrogelation is triggered by adding either alkaline earth, Ca2+, or transition metal, Ag+, Fe2+, Al3+, ions to a G-C18:1 micellar solution. A specifically designed apparatus coupled to a synchrotron SAXS beamline allows the performing of simultaneous cation- and pH-resolved in situ monitoring of the morphological evolution from spheroidal micelles to crystalline fibers, when Ca2+ is employed, or to wormlike aggregates, when Fe2+ or Al3+ solutions are employed. The fast reactivity of Ag+ and the crystallinity of Ca2+-induced fibers suggest that fibrillation is driven by direct metal-ligand interactions, while the shape transition from spheroidal to elongated micelles with Fe2+ or Al3+ rather suggest charge screening between the lipid and the hydroxylated cation species.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| | - Patrick Le Griel
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| | - Javier Perez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, 91190Saint-Aubin, France
| | - Niki Baccile
- Sorbonne Université, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR CNRS 7574, 4 place Jussieu, ParisF-75005, France
| |
Collapse
|
11
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
12
|
Jiang Z, Wu T, Wu S, Yuan J, Zhang Z, Xie TZ, Liu H, Peng Y, Li Y, Dong S, Wang P. Self-healing and elastic polymer gel via terpyridine-metal coordination. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Han Q, Wang Q, Gao A, Ge X, Wan R, Cao X. Fluorescent Quinoline-Based Supramolecular Gel for Selective and Ratiometric Sensing Zinc Ion with Multi-Modes. Gels 2022; 8:605. [PMID: 36286106 PMCID: PMC9601706 DOI: 10.3390/gels8100605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2024] Open
Abstract
A gelator 1 containing functional quinoline and Schiff base groups that could form organogels in DMF, DMSO, acetone, ethanol and 1,4-dioxane was designed and synthesized. The self-assembly process of geator 1 was characterized by field emission scanning electron microscopy (FESEM), UV-vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform infrared spectroscopy(FTIR), X-ray powder diffraction (XRD) and water contact angle. Under non-covalent interactions, gelator 1 self-assembled into microbelts and nanofiber structures with different surface wettability. Weak fluorescence was emitted from the solution and gel state of 1. Interestingly, gelator 1 exhibited good selectivity and sensitivity towards Zn2+ in solution and gel states along with its emission enhancement and change. The emission intensity at 423 nm of solution 1 in 1,4-dioxane was slightly enhanced, and a new emission peak appeared at 545 nm along with its intensity sequentially strengthened in the titration process. The obvious ratiometric detection process was presented with a limit of detection (LOD) of 5.51 μM. The detection mechanism was revealed by a theoretical calculation and NMR titration experiment, which was that Zn2+ induced the transition from trans- to cis- of molecule 1 and further coordinated with 1. This study will introduce a new method for the construction of functional self-assembly gel sensors for the detection of Zn2+.
Collapse
Affiliation(s)
- Qingqing Han
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qingqing Wang
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Aiping Gao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xuefei Ge
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Rong Wan
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Sun H, Jiang J, Zhang L, Yuan C, Jiang Y, Liu P. Rheological and atomization behavior of glycyrrhizic acid based supramolecular gel propellant simulant. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Yin G, Huang J, Liu D, Li R, Wei S, Si M, Ni F, Zheng Y, Yang Q, Zhou R, Le X, Lu W, Chen T. Mechanochemical transformation of fluorescent hydrogel based on dynamic lanthanide-terpyridine coordination. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Feng Q, Wan K, Zhu T, Fan X, Zhang C, Liu T. Stretchable, Environment-Stable, and Knittable Ionic Conducting Fibers Based on Metallogels for Wearable Wide-Range and Durable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4542-4551. [PMID: 35034447 DOI: 10.1021/acsami.1c22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of fibrous ionic conductors and sensors with large stretchability, low-temperature tolerance, and environmental stability is highly desired for practical wearable devices yet is challenging. Herein, metallogels (MOGs) with a rapidly reversible force-stimulated sol-gel transition were employed and encapsulated into a hollow thermoplastic elastomer (TPE) microfiber through a simple coaxial spinning. The resultant MOG@TPE coaxial fiber exhibited a high stretchability (>100%) in a broad temperature range (-50 to 50 °C). The MOG@TPE fibrous strain sensor demonstrated a high-yet-linear working curve, fast response time (<100 ms), highly stable conductivity under large deformation, and excellent cycling stability (>3000 cycles). The MOG@TPE fibrous sensors were demonstrated to be directly attached to the human skin to monitor the real-time movements of large/facet joints of the elbow, wrist, finger, and knee. It is believed that the present work for preparing the stretchable ionic conductive fibers holds great promise for applications in fibrous wearable sensors with broad temperature range, large stretchability, stable conductivity, and high wearing comfort.
Collapse
Affiliation(s)
- Qichun Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Kening Wan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Tianyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Xiaoshan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| |
Collapse
|
18
|
ZHOU YUAN, Liu G, Guo S. Advances in Ultrasound-Responsive Hydrogels for Biomedical Applications. J Mater Chem B 2022; 10:3947-3958. [DOI: 10.1039/d2tb00541g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various intelligent hydrogels have been developed for biomedical applications because they can achieve multiple, variable, controllable and reversible changes in their shape and properties in a spatial and temporal manner,...
Collapse
|