1
|
Yang Y, Wang K, Liu X, Xu C, You Q, Zhang Y, Zhu L. Environmental behavior of silver nanomaterials in aquatic environments: An updated review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167861. [PMID: 37852494 DOI: 10.1016/j.scitotenv.2023.167861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The increasing applications of silver nanomaterials (nano-Ag) and their inevitable release posed great potential risks to aquatic organisms and ecosystems. Considerable attention has been attracted on their behaviors and transformations, which were critically important for their subsequent biological toxicities and ecological effects. Therefore, the summary of the recent efforts on the environmental behavior of nano-Ag would be beneficial for understanding the environmental fate and accurate risk assessment. This review summarized the studies on various physical, chemical and biological transformations of nano-Ag, meanwhile, the influencing factors (including the intrinsic properties and environmental conditions) and related mechanisms were highlighted. Surface structure and facets of nano-Ag, abiotic conditions and natural freeze-thaw cycle processes could affect the transformations of nano-Ag under different environmental scenarios (including freshwater, seawater and wastewater). The interactions with co-present components, such as chemicals and other particles, impacted the multiple processes of nano-Ag. Besides, the contradictory effects and mechanisms by several environmental factors were summarized. Lastly, the key knowledge gaps and some aspects that deserve further investigation were also addressed. Therefore, the current review aimed to provide an overall analysis of transformation processes of nano-Ag, which will provide more available information and pave the way for the future research areas.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinwei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunyi Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi You
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
3
|
Zhao H, Wang M, Cui Y, Zhang C. Can We Arrest the Evolution of Antibiotic Resistance? The Differences between the Effects of Silver Nanoparticles and Silver Ions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5090-5101. [PMID: 35344362 DOI: 10.1021/acs.est.2c00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are effective antimicrobial substances that show promise in combatting multidrug resistance. The potential application and release of AgNPs into the environment may neutralize the selective advantage of antibiotic resistance. Systemic knowledge regarding the effect of NPs on the evolution of antibiotic resistance is lacking. Our results showed that bacteria slowly developed adaptive tolerance to ciprofloxacin (CIP) under cyclic CIP and silver ion (Ag+) cotreatment, and no resistance/tolerance was discernible when CIP and AgNP exposure was alternated. In contrast, rapid CIP resistance was induced under continuous selection by treatment with only CIP. To combat the effects of CIP and Ag+, bacteria developed convergent evolutionary strategies with similar adaptive mechanisms, including anaerobic respiration transitioning (to reduce oxidative stress) and stringent response (to survive harsh environments). Alternating AgNP exposure impeded evolutionary resistance by accelerating B12-dependent folate and methionine cycles, which reestablished DNA synthesis and partially offset high oxidative stress levels, in contrast with the effect of CIP-directed evolutionary pressure. Nevertheless, CIP/AgNP treatment was ineffective in attenuating virulence, and CIP/Ag+ exposure even induced the virulence-critical type III secretion system. Our results increase the basic understanding of the impacts of NPs on evolutionary biology and suggest prospective nanotechnology applications for arresting evolutionary antibiotic resistance.
Collapse
Affiliation(s)
- Huiru Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meiling Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yueting Cui
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
El-Hefnawy ME, Alhayyani S, El-Sherbiny MM, Sakran MI, El-Newehy MH. Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds. Polymers (Basel) 2022; 14:318. [PMID: 35054723 PMCID: PMC8779972 DOI: 10.3390/polym14020318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as antimicrobial sheets via blending with biosynthesized silver nanoparticles (AgNPs), which were prepared in a safe way with low cost using the extract of Nerium oleander leaves, which acted as a reducing and stabilizing agent as well. The biosynthesized AgNPs were fully characterized by various techniques (UV-vis, TEM, DLS, zeta potential and XRD). The obtained results from UV-vis depicted that the AgNPs appeared at a wavelength equal to 404 nm affirming the preparation of AgNPs when compared with the wavelength of extract (there are no observable peaks). The average particle size of the fabricated AgNPs that mediated with HPS exhibited a very small size (less than 5 nm) with excellent stability (more than -30 mv). In addition, the fabricated nanofibers were also fully characterized and the obtained data proved that the diameter of nanofibers was enlarged with increasing the concentration of AgNPs. Additionally, the findings illustrated that the pore sizes of electrospun sheets were in the range of 75 to 350 nm. The obtained results proved that the presence of HPS displayed a vital role in decreasing the contact angle of PU nanofibers and thus, increased the hydrophilicity of the net nanofibers. It is worthy to mention that the prepared nanofibers incorporated with AgNPs exhibited incredible antimicrobial activity against pathogenic microbes that actually presented in human wounds. Moreover, P. aeruginosa was the most sensitive species to the fabricated nanofibers compared to other tested ones. The minimal inhibitory concentrations (MICs) values of AgNPs-3@NFs against P. aeruginosa, and E. faecalis, were 250 and 500 mg/L within 15 min, respectively.
Collapse
Affiliation(s)
- Mohamed E. El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sultan Alhayyani
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohsen M. El-Sherbiny
- Marine Biology Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed I. Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47731, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed H. El-Newehy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|