1
|
Yu L, Dong H, Zhang W, Zheng Z, Liang Y, Yao J. Development and challenges of polarization-sensitive photodetectors based on 2D materials. NANOSCALE HORIZONS 2025; 10:847-872. [PMID: 39936216 DOI: 10.1039/d4nh00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Polarization-sensitive photodetectors based on two-dimensional (2D) materials have garnered significant research attention owing to their distinctive architectures and exceptional photophysical properties. Specifically, anisotropic 2D materials, including semiconductors such as black phosphorus (BP), tellurium (Te), transition metal dichalcogenides (TMDs), and tantalum nickel pentaselenide (Ta2NiSe5), as well as semimetals like 1T'-MoTe2 and PdSe2, and their diverse van der Waals (vdW) heterojunctions, exhibit broad detection spectral ranges and possess inherent functional advantages. To date, numerous polarization-sensitive photodetectors based on 2D materials have been documented. This review initially provides a concise overview of the detection mechanisms and performance metrics of 2D polarization-sensitive photodetectors, which are pivotal for assessing their photodetection capabilities. It then examines the latest advancements in polarization-sensitive photodetectors based on individual 2D materials, 2D vdW heterojunctions, nanoantenna/electrode engineering, and structural strain integrated with 2D structures, encompassing a range of devices from the ultraviolet to infrared bands. However, several challenges persist in developing more comprehensive and functional 2D polarization-sensitive photodetectors. Further research in this area is essential. Ultimately, this review offers insights into the current limitations and challenges in the field and presents general recommendations to propel advancements and guide the progress of 2D polarization-sensitive photodetectors.
Collapse
Affiliation(s)
- Liang Yu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China.
| | - Ying Liang
- School of Arts and Sciences, Guangzhou Maritime University, Guangzhou 510799, Guangdong, P.R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| |
Collapse
|
2
|
Zhao X, Zhao D, Hu T, Cao H, Jia Y, Chen Y, Wang X, Yang J, Zhang Y, Tang X, Bai W, Wang J, Chu J. Carrier Recirculation Induced Ultrasensitive Photodetectors of InSe/CdTe Heterostructure Featuring an Interfacial Holes Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408826. [PMID: 39696965 DOI: 10.1002/smll.202408826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Photodetectors (PDs) based on mix-dimensional heterojunctions (MDHJs) built from 2D layered materials and covalent-bonded semiconductors show the prospect of compensating the intrinsic weakness of 2D materials to realize their full potential. However, there is an open issue to improve the temporal response of PDs while maintaining high gain and sensitivity. Herein, photoconductive type MDHJs PDs with 2D InSe and covalent-bonded CdTe thin film are designed and fabricated in which InSe is the active layer and CdTe is the medium gain one. The conductivity of InSe is improved by exceeding 50 times led by the formation of p-p heterojunction because of that an interfacial hole accumulation at InSe side and a built-in field at CdTe one are formed. Benefiting from the synergistic function of photoconductive and photogating effects, carrier recirculation induced responsitivity, detectivity, and external quantum efficiency with orders of magnitude increment reach 4.31 × 104 AW-1, 7.55 × 1013 Jones and 1.01 × 107%, and more optimal response time than those of other InSe PDs is demonstrated. This device construction strategy with exceptional performance hints at the prospect of optoelectronic devices of 2D InSe.
Collapse
Affiliation(s)
- Xuefeng Zhao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongyang Zhao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
| | - Tao Hu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
| | - Hechun Cao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
| | - Yu Jia
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Yan Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Xudong Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
| | - Jing Yang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Yuanyuan Zhang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaodong Tang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Wei Bai
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Jianlu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
- Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, P. R. China
| | - Junhao Chu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Su C, Li M, Yan H, Zhang Y, Li H, Fan W, Bai W, Liu X, Wang Q, Yin S. PdSe 2/NbSe 2 Heterojunction Photodetector with Broadband Detection and Polarization Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5213-5222. [PMID: 39778149 DOI: 10.1021/acsami.4c17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Polarized photodetectors based on anisotropic two-dimensional (2D) materials display great potential applications in communications and optoelectronics. However, the existence of high dark current, low anisotropic ratio, and response speed limits their development. In this paper, a broadband polarization angle-dependent photodetector based on the PdSe2/NbSe2 van der Waals (vdW) heterojunction has been constructed. Characterization results show that the PdSe2/NbSe2 heterojunction photodetector can suppress the dark current effectively (NbSe2 ∼4 orders of magnitude and PdSe2 ∼1 order of magnitude compared with individual material). Meanwhile, the device exhibits a broadband detection capability ranging from 405 to 980 nm. The device shows a superior responsivity of 27 mA/W, a considerable detectivity of 9.8 × 107 Jones, a large external quantum efficiency of 528%, and an ultrafast rise/decay time of 1.6/1.9 μs at 1 V bias under 638 nm laser wavelength. The photodetector also achieves a high polarization-sensitive anisotropic ratio of ∼2.62 under 638 nm laser irradiation. In addition, the heterojunction device shows outstanding polarization imaging capabilities, which can be used as the image sensor. This work proposed a PdSe2/NbSe2 vdW heterojunction device with low dark current, broadband polarized detection, and polarized visual imaging, which will promote the development and practicality of polarization-sensitive photodetectors.
Collapse
Affiliation(s)
- Can Su
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Mengyang Li
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hui Yan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yu Zhang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Heng Li
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
| | - Wenhao Fan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Weijie Bai
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xinjian Liu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qingguo Wang
- GuoAng Zhuotai (Tianjin) Smart IOT Technology Co., Ltd, Tianjin 301700, China
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
4
|
Cao H, Hu T, Zhang J, Zhao D, Chen Y, Wang X, Yang J, Zhang Y, Tang X, Bai W, Shen H, Wang J, Chu J. Electrically Tunable Multiple-Effects Synergistic and Boosted Photoelectric Performance in Te/WSe 2 Mixed-Dimensional Heterojunction Phototransistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400018. [PMID: 38502873 PMCID: PMC11165519 DOI: 10.1002/advs.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Mix-dimensional heterojunctions (MDHJs) photodetectors (PDs) built from bulk and 2D materials are the research focus to develop hetero-integrated and multifunctional optoelectronic sensor systems. However, it is still an open issue for achieving multiple effects synergistic characteristics to boost sensitivity and enrich the prospect in artificial bionic systems. Herein, electrically tunable Te/WSe2 MDHJs phototransistors are constructed, and an ultralow dark current below 0.1 pA and a large on/off rectification ratio of 106 is achieved. Photoconductive, photovoltaic, and photo-thermoelectric conversions are simultaneously demonstrated by tuning the gate and bias. By these synergistic effects, responsivity and detectivity respectively reach 13.9 A W-1 and 1.37 × 1012 Jones with 400 times increment. The Te/WSe2 MDHJs PDs can function as artificial bionic visual systems due to the comparable response time to those of the human visual system and the presence of transient positive and negative response signals. This work offers an available strategy for intelligent optoelectronic devices with hetero-integration and multifunctions.
Collapse
Affiliation(s)
- Hechun Cao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Tao Hu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jiyue Zhang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Dongyang Zhao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Yan Chen
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Xudong Wang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jing Yang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Yuanyuan Zhang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Xiaodong Tang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanShanxi030006P. R. China
| | - Wei Bai
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Hong Shen
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jianlu Wang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
- Frontier Institute of Chip and SystemFudan UniversityShanghai200433P. R. China
| | - Junhao Chu
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| |
Collapse
|
5
|
Tang Q, Zhong F, Li Q, Weng J, Li J, Lu H, Wu H, Liu S, Wang J, Deng K, Xiao Y, Wang Z, He T. Infrared Photodetection from 2D/3D van der Waals Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1169. [PMID: 37049263 PMCID: PMC10096675 DOI: 10.3390/nano13071169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.
Collapse
Affiliation(s)
- Qianying Tang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Qing Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jialu Weng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangyu Lu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yunlong Xiao
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Zhen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Ting He
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
6
|
Hei J, Li X, Wu S, Lin P, Shi Z, Tian Y, Li X, Zeng L, Yu X, Wu D. Wafer-Scale Patterning Synthesis of Two-Dimensional WSe 2 Layers by Direct Selenization for Highly Sensitive van der Waals Heterojunction Broadband Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12052-12060. [PMID: 36848604 DOI: 10.1021/acsami.2c22409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit promising potential in fabricating highly sensitive photodetectors due to their unique electrical and optoelectrical characteristics. However, micron-sized 2D materials produced by conventional chemical vapor deposition (CVD) and mechanical exfoliation methods fail to satisfy the demands for applications in integrated optoelectronics and systems given their poor controllability and repeatability. Here, we propose a simple selenization approach to grow wafer-scale (2 in.) 2D p-WSe2 layers with high uniformity and customized patterns. Furthermore, a self-driven broadband photodetector with a p-WSe2/n-Si van der Waals heterojunction has been in situ fabricated with a satisfactory responsivity of 689.8 mA/W and a large specific detectivity of 1.59 × 1013 Jones covering from ultraviolet to short-wave infrared. In addition, a remarkable nanosecond response speed has been recorded under 0.5% duty cycle of the input light. The proposed selenization approach on the growth of 2D WSe2 layers demonstrates an effective route to fabricate highly sensitive broadband photodetectors used for integrated optoelectronic systems.
Collapse
Affiliation(s)
- Jinjin Hei
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xue Li
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuoen Wu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Pei Lin
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhifeng Shi
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongtao Tian
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinjian Li
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Longhui Zeng
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Di Wu
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
7
|
Wang Z, Zhang H, Wang W, Tan C, Chen J, Yin S, Zhang H, Zhu A, Li G, Du Y, Wang S, Liu F, Li L. Type-I Heterostructure Based on WS 2/PtS 2 for High-Performance Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37926-37936. [PMID: 35961962 DOI: 10.1021/acsami.2c08827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
van der Waals (vdW) heterodiodes composed of two-dimensional (2D) layered materials led to a new prospect in photoelectron diodes and photovoltaic devices. Existing studies have shown that Type-I heterostructures have great potential to be used as photodetectors; however, the tunneling phenomena in Type-I heterostructures have not been fully revealed. Herein, a highly efficient nn+ WS2/PtS2 Type-I vdW heterostructure photodiode is constructed. The device shows an ultrahigh reverse rectification ratio of 105 owing to the transmission barrier-induced low reverse current. A unilateral depletion region is formed on WS2, which inhibits the recombination of carriers at the interface and makes the external quantum efficiency (EQE) of the device reach 67%. Due to the tunneling mechanism of the device, which allows the co-existence of a large photocurrent and a low dark current, this device achieves a light on/off ratio of over 105. In addition, this band design allows the device to maintain a high detectivity of 4.53 × 1010 Jones. Our work provides some new ideas for exploring new high-efficiency photodiodes.
Collapse
Affiliation(s)
- Zihan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Weike Wang
- Nanchang Institute of Technology, Nanchang 330044, P. R. China
| | - Chaoyang Tan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shiqi Yin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hanlin Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Ankang Zhu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Gang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuchen Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shaotian Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Fengguang Liu
- Hefei Innovation Research Institute, School of Microelectronics, Beihang University, Hefei 230013, P. R. China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
8
|
Lu J, Zhang L, Ma C, Huang W, Ye Q, Yi H, Zheng Z, Yang G, Liu C, Yao J. In situ integration of Te/Si 2D/3D heterojunction photodetectors toward UV-vis-IR ultra-broadband photoelectric technologies. NANOSCALE 2022; 14:6228-6238. [PMID: 35403635 DOI: 10.1039/d1nr08134a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decade, 2D elemental semiconductors have emerged as an ever-increasingly important group in the 2D material family due to their simple crystal structures and compositions, and versatile physical properties. Taking advantage of the relatively small bandgap, outstanding carrier mobility, high air-stability and strong interactions with light, 2D tellurium (Te) has emerged as a compelling candidate for use in ultra-broadband photoelectric technologies. In this study, high-quality centimeter-scale Te nanofilms have been successfully produced by exploiting pulsed-laser deposition (PLD). By performing deposition on pre-patterned SiO2/Si substrates, a Te/Si 2D/3D heterojunction array is formed in situ. To our delight, taking advantage of the relatively small bandgap of Te, the Te/Si photodetectors demonstrate an ultra-broadband photoresponse from ultraviolet to near-infrared (370.6 nm to 2240 nm), enabling them to serve as important alternatives to conventional 2D materials such as MoS2. In addition, an outstanding on/off ratio of ∼108 and a fast response rate (a response/recovery time of 3.7 ms/4.4 ms) are achieved, which is associated with the large band offset and strong interfacial built-in electric field that contribute to suppressing the dark current and separating photocarriers. Beyond these, a 35 × 35 matrix array has been successfully constructed, where the devices exhibit comparable properties, with a production yield of 100% for 100 randomly tested devices. The average responsivity, external quantum efficiency and detectivity reach 249 A W-1, 76 350% and 1.15 × 1011 Jones, respectively, making the Te/Si devices among the best-performing 2D/3D heterojunction photodetectors. On the whole, this study has established that PLD is a promising technique for producing high-quality Te nanofilms with good scalability, and the Te/Si 2D/3D heterojunction provides a promising platform for implementing high-performance ultra-broadband photoelectronic technologies.
Collapse
Affiliation(s)
- Jianting Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
| | - Lingjiao Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, China
| | - Wenjing Huang
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiaojue Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
| | - Huaxin Yi
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
| |
Collapse
|