1
|
Ai W, Yang C, Wang Q, Han W, Wang Y, Hou J, Zhu Z, Zhao J, Zhang Y, Zhang Y, Li X. Stable Silicon Anodes Enabled by Innovative Biobased Binder with Cross-Linking Network in Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9469-9479. [PMID: 40177947 DOI: 10.1021/acs.langmuir.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Graphite anodes, with their capacity nearing the theoretical maximum of 372 mA h g-1, are increasingly being complemented by silicon-based materials, which offer a 10-fold higher capacity. Nevertheless, extreme volume expansion (>300%) of Si during cycling poses significant challenges to its practical deployment. Previous studies on the synthesis of binders are often intricate and not conducive to large-scale implementation. In this study, an innovative binder, denoted as HM, is developed by combining the macromolecular polysaccharide sodium hyaluronate with the small organic molecule malic acid without the need for any external triggers. A cross-linked network structure is formed in situ after heat treatment with silicon under vacuum conditions. The contact interface establishes a robust network structure through multiple macromolecular hydrogen bonds and chemical interactions. Consequently, the HM binder exhibits exceptional mechanical properties and efficiently lessens the volumetric change of silicon particles, thereby benefiting the generation of a stable solid electrolyte interphase. Electrochemical characterization demonstrates that the exceptional cycling stability of Si@HM electrodes can maintain a high capacity of 1949 mA h g-1 at 0.1 C and 1426 mA h g-1 at 0.5 C after 100 cycles. Furthermore, silicon anodes employing the HM binder demonstrate superior rate performance and reduced internal resistance compared to those of conventional binders, representing a significant advancement in performance. This research provides crucial perspectives for binder design and experimental evidence for the commercial utilization of silicon anodes within lithium-ion batteries.
Collapse
Affiliation(s)
- Wengxiang Ai
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Chunman Yang
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Qian Wang
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Wenchang Han
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yongqi Wang
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Jiyue Hou
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Ziyi Zhu
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Jinbao Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yiyong Zhang
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yingjie Zhang
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Xue Li
- National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| |
Collapse
|
2
|
Lin Q, Kundu D, Skyllas-Kazacos M, Lu J, Zhao D, Amine K, Dai L, Wang DW. Perspective on Lewis Acid-Base Interactions in Emerging Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406151. [PMID: 39030779 DOI: 10.1002/adma.202406151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Indexed: 07/22/2024]
Abstract
Lewis acid-base interactions are common in chemical processes presented in diverse applications, such as synthesis, catalysis, batteries, semiconductors, and solar cells. The Lewis acid-base interactions allow precise tuning of material properties from the molecular level to more aggregated and organized structures. This review will focus on the origin, development, and prospects of applying Lewis acid-base interactions for the materials design and mechanism understanding in the advancement of battery materials and chemistries. The covered topics relate to aqueous batteries, lithium-ion batteries, solid-state batteries, alkali metal-sulfur batteries, and alkali metal-oxygen batteries. In this review, the Lewis acid-base theories will be first introduced. Thereafter the application strategies for Lewis acid-base interactions in solid-state and liquid-based batteries will be introduced from the aspects of liquid electrolyte, solid polymer electrolyte, metal anodes, and high-capacity cathodes. The underlying mechanism is highlighted in regard to ion transport, electrochemical stability, mechanical property, reaction kinetics, dendrite growth, corrosion, and so on. Last but not least, perspectives on the future directions related to Lewis acid-base interactions for next-generation batteries are like to be shared.
Collapse
Affiliation(s)
- Qiaowei Lin
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518071, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518071, China
| | - Dipan Kundu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria Skyllas-Kazacos
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai, 200433, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Da-Wei Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518071, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518071, China
| |
Collapse
|
3
|
Huang X, Ding C, Wang Y, Zhang S, Duan X, Ji H. Dual Dynamic Cross-Linked Epoxy Vitrimers Used for Strong, Detachable, and Reworkable Adhesives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38586-38605. [PMID: 38984525 DOI: 10.1021/acsami.4c08123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Novel reprocessable thermosetting adhesives (RTAs), which combine high adhesive strength, reusability, disassembly, and recyclability features, have attracted increasing attention. However, developing RTAs with a rapidly adhesive rate while ensuring high adhesive strength and self-healing ability is still a significant challenge. Here, we prepared a novel vitrimer called DAx-DTSAy, which can be used as an RTA. First, by adjusting the ratio of rigid and flexible segments, maximum tensile strength reached 35.92 MPa. Second, the combined effect of dynamic hydroxyl ester bonds and dynamic disulfide bonds resulted in a rapid stress relaxation behavior, with a complete relaxation time 13.6 times shorter than a vitrimer only cross-linked with hydroxy ester bonds. This feature endowed its good self-healing and reprocessing capabilities. After self-healing at 180 °C, the maximum healing rate of mechanical properties was 91.8%. After three reprocesses, the maximum recovery rate of tensile strength was 120.2%. Furthermore, the combination of rigid and flexible segments and the synergistic effect of dual dynamic covalent bonds made DAx-DTSAy capable of use as a high-performance RTA. The lap shear strength of a DAx-DTSAy film on stainless steel reached 18.18 MPa after 15 min, with a recovery rate of 91.9% after 5 rebonding cycles. Additionally, DAx-DTSAy can be disassembled in chemical agents and exhibited better insulation properties compared to traditional epoxy resins. DAx-DTSAy can be employed as a novel high-performance adhesive in applications such as electronic devices and transportation, contributing to the development of thermosetting adhesives toward recyclability and sustainability.
Collapse
Affiliation(s)
- Xiaoyu Huang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chen Ding
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yichun Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Songmao Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Duan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hongzeng Ji
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Yu Y, Zhang P, Wang W, Liu J. Tuning the Electrode/Electrolyte Interface Enabled by a Trifunctional Inorganic Oligomer Electrolyte Additive for Highly Stable and High-Rate Zn Anodes. SMALL METHODS 2023; 7:e2300546. [PMID: 37350517 DOI: 10.1002/smtd.202300546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The practical application of aqueous Zn-ion batteries is still greatly hindered by the unstable Zn anode with severe Zn dendrites growth and side reactions. As it is accessible and economical, the exploitation of electrolyte additives is one of the most promising strategies to stabilize the Zn electrode/electrolyte interface. Herein, the penta-potassium triphosphate (KTPP) as a novel trifunctional electrolyte additive is introduced to tune the electrode/electrolyte interface. First, the KTPP additive can induce an ion-conducting and mechanically robust solid electrolyte interphase film to stabilize the Zn anode. Second, the KTPP can complex with Zn2+ ions to reconstitute the dissolution sheath structure of the Zn2+ ion. Finally, the K+ cations in KTPP adsorb on the tips of the Zn anode surface as a shielding film to regulate Zn2+ ion flux. As a result, Zn//Zn symmetric cells can achieve significantly prolonged cycling stability (e.g., from 1077 to 3800 h at 1 mA cm-2 /1 mAh cm-2 , from 256 to 2500 h at 2 mA cm-2 /2 mAh cm-2 ), and ultrahigh cumulative capacity of 6400/7200 mAh cm-2 at high current density (40/20 mA cm-2 ). A four-layer Zn-MnO2 pouch full cell with a high capacity of 9 mAh can be constructed, showing impressive practical application potential.
Collapse
Affiliation(s)
- Yuanze Yu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pengfei Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Weiyu Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jie Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
5
|
Hou M, Liu J, Yu F, Wang L. A ductile and strong-affinity network binder coupling inorganic oligomers and biopolymers for high-loading lithium-sulfur batteries. Dalton Trans 2023. [PMID: 37194320 DOI: 10.1039/d3dt00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lithium sulfur (Li-S) batteries have become the predominant energy storage devices of the future. However, the reasons why Li-S batteries have not been widely commercialized include the shuttle effect of polysulfides and the volume expansion of sulfur active substances. In this study, a binder with a stretchable 3D reticular structure was induced using inorganic oligomers. Potassium tripolyphosphate (PTP) has been used to powerfully connect the tamarind seed gum (TSG) chain through robust intermolecular forces due to the strong electronegativity of P-O- groups. With this binder, the volume expansion of sulfur active substances can be well restrained. In addition, a large amount of -OH groups in TSG and P-O- bonds in PTP can also effectively adsorb polysulfides and inhibit the shuttle effect. Therefore, the S@TSG-PTP electrode shows an improved cycle performance. When the sulfur loading is as high as 4.29 mg cm-2, the areal specific capacity can reach 3.37 mA h cm-2 after 70 cycles. This study highlights a new way for the binder design of high-loading sulfur electrodes.
Collapse
Affiliation(s)
- Mingxiu Hou
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China.
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Liu
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China.
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fengli Yu
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China.
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China.
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Feng J, Hou M, Zhang Q, Wang D, Li Z, Liu J, Wu Y, Wang L. Constructing practical micron silicon anodes via a homogeneous and robust network binder induced by a strong-affinity inorganic oligomer. J Colloid Interface Sci 2023; 634:621-629. [PMID: 36549210 DOI: 10.1016/j.jcis.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Designing robust binders has been demonstrated to be an effective and facile strategy to stabilize Si anodes. However, the binders that performed well for Si nanoparticles are not applicable for low-cost and accessible Si micron-powders. Hence, a novel binder design strategy is still greatly required for practical micron-Si anodes. Herein, a robust water-based network binder (named as c-PTP-Alg) has been designed via coupling potassium tripolyphosphate (PTP) inorganic oligomer with alginic acid (Alg) organic macromolecule. Owing to the unique structure of PTP, a network with high mechanical resistance can be constructed in c-PTP-Alg binder via strong ion-dipole interactions. Moreover, the highly soluble and dispersed PTP inorganic oligomer in water prevents the organic macromolecule from aggregation. This induces a homogeneous texture in the c-PTP-Alg binder, which enables the polar groups in the composite binder to anchor micron-Si particles efficiently. Therefore, by simply applying the c-PTP-Alg binder, a significantly improved electrochemical performance of micron-Si anode with a high reversible capacity of 1599.9 mAh g-1 after 100 cycles at 3000 mA g-1 has been obtained. More specially, the high-energy-density Si||S-PAN full cells have also been constructed, showing the practical application prospect of the c-PTP-Alg binder.
Collapse
Affiliation(s)
- Jianshun Feng
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingxiu Hou
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian Zhang
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhenjiang Li
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Liu
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yumin Wu
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Engineering Research Centre of Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
7
|
Li D, Zhang M, Zhang L, Xu X, Pan Q, Huang Y, Zheng F, Wang H, Li Q. Constructing three-dimensional N-doped carbon coating silicon/iron silicide nanoparticles cross-linked by carbon nanotubes as advanced anode materials for lithium-ion batteries. J Colloid Interface Sci 2023; 629:908-916. [PMID: 36208603 DOI: 10.1016/j.jcis.2022.09.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 10/06/2022]
Abstract
Silicon (Si), have been considered as promising anode material for lithium-ion batteries (LIBs), due to its high theoretical specific capacity of 4200 mAh g-1. However, the poor electrical conductivity and large volume change during lithiation/delithiation process, resulting in poor cycling stability, and seriously hindered the practical application in LIBs. Herein, a multiple Si/FexSiy@NC/CNTs composite is synthesized and investigated as advanced anode materials for LIBs via a simple one-step method. Such multiple Si/FexSiy@NC/CNTs composite has several merits including the FexSiy can not only accommodate the huge volume change of Si nanoparticles, but also enhance the conductivity upon discharge/charge process. Furthermore, the in-situ growth CNTs may help establish a long-range conductivity, and the Nitrogen-doped carbon (NC) layer can further improve the conductivity of Si, as well as inhibit the direct contract between electrolyte and Si during cycling process. Accordingly, the Si/FexSiy@NC/CNTs-1 exhibits excellent cycling stability (a high capacity of 994.4 mAh g-1 is maintained at 1.0 A g-1 after 600cycles) and outstanding rate capability (a suitable capacity of 441.7 mAh g-1 was obtained even at 5.0 A g-1). Moreover, the assembled full cell can achieve a capacity of 141.4 mAh g-1 after 65 cycles at 1.0C, exhibiting outstanding cycling stability. This work provides a prospective way for the commercial production of high-performance Si-based anode materials for LIBs.
Collapse
Affiliation(s)
- Dan Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China
| | - Man Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China
| | - Lixuan Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China
| | - Xiaoqian Xu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China.
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China.
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
8
|
Lai Y, Li H, Yang Q, Li H, Liu Y, Song Y, Zhong Y, Zhong B, Wu Z, Guo X. Revisit the Progress of Binders for a Silicon-Based Anode from the Perspective of Designed Binder Structure and Special Sized Silicon Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yizhu Lai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haodong Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuxia Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yang Song
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanjun Zhong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Benhe Zhong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Pan SY, Yang XR, Zhou Y, Lv C, Deng HT, Guo MJ, Chen SX, Hu YY, Deng L, Qiao Y, Li JT, Huang L, Yang Y, Sun SG. Formulating a New Electrolyte: Synergy between Low-Polar and Non-polar Solvents in Tailoring the Solid Electrolyte Interface for the Silicon Anode. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55700-55711. [PMID: 34752083 DOI: 10.1021/acsami.1c16827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, lithium-ion batteries (LIBs) are assembled with polar electrolytes; thus, resulting SEI layers are dominated with organics. Herein, a low-polarity electrolyte is formulated with a low-polarity solvent (tetraethyl silicate, TEOS) and a non-polar inert shielding co-solvent (cyclohexane, CYH); solvation behaviors of lithium salt are investigated. The use of such a low-polarity solvent is found to improve the fraction of anions in the solvation sheath of Li+, and the presence of the non-polar co-solvent further shields the reductive decomposition of the solvent on the anode. The resulting SEI layer is relatively rich in LiF and has a 3D cross-linked Si-O network as a skeleton from the decomposition of TEOS molecules, which is more robust to tolerate the damage from the volume expansion of silicon. A Si-nanoparticle-based anode in such a low-polarity electrolyte delivers a capacity as high as 1491 mAh g-1 after 200 cycles, outperforming those in the commercial polar electrolytes.
Collapse
Affiliation(s)
- Si-Yu Pan
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Xue-Rui Yang
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Yao Zhou
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Chao Lv
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Hao-Tian Deng
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Ming-Jia Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shou-Xiao Chen
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Yi-Yang Hu
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Li Deng
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun-Tao Li
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Ling Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|