1
|
Huang Z, Naghdi S, Ertl A, Schwarz S, Eder D. Strategic Secondary Ligand Selection for Enhanced Pore-Type Construction and Water Purification Capacity in Zeolitic Imidazolate Frameworks. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21133-21142. [PMID: 40159117 PMCID: PMC11986909 DOI: 10.1021/acsami.4c21221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Selective ligand removal (SeLiRe) is a powerful strategy for constructing novel pore-type and ligand-defective structures in metal-organic frameworks (MOFs), but few studies have focused on the effect of secondary ligands with different functional groups on this process. We synthesized versions of zeolitic imidazolate framework-8 with six different secondary ligands and comprehensively investigated their pore-type structures after SeLiRe treatment. Their pore volume, size, and distribution are closely related to the respective organic functional groups on the secondary ligands. NH2-functionalized ligands tend to form larger domains and have weaker Zn-Nβ covalent bonds, which facilitate the removal process and the construction of larger cavities. Among the six secondary ligands, 5-bromo-1H-benzo[d]imidazol-2-amine exhibits the composite pore-type structure with hierarchical micro- and mesopores, achieving the highest methylene blue adsorption capacity of 28.1 mg g-1. Compared to traditional sodalite-type ZIFs, this results in a 53-fold increase in water pollutant adsorption. This work highlights the crucial role of the secondary ligand in the SeLiRe strategy and provides valuable insights for designing other hierarchical porous hybrid structures.
Collapse
Affiliation(s)
- Zheao Huang
- Institute
of Materials Chemistry, Technische Universität
Wien, Vienna 1060, Austria
| | - Shaghayegh Naghdi
- Institute
of Materials Chemistry, Technische Universität
Wien, Vienna 1060, Austria
| | - Adrian Ertl
- Institute
of Materials Chemistry, Technische Universität
Wien, Vienna 1060, Austria
| | - Sabine Schwarz
- Service Center
for Electron Microscopy (USTEM), Technische
Universität Wien, Vienna 1040, Austria
| | - Dominik Eder
- Institute
of Materials Chemistry, Technische Universität
Wien, Vienna 1060, Austria
| |
Collapse
|
2
|
Huang Z, Rath J, Zhou Q, Cherevan A, Naghdi S, Eder D. Hierarchically Micro- and Mesoporous Zeolitic Imidazolate Frameworks Through Selective Ligand Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307981. [PMID: 38126913 PMCID: PMC11478943 DOI: 10.1002/smll.202307981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Indexed: 12/23/2023]
Abstract
A new method to engineer hierarchically porous zeolitic imidazolate frameworks (ZIFs) through selective ligand removal (SeLiRe) is presented. This innovative approach involves crafting mixed-ligand ZIFs (ML-ZIFs) with varying proportions of 2-aminobenzimidazole (NH2-bIm) and 2-methylimidazole (2-mIm), followed by controlled thermal treatments. This process creates a dual-pore system, incorporating both micropores and additional mesopores, suggesting selective cleavage of metal-ligand coordination bonds. Achieving this delicate balance requires adjustment of heating conditions for each mixed-ligand ratio, enabling the targeted removal of NH2-bIm from a variety of ML-ZIFs while preserving their inherent microporous framework. Furthermore, the distribution of the initial thermolabile ligand plays a pivotal role in determining the resulting mesopore architecture. The efficacy of this methodology is aptly demonstrated through the assessment of hierarchically porous ZIFs for their potential in adsorbing diverse organic dyes in aqueous environments. Particularly striking is the performance of the 10%NH2-ZIF-2 h, which showcases an astonishing 40-fold increase in methylene blue adsorption capacity compared to ZIF-8, attributed to larger pore volumes that accelerate the diffusion of dye molecules to adsorption sites. This versatile technique opens new avenues for designing micro/mesoporous ZIFs, particularly suited for liquid media scenarios necessitating efficient active site access and optimal diffusion kinetics, such as purification, catalysis, and sensing.
Collapse
Affiliation(s)
- Zheao Huang
- Institute of Material ChemistryVienna University of TechnologyVienna1060Austria
| | - Jakob Rath
- Institute of Material ChemistryVienna University of TechnologyVienna1060Austria
| | - Qiancheng Zhou
- Institute of Nanoscience and NanotechnologyCollege of Physical Science and TechnologyCentral China Normal UniversityWuhan430079China
| | - Alexey Cherevan
- Institute of Material ChemistryVienna University of TechnologyVienna1060Austria
| | - Shaghayegh Naghdi
- Institute of Material ChemistryVienna University of TechnologyVienna1060Austria
| | - Dominik Eder
- Institute of Material ChemistryVienna University of TechnologyVienna1060Austria
| |
Collapse
|
3
|
Peng J, Xiao Q, Wang Z, Zhou F, Yu J, Chi R, Xiao C. Mechanistic investigation of Pb 2+ adsorption on biochar modified with sodium alginate composite zeolitic imidazolate framework-8. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31605-31618. [PMID: 38637484 DOI: 10.1007/s11356-024-33320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
For the serious situation of heavy metal pollution, the use of cheap, clean, and efficient biochar to immobilize heavy metals is a good treatment method. In this paper, SA@ZIF-8/BC was prepared for the adsorption of Pb2+ in solution using sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) modified corn cob biochar. The results showed that the specific surface area of modified biochar was greatly improved, with good adsorption capacity for Pb2+, strong anti-interference ability, and good economy. At the optimal adsorption pH of 5, the adsorption model of Pb2+ by SA@ZIF-8/BC was more consistent with the pseudo-second-order kinetic model and Langmuir isotherm model. This indicates that the adsorption of Pb2+ by SA@ZIF-8/BC is chemisorption and monolayer adsorption. The maximum adsorption of modified biochar was 300 mg g-1, which was 2.38 times higher than that of before modified BC (126 mg g-1). The shift in binding energy of functional groups before and after adsorption of SA@ZIF-8/BC was studied by XPS, and it was found that hydroxyl and carboxyl groups played an important role in the adsorption of Pb2+. It was demonstrated that this novel adsorbent can be effectively used for the treatment of Pb pollution in wastewater.
Collapse
Affiliation(s)
- Jun Peng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Qian Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ziwei Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
- Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China.
- Hubei Three Gorges Laboratory, Yichang, 443007, China.
| |
Collapse
|
4
|
Ma X, Li Y, Du Y, Chen S, Bai Y, Li L, Qi C, Wu P, Zhang S. In-situ synthesis of ZIF-8 on magnetic pineapple leaf biochar as an efficient and reusable adsorbent for methylene blue removal from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24113-24128. [PMID: 38436853 DOI: 10.1007/s11356-024-32700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The presence of organic dyes in aquatic systems poses a significant threat to ecosystems and human well-being. Due to recycling challenges, traditional commercial activated carbon is not cost-effective. To address this, an imidazolate acid zeolite framework-8 (ZIF-8)-modified magnetic adsorbent (ZMPLB-800) was synthesized through the in-situ formation of ZIF-8 and subsequent carbonization at 800 °C, using magnetic pineapple leaf biochar (MPLB) as a carrier. The porous structure of ZMPLB-800 facilitates the rapid passage of dye molecules, enhancing adsorption performance. ZMPLB-800 exhibited remarkable adsorption capacity for methylene blue (MB) across a pH range of 3-13, with a maximum adsorption capacity of 455.98 mg g-1. Adsorption kinetics and thermodynamics followed the pseudo-second-order kinetic model and Langmuir isotherm model. Mechanisms of MB adsorption included pore filling, hydrogen bonding, electrostatic interactions, π-π interactions, and complexation through surface functional groups. Additionally, ZMPLB-800 demonstrated excellent regeneration performance, recording a removal efficiency exceeding 87% even after five adsorption/desorption cycles. This study provides a novel strategy for treating dye wastewater with MOF composites, laying the foundation for waste biomass utilization.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Yutong Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Yile Du
- College of Liberal Arts & Sciences at Illinois, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | - Shuangli Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Yunfan Bai
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Chuhua Qi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Pingping Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China
| | - Sijing Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 13 Yanta Rd., Xi'an, 710055, China.
| |
Collapse
|
5
|
Liang C, Li J, Chen Y, Ke L, Zhu J, Zheng L, Li XP, Zhang S, Li H, Zhong GJ, Xu H. Self-Charging, Breathable, and Antibacterial Poly(lactic acid) Nanofibrous Air Filters by Surface Engineering of Ultrasmall Electroactive Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048182 DOI: 10.1021/acsami.3c13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Despite the great promise in the development of biodegradable and ecofriendly air filters by electrospinning of poly(lactic acid) (PLA) nanofibrous membranes (NFMs), the as-electrospun PLA nanofibers are generally characterized by poor electroactivity and smooth surface, challenging the exploitation of electrostatic adsorption and physical interception that are in need for efficient removal of pathogens and particulate matters (PMs). Herein, a combined "electrospinning-electrospray" strategy was disclosed to functionalize the PLA nanofibers by direct anchoring of highly dielectric BaTiO3@ZIF-8 nanohybrids (BTO@ZIF-8), conferring simultaneous promotion of surface roughness, electret properties (surface potential as high as 7.5 kV), and self-charging capability (∼190% increase in tribo-output voltage compared to that of pure PLA). Benefiting from the well-tailored morphology and increased electroactivity, the electrospun-electrosprayed PLA/BTO@ZIF-8 exhibited excellent PM-capturing performance (up to 96.54% for PM0.3 and 99.49% for PM2.5) while providing desirable air resistance (only 87 Pa at 32 L/min) due primarily to the slip flow of air molecules over the nanohybrid protrusions. This was accompanied by excellent antibacterial properties (99.9% inhibition against both Staphylococcus aureus and Escherichia coli), arising presumably from the synergistic effects of enhanced reactive oxygen species (ROS) generation, plentiful ion release, and surface charges. Our proposed strategy opens up pathways to afford exceptional combination of high-efficiency and low-resistance filtration, excellent antibacterial performance, and mechanical robustness without sacrificing the biodegradation profiles of PLA NFMs, holding potential implications for efficient and long-term healthcare.
Collapse
Affiliation(s)
- Chenyu Liang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiaqi Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuyang Chen
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Lina Zheng
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| |
Collapse
|
6
|
Li M, Ma M, Zhao Z, Bao M, Zhang N, Zhou Y, Zheng Y. Simultaneous degradation of binary fluoroquinolone antibiotics by B and N in-situ self-doped guar gum hydrogel. CHEMOSPHERE 2023; 342:140197. [PMID: 37717915 DOI: 10.1016/j.chemosphere.2023.140197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Using guar gum (GG) as the raw material and borax (B) as the cross-linker, zeolitic imidazolate framework-8 (ZIF-8) was in-situ loaded into the 3D network of GG hydrogel, forming a highly efficient catalytic material GG-B-ZIF-8 combined with a subsequent low-temperature calcination process. In GG-B-ZIF-8 activated peroxymonosulfate (PMS) system, binary norfloxacin (NOR) and ciprofloxacin (CIP) could be removed simultaneously, with the degradation efficiency of >99.9% within 1 h. This system was adaptable to a wide pH range of 3.0-9.0, and was also highly resistant to 5-20 mM Cl- and 10-40 mg/L humic acid. The degradation process was dominated by free radical O2•-, non-radical 1O2 and electron transfer, with eleven degradation products identified for NOR and nine for CIP via eight possible degradation pathways. Finally, the potential eco-toxicity of NOR, CIP and degradation intermediates was evaluated using the ECOSAR method.
Collapse
Affiliation(s)
- Mingzhe Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mengling Ma
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ziwei Zhao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingkun Bao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Nan Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhou
- Radiation Environmental Monitoring Station of Hainan Province, Haikou, 571126, China.
| | - Yian Zheng
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
8
|
Niu Z, Xiao C, Mo J, Zhang L, Chen C. Investigating the Influence of Metal-Organic Framework Loading on the Filtration Performance of Electrospun Nanofiber Air Filters. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27096-27106. [PMID: 35656762 DOI: 10.1021/acsami.2c06808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Integrating metal-organic frameworks (MOFs) into electrospun nanofiber filters has become an effective method for improving particle filtration efficiency. This study hypothesized that there is an optimal amount of MOFs that can be integrated into electrospun nanofiber filters to achieve the maximum particle removal efficiency while minimizing the corresponding MOF synthesis time. To test the hypothesis, this study systematically explored the influence of the time-dependent in situ growing process of zeolitic imidazolate framework-67 (ZIF-67), a typical type of MOFs, on the filtration performance of polyacrylonitrile (PAN) electrospun nanofibers. The results show that the surface morphology and chemical composition of the PAN/ZIF-67 hybrid nanofiber filters gradually changed with the reaction time. For PAN/ZIF-67 hybrid nanofiber filters with relatively low initial PM0.3-0.4 filtration efficiency, a reaction time of only 5 min was sufficient for the synthesis of the amount of ZIF-67 that maximized the PM0.3-0.4 filtration efficiency. However, for thick filters with high original PM0.3-0.4 filtration efficiency (>90%), the integration of ZIF-67 was not necessary, because the efficiency enhancement would not be significant. In addition, the enhancement of filtration efficiency for ultrafine particles was positively correlated with the amount of incorporated ZIF-67. In summary, this study shortened the synthesis time of the in situ incorporation of MOFs into electrospun nanofiber filters from more than 10 h (reported in the literature) to only 5 min.
Collapse
Affiliation(s)
- Zhuolun Niu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Can Xiao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Chun Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Cheng Y, Wang W, Yu R, Liu S, Shi J, Shan M, Shi H, Xu Z, Deng H. Construction of ultra-stable polypropylene membrane by in-situ growth of nano-metal–organic frameworks for air filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Lee J, Jung S, Park H, Kim J. Bifunctional ZIF-8 Grown Webs for Advanced Filtration of Particulate and Gaseous Matters: Effect of Charging Process on the Electrostatic Capture of Nanoparticles and Sulfur Dioxide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50401-50410. [PMID: 34637264 DOI: 10.1021/acsami.1c15734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic framework (MOF), an emerging class of porous hybrid inorganic-organic crystals, has been applied for various environmental remediation strategies including liquid and air filtration. In this study, the role of the zeolite imidazole framework-8 (ZIF-8) was explored on the charge trapping ability and its contribution to capturing the targeted pollutants of NaCl nanoparticles and SO2 gas. Poly(lactic acid) fibers with controlled surface pores were electrospun using water vapor-induced phase separation, and the fiber surface was uniformly coated with ZIF-8 crystals via an in situ growth method. As a novel process approach, the corona charging process was applied to the ZIF-8 grown webs. The ZIF-8 promoted the charge trapping in the corona process, and the charged ZIF-8 web showed a significantly improved electrostatic filtration efficiency. Also, the charged ZIF-8 web showed an enhanced SO2 capture ability, both in the static and dynamic air flow states, demonstrating the applicability as a bifunctional filter for both particulate and gaseous matters. The approach of this study is novel in that both particulate and gas capture capabilities were associated with the charge trapping ability of ZIF-8, implementing the corona charging process to the ZIF-8 webs.
Collapse
Affiliation(s)
- Jinwook Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Seojin Jung
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanjou Park
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|