1
|
Li MY, Peng H. Revolutionizing Sports with Nanotechnology: Better Protection and Stronger Support. ACS Biomater Sci Eng 2025; 11:135-155. [PMID: 39710931 DOI: 10.1021/acsbiomaterials.4c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Modern sports activities have increasingly benefited from the development of nanotechnology, which is extensively applied in various sports events and associated activities and facilities. Nanotechnology deals with materials with nanoscale size, providing unique properties and functions compared with their bulk counterparts. Nanotechnology can not only provide better training feedback by tracking the athlete's physiological signals as well as performance details but also protect humans with nanomaterial-functionalized sports fabrics, equipment, and medicine. Nanotechnology has significantly advanced sports in various aspects, thereby leading to a rising research interest in this interdisciplinary field. This article highlights several representative nanotechnologies applied in sports such as nanomaterials in wearable sensors, personal heat management devices, functional sports fabrics, and sports medicine and discusses the principles, current challenges, as well as future opportunities.
Collapse
Affiliation(s)
- Mu-Yang Li
- School of Physical Education, Shaoguan University, 512005 Shaoguan, Guangdong, China
| | - Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| |
Collapse
|
2
|
Silva EP, Rechotnek F, Lima AMO, da Silva ACP, Sequinel T, Freitas CF, Martins AF, Muniz EC. Design and fabrication strategies of molybdenum disulfide-based nanomaterials for combating SARS-CoV-2 and other respiratory diseases: A review. BIOMATERIALS ADVANCES 2024; 163:213949. [PMID: 39002189 DOI: 10.1016/j.bioadv.2024.213949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Elisangela P Silva
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Fernanda Rechotnek
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Antônia M O Lima
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | | | - Thiago Sequinel
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Camila F Freitas
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Alessandro F Martins
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS, USA.
| | - Edvani C Muniz
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| |
Collapse
|
3
|
Zeng C, Wang H, Bu F, Cui Q, Li J, Liang Z, Zhao L, Yi C. A regenerated cellulose fiber with high mechanical properties for temperature-adaptive thermal management. Int J Biol Macromol 2024; 274:133550. [PMID: 39030156 DOI: 10.1016/j.ijbiomac.2024.133550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
The escalating global population has led to a surge in waste textiles, posing a significant challenge in landfill management worldwide. In this work, ionic liquid 1-butyl-3-methylimidazole acetate ([Bmim]OAc) and DMF (N, n-dimethylformamide) were used as solvents to dissolve waste denim fabric, then vanadium dioxide (VO2) nanoparticles were introduced into the spinning solution, and cellulose fibers were regenerated by dry-wet spinning process, to promote the recycling of waste cotton fabric. Finally, regenerated cellulose fibers with high added value were prepared by dry-wet spinning. Through this innovative strategy, on the one hand, because VO2 can form a large number of hydrogen bonds between the regenerated cellulose molecules, and realize the cross-networking structure of the molecular chains inside the fiber, the mechanical properties of the regenerated cellulose fibers are enhanced. On the other hand, due to the thermal phase transformation characteristics of VO2, it also endows the regenerated cellulose fiber unique intelligent temperature control function. Compared with the pristine regenerated fiber, the tensile stress of the regenerated fiber after adding VO2 nanoparticles (F-VO2) increased by 25.6 %, reaching 158.68 MPa. In addition, the F-VO2 fibric provides excellent intelligent temperature control, reducing temperatures by up to 6.7 °C.
Collapse
Affiliation(s)
- Cheng Zeng
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Hao Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fan Bu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Qiangqiang Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Jing Li
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Zihui Liang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China.
| | - Li Zhao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Changhai Yi
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
4
|
Li J, Li J, Chen Y, Tai P, Fu P, Chen Z, Yap PS, Nie Z, Lu K, He B. Molybdenum Disulfide-Supported Cuprous Oxide Nanocomposite for Near-Infrared-I Light-Responsive Synergistic Antibacterial Therapy. ACS NANO 2024; 18:16184-16198. [PMID: 38864540 DOI: 10.1021/acsnano.4c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Drug-resistant bacterial infections pose a serious threat to human health; thus, there is an increasingly growing demand for nonantibiotic strategies to overcome drug resistance in bacterial infections. Mild photothermal therapy (PTT), as an attractive antibacterial strategy, shows great potential application due to its good biocompatibility and ability to circumvent drug resistance. However, its efficiency is limited by the heat resistance of bacteria. Herein, Cu2O@MoS2, a nanocomposite, was constructed by the in situ growth of Cu2O nanoparticles (NPs) on the surface of MoS2 nanosheets, which provided a controllable photothermal therapeutic effect of MoS2 and the intrinsic catalytic properties of Cu2O NPs, achieving a synergistic effect to eradicate multidrug-resistant bacteria. Transcriptome sequencing (RNA-seq) results revealed that the antibacterial process was related to disrupting the membrane transport system, phosphorelay signal transduction system, oxidative stress response system, as well as the heat response system. Animal experiments indicated that Cu2O@MoS2 could effectively treat wounds infected with methicillin-resistant Staphylococcus aureus. In addition, satisfactory biocompatibility made Cu2O@MoS2 a promising antibacterial agent. Overall, our results highlight the Cu2O@MoS2 nanocomposite as a promising solution to combating resistant bacteria without inducing the evolution of antimicrobial resistance.
Collapse
Affiliation(s)
- Jiao Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jie Li
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fu Ma Road, Fuzhou, Fujian 350001, China
| | - Yuli Chen
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ping Tai
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Peiwen Fu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zhonghao Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
5
|
Zhang Z, Mao H, Kong Y, Niu P, Zheng J, Liu P, Wang WJ, Li Y, Yang X. Re-Designing Cellulosic Core-Shell Composite Fibers for Advanced Photothermal and Thermal-Regulating Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305924. [PMID: 37990391 DOI: 10.1002/smll.202305924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Indexed: 11/23/2023]
Abstract
Flexible fibers and textiles featuring photothermal conversion and storage capacities are ideal platforms for solar-energy utilization and wearable thermal management. Other than using fossil-fuel-based synthetic fibers, re-designing natural fibers with nanotechnology is a sustainable but challenging option. Herein, advanced core-shell structure fibers based on plant-based nanocelluloses are obtained using a facile co-axial wet-spinning process, which has superior photothermal and thermal-regulating performances. Besides serving as the continuous matrix, nanocelluloses also have two other important roles: dispersing agent when exfoliating molybdenum disulfide (MoS2), and stabilizer for phase change materials (PCM) in the form of Pickering emulsion. Consequently, the shell layer contains well-oriented nanocelluloses and MoS2, and the core layer contains a high content of PCM in a leak-proof encapsulated manner. Such a hierarchical cellulosic supportive structure leads to high mechanical strength (139 MPa), favorable flexibility, and large latent heat (92.0 J g-1), surpassing most previous studies. Furthermore, the corresponding woven cloth demonstrates satisfactory thermal-regulating performance, high solar-thermal conversion and storage efficiency (78.4-84.3%), and excellent long-term performance. In all, this work paves a new way to build advanced structures by assembling nanoparticles and polymers for functional composite fibers in advanced solar-energy-related applications.
Collapse
Affiliation(s)
- Zihuan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hui Mao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuying Kong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Panpan Niu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University, Quzhou, 324000, P. R. China
| | - Jieyuan Zheng
- Institute of Zhejiang University, Quzhou, 324000, P. R. China
| | - Pingwei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University, Quzhou, 324000, P. R. China
| | - Wen-Jun Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University, Quzhou, 324000, P. R. China
| | - Yuanyuan Li
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Xuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Zhejiang University, Quzhou, 324000, P. R. China
| |
Collapse
|
6
|
Wang X, Sun X, Liu W, Li H, Wang J, Wang D. Amino acid-mediated amorphous copper sulphide with enhanced photothermal conversion efficiency for antibacterial application. J Colloid Interface Sci 2024; 657:142-154. [PMID: 38035417 DOI: 10.1016/j.jcis.2023.11.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Pathogenic bacteria in daily life, such as Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), often seriously affect human life and health. The extensive use of antibiotics has led to the emergence of drug-resistant bacteria, so it is urgent to develop efficient and non-drug-resistant sterilization methods. Here, we use small-molecule cysteine (Cys) as an auxiliary agent to synthesize spherical porous amorphous CuS-Cysteine (CuS-C) nanoparticles, which have good dispersion in aqueous solutions, and explore the reaction mechanism of Cys-induced CuS synthesis. The synthesized composite nanomaterials have strong near-infrared light absorption ability and efficient photothermal conversion ability and can effectively ablate pathogenic bacteria under the irradiation of an 808 nm laser. In addition, antibacterial experiments showed that CuS-C composites had no bactericidal effect without near-infrared light, but they had a good photothermal bactericidal effect on S. aureus and E. coli under radiation conditions. Considering the simple synthesis process, strong photothermal conversion ability, low cost, and suitability for large-scale production, CuS-C nanocomposites, as a promising antibacterial material, will provide a feasible scheme for the treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Xinhao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiaoyan Sun
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, Shandong, China
| | - Wenliang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jiqian Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
7
|
Zhao Z, Song X, Zhang Y, Zeng B, Wu H, Guo S. Biomineralization-Inspired Copper Sulfide Decorated Aramid Textiles via In Situ Anchoring toward Versatile Wearable Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307873. [PMID: 37853209 DOI: 10.1002/smll.202307873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.
Collapse
Affiliation(s)
- Zhiheng Zhao
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Bingbing Zeng
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Cheng C, Bao D, Sun S, Zhou Y, Tian L, Zhang B, Yu Y, Guo J, Zhang S. Chitosan/copper sulfide nanoparticles (CS/CuSNPs) hybrid fibers with improved mechanical and photo-thermal conversion properties via tuning CuSNPs' morphological structures. Int J Biol Macromol 2023; 253:127098. [PMID: 37769777 DOI: 10.1016/j.ijbiomac.2023.127098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Conventional textiles are inadequate for maintaining warmth in extremely cold conditions. Therefore, the development of photo-thermal fibers for personal thermal management textiles has emerged as an urgent need. Herein, novel chitosan/copper sulfide nanoparticles (CS/CuSNPs) hybrid fibers with photo-thermal function were fabricated successfully. Significantly, our study demonstrated that the tensile and photo-thermal conversation properties of the CS/CuSNPs hybrid fibers could be effectively regulated by altering the CuSNPs` morphological structures. Compared with other CuSNPs (tube-like, sphere-like, and flower-like), the plate-like CuSNPs with smooth surfaces and uniform nanometer size played a significant role by scattering incident light in the fibers as a secondary light source for CuSNPs absorbance. Thus, under IR light irradiation at a power density of 1.0 W/cm2, the surface temperature of CS/0.1 wt% plate-like CuSNPs hybrid fibers sharply increased by 27.6 °C, which was more than 4 times of the pure CS fibers. And the breaking strength and initial modulus of CS/0.1 wt% plate-like CuSNPs hybrid fibers increased by more than 18.37 and 6.88 % compared with the nascent CS fibers. This study develops a novel and effective strategy to tune the photo-thermal and tensile properties of CS hybrid fibers without incorporating more content or additives.
Collapse
Affiliation(s)
- Chen Cheng
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Da Bao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Shengnan Sun
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Yongchun Zhou
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Linna Tian
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Bing Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Yue Yu
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Jing Guo
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Sen Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
9
|
Deng G, Yao L, Chen M, Yang Y, Lu S, Wu G. The Photothermal Conversion and UV Resistance of Silk Fabrics Being Achieved through Surface Modification with C@SiO 2 Nanoparticles. Molecules 2023; 28:7970. [PMID: 38138460 PMCID: PMC10745433 DOI: 10.3390/molecules28247970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
With the improvement in people's living standards, the development and application of smart textiles are receiving increasing attention. In this study, a carbon nanosurface was successfully coated with a SiO2 layer to form C@SiO2 nanomaterials, which improved the dispersion of carbon nanomaterials in an aqueous solution and enhanced the absorption of light by the carbon nanoparticles. C@SiO2 nanoparticles were coupled on the surface of silk fabric with the silane coupling agent KH570 to form C@SiO2 nanosilk fabric. The silk fabric that was subjected to such surface modification was endowed with a special photothermal function. The results obtained with scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and infrared spectroscopy (FTIR) showed that C@SiO2 nanoparticles were successfully modified on the surface of the silk fabric. In addition, under the irradiation of near-infrared light with a power of 20 W and a wavelength of 808 nm, the C@SiO2 nanosilk fabric experienced rapid warming from 23 °C to 60 °C within 30 s. After subjecting the functional fabric to hundreds of photothermal experiments and multiple washes, the photothermal efficiency remained largely unchanged and proved to be durable and stable. In addition, the thermogravimetric (TG) analysis results showed that the C@SiO2 nanoparticles contributed to the thermal stability of the silk fabric. The UV transmittance results indicated that C@SiO2 nanofabric is UV-resistant. The silk modification method developed in this study is low-cost, efficient, and environmentally friendly. It has some prospects for future applications in the textile industry.
Collapse
Affiliation(s)
- Gang Deng
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (G.D.)
| | - Lu Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (G.D.)
| | - Mingzhao Chen
- Huangshan Kehong BioFlavor Co., Ltd., Huangshan 245200, China
| | - Yuanyuan Yang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (G.D.)
| | - Song Lu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (G.D.)
| | - Guohua Wu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (G.D.)
| |
Collapse
|
10
|
Xie F, Wang T, Li Y, Pan Y, Guo P, Liu C, Shen C, Liu X. Ag Nanoparticles-Coated Shish-Kebab Superstructure Film for Wearable Heater. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38040021 DOI: 10.1021/acsami.3c14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Passive and active wearable heaters have received widespread attention due to their efficient utilization of solar energy and all-weather heating capabilities, but the current challenges are their preparation processes being time-consuming and equipment expensive. Herein, a simple and facilitated preparation method for the multifunctional wearable heater was developed, which springs Ag nanoparticles on the shish-kebab superstructure film via deposited melanin-like polydopamine as the adhesive. The light absorption ability of the resultant wearable heater in the visible region can be significantly enhanced by the addition of polydopamine, realizing a highly efficient photothermal conversion ability. Accordingly, it can achieve rapid warming ability whether passive heating (up to 45 °C about 60 s at 100 mW/cm2) or active heating (up to 72 °C about 40 s at 0.6 V), compared to ordinary cotton fabric. In addition, it can realize a 6.3 °C temperature difference with Cotton, showing excellent heat preservation ability. This study demonstrates a simple and low-cost approach for the prepared shish-kebab superstructure-based wearable heaters.
Collapse
Affiliation(s)
- Fengsen Xie
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Tengrui Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yingnuo Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yamin Pan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Pan Guo
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
11
|
Zhang N, Shi R, Zhou M, Wang P, Yu Y, Wang Q. Amyloid-like protein bridged nano-materials and fabrics for preparing rapid and long lasting antibacterial, UV-resistant and personal thermal management textiles. Int J Biol Macromol 2023; 247:125699. [PMID: 37414308 DOI: 10.1016/j.ijbiomac.2023.125699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Textiles with efficient and long-lasting antibacterial properties have attracted significant attention. However, a single antibacterial model is insufficient to with variable environments and achieve higher antibacterial activity. In this study, lysozyme was used as assistant and stabilizer, and the efficient peeling and functional modification of molybdenum disulfide nanosheets were realized by ultrasonic. Additionally, lysozyme in the presence of reducing agents to form amyloid-like phase-transited lysozyme (PTL) and self-assembling on the wool fabric. Finally, the AgNPs are reduced in situ by PTL and anchored onto the fabric. It has been demonstrated that Ag-MoS2/PTL@wool generates ROS under light irradiation, rapidly converts photothermal heat into generate hyperthermia, and promotes the release of Ag+. The aforementioned "four-in-one" approach resulted in bactericidal rates of 99.996 % (4.4 log, P < 0.0005) and 99.998 % (4.7 log, P < 0.0005) for S.aureus and E.coli, respectively. Even after 50 washing cycles, the inactivation rates remained at 99.813 % and 99.792 % for E.coli and S.aureus, respectively. In the absence of sunlight, AgNPs and PTL continue to provide continuous antibacterial activity. This work emphasizes the importance of amyloid protein in the synthesis and application of high-performance nanomaterials and provides a new direction for the safe and effective application of multiple synergistic antibacterial modes for microbial inactivation.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Rongjin Shi
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
12
|
Pi S, Liu C, Zhang J, Li N, Shen J, Guo W, Qin L, Zhao J, Zhang S, Wang Z. Durable Rapid Self-Disinfection, Reusable Protective Clothing Based on the Ag-Pd@MoS 2 Nanozyme with Enhanced Triple-Mode Synergistic Antibacterial Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18032-18044. [PMID: 37000034 DOI: 10.1021/acsami.2c23130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Personal protective clothing plays an important role in isolating microorganisms and harmful ultrafine dust, but it cannot quickly inactivate bacteria intercepted on the surface, making it a potential source of infection. However, spontaneous and durable rapid sterilization is a major challenge for commercial protective clothing. Herein, we exquisitely engineered a visible light-enhanced Ag-Pd@MoS2 nanozyme-based fabric, named PVDF/Ag-Pd@MoS2/PAN fabric (PAPMP fabric), with prominent triple-mode synergistic antibacterial effect through the replacement reaction, electrospinning technique, and vacuum filtration method. The modification of Ag-Pd greatly strengthened the absorption of MoS2 nanosheets to the visible light spectrum (390-780 nm) and its corresponding catalytic performance. Meanwhile, the combination of MoS2 nanosheets significantly enhanced the oxidase-like characteristics of Ag-Pd under sunlight irradiation, increasing the yield of surface-bound 1O2 ∼4.54 times in 5 min. In addition, the obtained Ag-Pd@MoS2 nanozyme showed an excellent photo-to-thermal conversion property (36.12%), which enabled the sharp increase in the surface temperature of the PAPMP fabric to 62.8 °C in 1 min under a solar simulator (1 W/cm2). Correspondingly, the obtained PAPMP fabric exhibited excellent intrinsic antibacterial effect and greatly shortened the sterilization time from 4 h to only 5 min under sunlight stimulation. The rapid antibacterial effect of the fabric was attributable to the enhanced production rate of surface-bound reactive oxygen species and the increased temperature by solar irradiation. Notably, the fabric still maintained the efficient germicidal effect even after 30 washing cycles. In addition to high reusability, the fabric also had outstanding biological compatibility and water resistance. Our work provides a novel strategy to improve the inherent timely sterilization and heat preservation efficiency of protective clothing.
Collapse
Affiliation(s)
- Shuai Pi
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Cui Liu
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianjun Shen
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wei Guo
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Qin
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Zhao
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shudong Zhang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyang Wang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
13
|
Dong XX, Cao YM, Wang C, Wu B, Zheng M, Xue YB, Li W, Han B, Zheng M, Wang ZS, Zhuo MP. MXene-Decorated Smart Textiles with the Desired Mid-Infrared Emissivity for Passive Personal Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12032-12040. [PMID: 36802223 DOI: 10.1021/acsami.2c21696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multifunctional and long-term stable wearable heating systems have attracted extensive attention from experts, yet smart textiles that only rely on harvesting the body's heat without additional energy still face huge challenges in practical applications. Herein, we rationally prepared the monolayer MXene Ti3C2Tx nanosheets via an in situ hydrofluoric acid generation method, which was further employed to construct a wearable heating system of MXene @ polyester polyurethane blend fabrics (MP textile) for the passive personal thermal management through a simple spraying process. Owing to the unique two-dimensional (2D) structure, the MP textile presents the desired mid-infrared emissivity, which could efficiently suppress the thermal radiation loss from the human body. Notably, the MP textile with an MXene concentration of 28 mg/mL exhibits a low mid-infrared emissivity of 19.53% at 7-14 μm. Significantly, these prepared MP textiles demonstrate an enhanced temperature of more than 6.83 °C compared with those of favorably traditional fabrics, involving the black polyester fabric, pristine polyester polyurethane blend fabric (PU/PET), and cotton, suggesting a charming indoor passive radiative heating performance. The temperature of real human skin covered by MP textile is 2.68 °C higher than that covered by cotton fabric. Impressively, these prepared MP textiles simultaneously possess attractive breathability, moisture permeability, mechanical strength, and washability, which provide new insight into human body temperature regulation and physical health.
Collapse
Affiliation(s)
- Xin-Xin Dong
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuan-Ming Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Mi Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yang-Biao Xue
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wei Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Bin Han
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Min Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Naton Science & Technology Co., Ltd, Suzhou 215123, China
| | - Zuo-Shan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Jiangsu Naton Science & Technology Co., Ltd, Suzhou 215123, China
| | - Ming-Peng Zhuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Zhao Z, Zhang Q, Song X, Chen J, Ding Y, Wu H, Guo S. Versatile Melanin-Like Coatings with Hierarchical Structure toward Personal Thermal Management, Anti-Icing/Deicing, and UV Protection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3522-3533. [PMID: 36600550 DOI: 10.1021/acsami.2c20714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superhydrophobic photothermal coatings are promising for multifunctional applications due to the efficient use of solar energy, but the current challenge is to seek one easy-to-prepare material with high photothermal performance. Herein, inspired by mussel adhesion and lotus leaf surfaces, we developed superhydrophobic photothermal coatings with hierarchical structure by depositing melanin-like polydopamine (PDA) and dip-coating polydimethylsiloxane (PDMS)/hydrophobic fumed silica (SiO2) sequentially. Benefitting from the efficient photothermal conversion performance of PDA, the coated fabric can rapidly warm up to 100 °C under 100 mW/cm2 sun irradiation. Meanwhile, the coatings show excellent superhydrophobic properties (WCA of 163°), which not only prevent the adhesion of the contaminant from maintaining a long-term and efficient photothermal performance but also help the fabric to own outstanding passive anti-icing and active deicing performances. Furthermore, the superhydrophobic properties of the coatings can be maintained after sandpaper abrasion, repeat tape-peeling, and ultrasonication. In addition, superior UV protection of the coatings can meet the long-term service conditions under outdoor sunlight. The PDA-based superhydrophobic photothermal coatings are believed to inspire new strategies for solar-driven multifunctional applications such as personal thermal management, anti-icing/deicing of variously shaped components, photothermal antibacterial, and so on.
Collapse
Affiliation(s)
- Zhiheng Zhao
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qi Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jing Chen
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yitong Ding
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Zhao YD, Han J, Chen Y, Su Y, Cao YM, Wu B, Yu SM, Li MD, Wang Z, Zheng M, Zhuo MP, Liao LS. Organic Charge-Transfer Cocrystals toward Large-Area Nanofiber Membrane for Photothermal Conversion and Imaging. ACS NANO 2022; 16:15000-15007. [PMID: 35984084 DOI: 10.1021/acsnano.2c06064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic photothermal materials integrating a high-efficiency light-heat conversion effect and high flexibility have generated immense interest in fundamental research and practical applications. Nevertheless, their practical applications still remain a challenge, owing to the complicated design, tedious synthesis, and limited programmable substrates. Herein, an organic charge-transfer cocrystal with a narrow energy gap of 0.33 eV and a high photothermal conversion efficiency (PCE) of 69.3% was rationally designed and synthesized via a facile self-assembly process, which was introduced into polyurethane for forming a large-area photothermal nanofiber membrane via electrospinning technology. Femtosecond transient absorption spectroscopy elucidates that the excellent PCE is attributed to the nonradiation transition process, including internal conversion and charge dissociation processes. Furthermore, the temperature of the as-prepared photothermal nanofiber membrane could quickly rise to 52 °C under laser irradiation with a power density of 0.183 W/cm2, suggesting a high PCE of 53.7%. This work successfully achieves the fabrication of a large-area photothermal membrane and the development of photothermal imaging.
Collapse
Affiliation(s)
- Yu Dong Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jingyu Han
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yetao Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
| | - Yang Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuan Ming Cao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Si Min Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
| | - Zuoshan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Min Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Gao Y, Qiu Z, Liu L, Li M, Xu B, Yu D, Qi D, Wu J. Multifunctional fibrous wound dressings for refractory wound healing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Zhiye Qiu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Mengmeng Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
17
|
Guo J, Yang B, Ma Q, Fometu SS, Wu G. Photothermal Regenerated Fibers with Enhanced Toughness: Silk Fibroin/MoS 2 Nanoparticles. Polymers (Basel) 2021; 13:3937. [PMID: 34833236 PMCID: PMC8618409 DOI: 10.3390/polym13223937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
The distinctive mechanical and photothermal properties of Molybdenum sulfide (MoS2) have the potential for improving the functionality and utilization of silk products in various sectors. This paper reports on the preparation of regenerated silk fibroin/molybdenum disulfide (RSF/MoS2) nanoparticles hybrid fiber with different MoS2 nanoparticles contents by wet spinning. The simulated sunlight test indicated that the temperature of 2 wt% RSF/MoS2 nanoparticles hybrid fibers could rise from 20.0 °C to 81.0 °C in 1 min and 98.6 °C in 10 min, exhibiting good thermal stability. It was also demonstrated that fabrics made by manual blending portrayed excellent photothermal properties. The addition of MoS2 nanoparticles could improve the toughness of hybrid fibers, which may be since the mixing of MoS2 nanoparticles hindered the self-assembly of β-sheets in RSF solution in a concentration-dependent manner because RSF/MoS2 nanoparticles hybrid fibers showed a lower β-sheet content, crystallinity, and smaller crystallite size. This study describes a new way of producing high toughness and photothermal properties fibers for multifunctional fibers' applications.
Collapse
Affiliation(s)
- Jianjun Guo
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
- College of Agriculture, Anshun University, Anshun 561000, China
| | - Bo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China;
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Qiang Ma
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Sandra Senyo Fometu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Guohua Wu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| |
Collapse
|